
Scientific Issues

Jan Długosz University

in Częstochowa
Mathematics XX (2015)

83–92

DOI http://dx.doi.org/10.16926/m.2015.20.09

SMT-BASED REACHABILITY ANALYSIS

FOR SIMPLY-TIMED SYSTEMS

AGNIESZKA M. ZBRZEZNY, ANDRZEJ ZBRZEZNY

Abstract

In the paper we present Satisfiability Modulo Theory based (SMT-based) reachability

analysis algorithm for Simply-Timed Systems (i.e., Kripke structures where each transi-

tion holds a duration, which is an arbitrary natural number) generated by simply-timed

automata. The algorithm is based on a SMT-based encoding for Simply-Timed Systems.

We have tested the algorithm in question by using the generic simply timed pipeline par-

adigm model as the benchmark. The performance evaluation of the algorithm is given

by means of the running time and the memory used.

1. Introduction

Model checking has been proposed independently by Clarke and Emer-
son [11], and by Quielle and Sifakis [22] as a method for automatic and
algorithmic verification of finite state concurrent systems, and impressive
strides have been made on this problem over the past thirty years [10, 12].
Model checking of real-time [2, 3, 14, 4] and multi-agent systems [15, 23] is
a very active field for both theoretical research and practical applications.
The practical applicability of model checking in real-time, and multi-

agent settings has required the development of sophisticated means of cop-
ing with what is known as the state explosion problem. It means that the

• Agnieszka M. Zbrzezny — Jan Długosz University in Częstochowa.
Partly supported by National Science Centre under the grant No.

2014/15/N/ST6/05079.
The study is co-funded by the European Union, European Social Fund. Project PO KL

“Information technologies: Research and their interdisciplinary applications”, Agreement
UDA-POKL.04.01.01-00-051/10-00.

• Andrzej Zbrzezny — Jan Długosz University in Częstochowa.



84 AGNIESZKA M. ZBRZEZNY, ANDRZEJ ZBRZEZNY

number of model states grows exponentially in the size of the system rep-
resentation. To avoid this problem a number of state reduction techniques
and symbolic model checking approaches have been developed.
Verification of real-time systems (i.e., systems in which the total cor-

rectness of a computation depends not only on its logical correctness, but
also on a certain subset of deadlines in which it is performed) is an ac-
tively developing field of research [3, 25, 9, 24, 16, 21]. Popular models of
such systems include timed automata [1], time Petri nets [19], and simply-
timed systems (STSs) [18], i.e., Kripke models where each transition holds
a duration, which can be any integer value (including zero). For those
models several approaches based on model checking have been proposed
[3, 9, 24, 16, 21, 25].
Simply-timed systems are an extension of transition system where each

transition is labelled by a nonnegative STSs allow for transitions that take
a long time, allow transitions to have zero duration and the transitions with
the zero duration allow for counting specific events only and thus omitting
the irrelevant ones from the model checking point of view.
The SMT problem [7] is a generalisation of the SAT problem, where

Boolean variables are replaced by predicates from various background the-
ories, such as linear, real, and integer arithmetic. SMT generalises SAT by
adding equality reasoning, arithmetic, fixed-size bit-vectors, arrays, quanti-
fiers, and other useful first-order theories. Using SMT to express different
problems has important advantages over SAT. If one uses SAT, then, for
example, data must be encoded into a Boolean representation: a bit-vector
must be represented as just its individual bits, for example. In contrast, an
SMT encoding can represent the bit-vector directly, and may be able to rea-
son more efficiently at the bit-vector level of abstraction, without resorting
to bit-level reasoning (though this may sometimes be necessary).
In analogy with SAT, SMT procedures are usually referred to as SMT

solvers. Present-day SMT research started in the late 1990s with different
independent attempts [6, 17, 5, 20, 8] to build more scalable SMT solvers
by exploiting advances in SAT technology. Over the last ten years a great
deal of interest and research on the foundational and practical aspects of
SMT was seen. SMT solvers have been developed in academia (Carnegie
Mellon University, DISI-University of Trento, University of Lugano) and
industry (Microsoft Research, Fondazione Bruno Kessler) with increasing
scope and performance. An SMT solver is a tool for deciding the satisfiabil-
ity (or dually the validity) of formulae in a number of theories. SMT solvers
enable applications such as extended static checking, predicate abstraction,
test case generation, and bounded model checking over infinite domains, to
mention a few.



SMT-BASED REACHABILITY ANALYSIS FOR STSS 85

SAT can encode operations and relations on bounded integers using
bitvector representation, with adders etc. represented as Boolean circuits
and other finite data types and structures but cannot do not unbounded
types (e.g. reals), or infinite structures (e.g. queues, lists) and even bounded
arithmetic can be slow when it is large. There are fast decision procedures
for these theories but their basic form works only on conjunctions. Gen-
eral propositional structure requires case analysis and that is what an SMT
solver does.
The rest of the paper is organised as follows. We begin in 2 by introducing

simply-timed systems. In Section 3 we present our simple translation to
SMT. In Section 4 we present reachability algorithm. In Section 5 we discuss
our experimental results. In the last section we conclude the paper.

2. Preliminaries

2.1. Simply-timed systems. Simply-timed systems [25] are an extension
of transition system where each transition is labelled by a nonnegative in-
teger. There are three main reasons why it is interesting to consider STSs
instead of standard Kripke models. First, STSs allow for transitions that
take a long time, e.g. 100 time units. Such transitions could be simulated
in standard Kripke models by inserting 99 intermediate states. But this
increases the size of the model, and so it makes the model checking process
more difficult. Second, STSs allow transitions to have zero duration. This
is very convenient in models where some steps are described indirectly, as a
short succession of micro-steps. Third, the transitions with the zero dura-
tion allow for counting specific events only and thus omitting the irrelevant
ones from the model checking point of view.

Definition 1. A simply-timed system (STS for short), also called a model,
is a tuple M = (S, T , Act, s0, AP, L, d), where S is a nonempty finite set
of states, s0 ∈ S is the initial state, Act is a nonempty set of actions,
T ⊆ S×Act×S is a transition relation, AP is a set of atomic propositions,
L : S → 2AP is a labelling function that assigns to each state a set of atomic
propositions that are assumed to be true at that state, and d : Act→ ◆ is a
duration function.

Each element t = (s, σ, s′) ∈ T represents a transition from the state s

to the state s′, where σ is the action of the transition t.
From now on we assume that a STS has no terminal states, i.e. for every

s ∈ S there exist s′ ∈ S such that s −→ s′. Figure 1 displays a simple

example of STS. A path in M is an infinite sequence π = s0
σ1
−→ s1

σ2
−→

s2
σ3
−→ . . . of transitions. For such a path, and for m ∈ ◆, by π(m) we

denote the m-th state of π by sm. For j ≤ m ∈ ◆, π[j..m] denotes the



86 AGNIESZKA M. ZBRZEZNY, ANDRZEJ ZBRZEZNY

Figure 1. A simple STS.

finite sequence sj
σj+1

−→ sj+1

σj+2

−→ . . . sm with m− j transitions and m− j+1
states. The (cumulative) duration Dπ[j..m] of such a finite sequence is
d(σj+1) + . . .+ d(σm) (hence 0 when j = m). By Π(s) we denote the set of
all the paths starting at s ∈ S. Moreover we define a k − path as a finite
sequence π = (s0, ..., sk) of states such that sj −→ sj+1 for each 0 ≤ j < k.
Let M = (S,−→, Act, s0, AP, L, d) be a model and s be a state. The

state s is reachable in the model M if there exists a path π ∈ Π(s0) such
that π(k) = s for some k ∈ ◆.
Since concurrent systems are modelled as a set of communicating pro-

cesses, to verify them, it is reasonable to model communicating processes
by a network of STSs that run in parallel, communicate with each other via
shared actions and perform transitions with shared actions synchronously.

3. Translation to SMT

We have implemented a translation to SMT strictly following the trans-
lation to SAT (for details see for example [26]). In our translation to SMT
states, durations and actions are represented by natural variables. SinceM
is a parallel composition of a finite number n of finite transition system,
every state ofM can be encoded as a natural number vector of the length
n. Thus, each state of M can be represented by a valuation of a vector
(called a symbolic state) of different individual variables called individual
state variables. Moreover, every action of M can be represented by a val-
uation of an individual variable. Furthermore, k-paths can be represented
as vectors of k + 1 symbolic states.

3.1. Bounded Model Checking. Now let us recall the BMC method of
checking a reachability property represented by a given quantifier-free first-
order formula ϕ(w,d), where w is a symbolic state and d is a symbolic



SMT-BASED REACHABILITY ANALYSIS FOR STSS 87

duration. Let I(w0,d0) be a quantifier-free first-order formula that repre-
sents the initial state and T ((w,d), (w′,d′)) be a quantifier-free first order
formula that encodes any possible transition. Now let us define the formula
[M]k that represents the unfolding to the depth k of the transition relation
ofM:

[M]k :=

k−1∧

i=0

T ((wi,di), (wi+1,di+1))

In order to check the reachability property represented by the formula ϕ

one has to check the satisfiability of the following conjunction:

[M]ϕk := I(w0,d0) ∧ [M]k ∧ ϕ(wk,dk)

starting with k = 0. If for a given k the formula [M]ϕk is not satisfiable, then
k is increased and the resulting formula is to be checked by a SMT-solver
again.
The method described relies on the following theorem.

Theorem 1. Let M be a model and ϕ be a quantifier-free first-order for-
mula. Then, there exists a reachable state in the set of states represented
by the formula ϕ if, and only if, the formula [M]ϕk is satisfiable for some
k ∈ ◆.

Example 1. We use the generic simply-timed pipeline paradigm (GSPP)
[25] as the benchmark. A network of STSs that models GSPP is shown
in Fig. 2. We have n + 2 automata (n automata representing Nodes, one

ProdReady-0start

ProdSend-1

Send1Produce

Node1Ready-0start

Node1Proc-1

Send1

Node1Send-2

Proc1

Send2

· · · NodenReady-0start

NodenProc-1

Sendn

NodenSend-2

Procn

Sendn+1

ConsReady-0start

ConsReceived-1

ConsumeSendn+1

Figure 2. A network of STSs that models GSPP.

automaton for Producer, and one automaton for Consumer) that run in
parallel and synchronise on actions Sendi (1 6 i 6 n + 1). Action Sendi
(1 6 i 6 n) means that i-th Node has received data produced by Producer.
Action Sendn+1 means that Consumer has received data produced by Pro-
ducer. Action Proci (1 6 i 6 n) means that i-th Node processes data.
Action Produce means that Producer generates data. Action Consume

means that Consumer consumes data produced by Producer.



88 AGNIESZKA M. ZBRZEZNY, ANDRZEJ ZBRZEZNY

We show our translation to SMT for one Node and the following basic
durations: d(Produce) = 2, d(Sendi) = 2, d(Proci) = 4, d(Consume) = 2,
on the reachability property that the state ConsRecieved is reachable in
time less or equal to (2·coefficient)+(2·coefficient)·(n+1)+(4·coefficient)·n,
where coefficient = 1.
Let π be a symbolic path of the length k. Stating that π(i) is the initial

state is encoded as the following formula I(i):

wi,0 = 0 ∧ wi,1 = 0 ∧ wi,2 = 0 ∧ di = 0,

where wi,j denotes the local state of the j-th component at the depth i of
the path π, and di denotes the symbolic duration at the depth i of the path.
The transition from the state π(i) to the state π(i + 1) of the path π is

encoded as the following formula T (i), where 0 ≤ i < k:

(wi,0 = 0 ∧ wi+1,0 = 1 ∧ wi,1 = wi+1,1 ∧ wi,2 = wi+1,2 ∧ d1 = 2) ∨

(wi,0 = 1 ∧ wi+1,0 = 0 ∧ wi,1 = 0 ∧ wi+1,1 = 1 ∧ wi,2 = wi+1,2 ∧ d1 = 2) ∨

(wi,1 = 2 ∧ wi+1,1 = 0 ∧ wi,2 = 0 ∧ wi+1,2 = 1 ∧ wi,0 = wi+1,0 ∧ d1 = 2) ∨

(wi,1 = 1 ∧ wi+1,1 = 2 ∧ wi,0 = wi+1,0 ∧ wi,2 = wi+1,2 ∧ d1 = 4) ∨

(wi,2 = 1 ∧ wi+1,2 = 0 ∧ wi,0 = wi+1,0 ∧ wi,1 = wi+1,1 ∧ d1 = 2)

Now, the symbolic path of the length k is encoded as the following formula:

I(0) ∧

k−1∧

i=0

T (i)

The reachability property for the path of the length k is encoded in the
following way:

wk,2 = 1 ∧
k∑

i=0

di ≤ 10

4. Reachability algorithm

Given a simply-timed system and a property p (by a property we mean
a set of states), the reachability problem consists in establishing whether a
state satisfying p is reachable from the initial state of the system. To solve
this problem we propose a method, which combines the well-known forward
reachability analysis and Bounded Model Checking (BMC) method for STSs
[25]. The forward reachability algorithm searches the state space by moving
from one state to its successors in the Breadth First mode, whereas BMC
performs a verification on a part of the model exploiting SMT solvers.
To check reachability of a state satisfying the property p, we unfold iter-

atively the transition relation of a simply-timed system in k steps. Then,
the unfolding is encoded by a propositional formula, which characterises the



SMT-BASED REACHABILITY ANALYSIS FOR STSS 89

set of all the feasible paths through the transition relation with the length
smaller than or equal k. Next, we translate the property p to a quantifier-
free formula. Finally, the formula representing the „unfolded” transition
relation and the property p is tested for satisfiability using Z3 [13]. The
unfolding of the transition relation can be terminated when either a state
satisfying the property has been found or all the states of the STS have
been searched.

5. Experimantal Results

We have performed our experimental results on a computer equipped with
I7-3770 processor, 32 GB of RAM, and the operating system Linux. We have
tested the GSPP problem with the following basic durations: d(Produce) =
2, d(Sendi) = 2, d(Proci) = 4, d(Consume) = 2, and their multiplications
by 1, 1000 and 1000000, on the reachability property stating that the state
ConsRecieved is reachable in time that is less or equal to (2 · coefficient+
(2 · coefficient) · (n+ 1) + (4 · coefficient) · n, where coefficient ∈ ◆.
In Figure 3 we present a comparison of total time usage and total memory

usage of the reachability property for coefficient = 1.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1 3 5 7 9 11 13 15 20 25 30 35

T
im

e
 i
n

 s
e

c
.

Number of Nodes

Total time usage for a GSPP

coefficient = 1

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

1 3 5 7 9 11 13 15 20 25 30 35

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

Memory usage for a GSPP

coefficient = 1

Figure 3. The total time usage and total memory usage of
the reachability property for coefficient = 1.

In Figure 4 we present a comparison of total time usage and total memory
usage of the reachability property for coefficient = 1000.
In Figure 5 we present a comparison of total time usage and total memory

usage of the reachability property for coefficient = 1000000.

6. Conclusions

In this paper we have presented a SMT-based BMC reachability analysis
algorithm for Simply-Timed Systems generated by simply-timed automata.



90 AGNIESZKA M. ZBRZEZNY, ANDRZEJ ZBRZEZNY

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 3 5 7 9 11 13 15 20 25 30 35

T
im

e
 i
n

 s
e

c
.

Number of Nodes

Total time usage for a GSPP

coefficient = 1000

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

1 3 5 7 9 11 13 15 20 25 30 35

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

Memory usage for a GSPP

coefficient = 1000

Figure 4. The total time usage and total memory usage of
the reachability property for coefficient = 1000.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 3 5 7 9 11 13 15 20 25 30 35

T
im

e
 i
n

 s
e

c
.

Number of Nodes

Total time usage for a GSPP

coefficient = 1000000

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

1 3 5 7 9 11 13 15 20 25 30 35

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

Memory usage for a GSPP

coefficient = 1000000

Figure 5. The total time usage and total memory usage of
the reachability property for coefficient = 1000000.

The experimental results show performance of our SMT-based BMC reach-
ability algorithm. More precisely our SMT-based BMC algorithm is insen-
sitive to scaling up the durations. Time usage decreases with increase of
coefficient. In our SMT-BMC reachability analysis algorithm we use the
state of the art SMT-solver Z3 [13] (http://z3.codeplex.com/).
We should notice that the implementation of the SMT-based BMC reach-

ability analysis algorithm for Simply-Timed Systems we used for performing
the experiments is our first implementation that uses SMT solvers. There-
fore, we hope to improve the implementation in the near future by taking
many advantages of possibilities (of SMT-solvers) that we did not use so
far.



SMT-BASED REACHABILITY ANALYSIS FOR STSS 91

References

[1] R. Alur. Timed Automata. In Proceedings of the 11th International Conference on
Computer Aided Verification (CAV’99), volume 1633 of LNCS, pages 8–22. Springer-
Verlag, 1999.

[2] R. Alur, C. Courcoubetis, and D. Dill. Model checking for real-time systems. In
Proceedings of the 5th Symp. on Logic in Computer Science (LICS’90), pages 414–
425. IEEE Computer Society, 1990.

[3] R. Alur, C. Courcoubetis, and D. Dill. Model checking in dense real-time. Informa-
tion and Computation, 104(1):2–34, 1993.

[4] R. Alur and D. Dill. Automata-theoretic verification of real-time systems. In Formal
Methods for Real-Time Computing, Trends in Software Series, pages 55–82. John
Wiley & Sons, 1996.

[5] Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia. SAT-based proce-
dures for temporal reasoning. In ECP, pages 97–108, 1999.

[6] Alessandro Armando and Enrico Giunchiglia. Embedding complex decision proce-
dures inside an interactive theorem prover. Ann. Math. Artif. Intell., 8(3-4):475–502,
1993.

[7] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications.
IOS Press, 2009.

[8] Randal E. Bryant, Steven M. German, and Miroslav N. Velev. Processor verification
using efficient reductions of the logic of uninterpreted functions to propositional
logic. ACM Trans. Comput. Log., 2(1):93–134, 2001.

[9] S. Campos and E. Clarke. Analysis and verification of real-time systems using quan-
titative symbolic algorithms. International Journal on Software Tools for Technology
Transfer, 2(3):260–269, 1999.

[10] Edmund M. Clarke. The birth of model checking. In 25 Years of Model Checking
- History, Achievements, Perspectives, volume 5000 of Lecture Notes in Computer
Science, pages 1–26. Springer, 2008.

[11] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification
of finite state concurrent systems using temporal logic specifications: A practical
approach. In Conference Record of the Tenth Annual ACM Symposium on Principles
of Programming Languages, Austin, Texas, USA, January 1983, pages 117–126.
ACM Press, 1983.

[12] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the art and
future directions. ACM Comput. Surv., 28(4):626–643, 1996.

[13] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
TACAS, pages 337–340, 2008.

[14] E. A. Emerson and R. Trefler. Parametric quantitative temporal reasoning. In Pro-
ceedings of the 14th Symp. on Logic in Computer Science (LICS’99), pages 336–343.
IEEE Computer Society, July 1999.

[15] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning
About Knowledge. MIT Press, 1995.

[16] C. A. Furia and P. Spoletini. Tomorrow and all our yesterdays: MTL satisfiabil-
ity over the integers. In Proceedings of the Theoretical Aspects of Computing (IC-
TAC’2008), volume 5160 of LNCS, pages 253–264. Springer-Verlag, 2008.



92 AGNIESZKA M. ZBRZEZNY, ANDRZEJ ZBRZEZNY

[17] Fausto Giunchiglia and Roberto Sebastiani. Building decision procedures for modal
logics from propositional decision procedure - the case study of modal K. In CADE,
pages 583–597, 1996.

[18] N. Markey and Ph. Schnoebelen. Symbolic model checking of simply-timed systems.
In Proceedings of the Joint Conferences Formal Modelling and Analysis of Timed
Systems (FORMATS’04) and Formal Techniques in RealTime and Fault-Tolerant
Systems (FTRTFT’04), volume 3253 of LNCS, pages 102–117. Springer, 2004.

[19] P. Merlin and D. J. Farber. Recoverability of communication protocols - implica-
tion of a theoretical study. IEEE Transaction on Communications, 24(9):1036–1043,
1976.

[20] Amir Pnueli, Yoav Rodeh, Ofer Strichman, and Michael Siegel. Deciding equality
formulas by small domains instantiations. In CAV, pages 455–469, 1999.

[21] M. Pradella, A. Morzenti, and P. San Pietro. A metric encoding for bounded model
checking. In Proceedings of the 2nd World Congress on Formal Methods (FM 2009),
volume 5850 of LNCS, pages 741–756. Springer-Verlag, 2009.

[22] J. P. Quielle and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proceedings of the 5th International Symp. on Programming, volume 131
of LNCS, pages 337–351. Springer-Verlag, 1981.

[23] Wiebe van der Hoek and Michael Wooldridge. Model checking knowledge and time.
InModel Checking of Software, 9th International SPIN Workshop, Grenoble, France,
April 11-13, 2002, Proceedings, volume 2318 of Lecture Notes in Computer Science,
pages 95–111. Springer, 2002.

[24] B. Woźna-Szcześniak, A. M. Zbrzezny, and A. Zbrzezny. The BMC method for the
existential part of RTCTLK and interleaved interpreted systems. In Proceedings of
the 15th Portuguese Conference on Artificial Intelligence (EPIA’2011), volume 7026
of LNAI, pages 551–565. Springer-Verlag, 2011.

[25] Bożena Woźna-Szcześniak, Agnieszka Zbrzezny, and Andrzej Zbrzezny. SAT-based
bounded model checking for RTECTL and simply-timed systems. In EPEW, pages
337–349, 2013.

[26] A. Zbrzezny. A new translation from ECTL* to SAT. Fundamenta Informaticae,
120(3-4):377–397, 2012.

Received: October 2015

Agnieszka M. Zbrzezny

Jan Długosz University in Częstochowa
Institute of Mathematics and Computer Science
al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
E-mail address: agnieszka.zbrzezny@ajd.czest.pl

Andrzej Zbrzezny

Jan Długosz University in Częstochowa
Institute of Mathematics and Computer Science
al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
E-mail address: a.zbrzezny@ajd.czest.pl


