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APPLICATION OF MODULAR COMPUTING

TECHNOLOGY TO NUMBER NORMALIZATION IN

FLOATING POINT ARITHMETIC

MIKHAIL SELIANINAU

Abstract

In the present paper, we deal with the methodology of mantissa normalization

on the basis of parallel algorithmic structures of modular arithmetic. The use of

interval-modular form and basic integral characteristics of modular code is fun-

damental for construction of floating-point modular computing arithmetic. The

proposed method of mantissa normalization in the minimal redundant modular

number system is based on the parallel algorithm of multiplication by constant

with overflow check.

1. Introduction

The problem of providing a high speed and sufficient accuracy of calcu-
lations has always been the actual direction of theoretical research in the
field of computer arithmetic. At the present time, this problem gets more
and more clear-cut applied aspect which appears first of all as a solution
of engineering and scientific problems of high dimensionality and high time
complexity. Most numerical methods operate over the field of real numbers,
hence, the problem of creating new ways of their computer approximation
and the organization of parallel processing is actual.
Representation of numbers in the floating point form is used in computer

systems that serve to solve a wide range of scientific and technical problems.
This is caused by the fact that the use of floating point form allows us to
expand considerably the range of representable numbers in comparison with
the fixed point while the high precision of representation is required.
The research directed to the development of new methods and algorithms

of high-speed and high-precision floating point calculations are of great im-
portance as they allow us to perform effective parallelization of calculations
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and to minimize the dependence of the speed of arithmetic operations exe-
cution on the computing accuracy of these operations.
One of the most promising lines of research in the field of organization of

high-speed high-precision calculations is the implementation of nonconven-
tional ways of information encoding and corresponding variants of computer
arithmetic. Numerical systems with parallel structure and, first of all, the
modular number systems (MNS) which are characterized by the maximum
level of internal parallelism play a significant role in the development of
the approach outlined above [1–4]. The method of implementation of high-
precision arithmetic for the processing of numbers of big digit capacity with
the fixed and floating point in the MNS basis is most consistent with the de-
velopment vector of modern high-performance computing technologies and
systems.

2. Minimal redundant modular coding

Currently, the research aimed to optimizing modular computing struc-
tures (MCS) is intensively conducted in parallel with extending the sphere
of applications of modular arithmetic (MA). These structures represent the
unique means of computation processes decomposition into independent el-
ementary subprocesses defined on mathematical models with elements of
small digit capacity [1–6].
Using of modular redundant coding is highly efficient in study of MCS. In

this connection, the modular codes (MC) having minimum redundancy, i.e.
the codes of minimal redundant modular number systems (MRMNS), are of
particular interest. The basis of the principle of minimal redundancy coding
consist in the use of some less powerful operating ranges in comparison with
the ranges determined by the Chinese remainder theorem [1, 2, 5, 6].
In the set Z of real integer numbers, an MRMNS is determined by pair-

wise prime natural modules m1,m2, . . . ,mk (mk ≥ 2m0 + k − 2, m0 is the
additional real module which satisfies the condition m0 ≥ k − 2, k ≥ 2) by
defining a homomorphic mapping

φ : D→ Zm1
× Zm2

× . . .× Zmk
,

(Zmi
= {0, 1, . . . ,mi − 1}, i = 1, 2, . . . , k)

on the working range

D = Z
−

2M = {−M,−M + 1, . . . ,M − 1},

(M = m0Mk−1, Mk−1 =

k−1
∏

l=1

ml).
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In this case, the vector

(χ1, χ2, . . . , χk) ∈ Zm1
× Zm2

× . . .× Zmk
,

is assigned to each X ∈ D, where χ1 = |X|m1
, χ2 = |X|m2

, . . . , χk =
|X|mk

are the residues of division of an integer X by natural modules
m1,m2, . . . ,mk; the notation |x|m is used to designate an element of the
residue ring Zm = {0, 1, . . . ,m−1} which is congruent to the rational value
x modulo m.
Similar to a conventional MNS with the bases m1, m2, . . . ,mk, in an

MRMNS all the ring operations over any two integer numbers A and B
represented by their MC:

A = (α1, α2, . . . , αk), B = (β1, β2, . . . , βk),

(αi = |A|mi
, βi = |B|mi

; i = 1, 2, . . . , k)

are also performed independently for each module, i.e. according to the rule

A ◦B = (α1, α2, . . . , αk) ◦ (β1, β2, . . . , βk) =

= (|α1 ◦ β1|m1
, |α2 ◦ β2|m2

, . . . , |αk ◦ βk|mk
); ◦ ∈ {+, −, ×}. (1)

The main advantage of MA over the arithmetic of positional number
systems consists just in the property (1). The absence of carry between
the adjacent digits of numbers represented in an MNS allows us to perform
the modular arithmetic operations easy and fast. Since the components of
the MC have a small code length and the ring operations in the MNS are
performed independently for each module, then the MA gives essentially
new possibilities to increase the computation speed.
Computational complexity, efficiency and realizable properties of one or

another variant of MA are primarily dependent on the selected set of basic
integral characteristics of MC (ICMC). These characteristics which values
are determined by the digits of MC allow us to estimate the magnitude of
the corresponding numbers or to receive their full positional codes [1, 2].
With respect to the mapping φ which defines an MRMNS with the bases

m1, m2, . . . ,mk and operating range D, there is an inverse mapping φ−1

which establishes a correspondence between the vectors (χ1, χ2, . . . , χk) and
the numbers X ∈ D by the rule

X =
k−1
∑

i=1

Mi,k−1χi,k−1 + I(X)Mk−1, (2)

where χi,k−1 = |M
−1
i,k−1χi|mi

, Mi,k−1 = Mk−1/mi, I(X) is an interval index

(II) of the number X. The expression (2) is called an interval-modular form
(IMF) of the number X [1, 2, 5].
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The triviality of calculation of II is a key element of the principle of
minimum redundancy modular coding. The value of the II is uniquely
determined in the MRMNS by its residue modulo mk and is reduced to the
calculation of a linear combination of low-bit remainders [2, 5].
In the MRMNS with the modules m1, m2, . . ., mk (mk ≥ 2m0 + k − 2,

m0 ≥ k − 2), along with the integer numbers the fractions of the form
x = X/M , where X ∈ D, can also be considered. The set of fractions
mentioned above forms some finite model of real numbers from the interval
(−1, 1). In the MNS, a fraction of a given type is generally defined by the
MC (χ1, χ2, . . . , χk) of the number X (χi = |X|mi

; i = 1, 2, . . . , k).
Using the IMF (2) of real integer numbers and the calculation procedure

of an II as a basis for all algorithmic construction provides simplicity of
implementation of decoding mapping in MRMNS and consequently of other
non-modular operations. This leads to a significant improvement of the
arithmetic properties of the MNS.

3. Overflow check and sign detection in the MRMNS

The interval-index characteristic I(X) allows us to check quite simply
whether or not the result number X belongs to operating range under con-
sideration as well as to identify the negative and non-negative area of the
specified range, i.e. to solve the problem of overflow and sign detection.
In the development of computer arithmetic of the MRMNS, along with

the II I(X), a minimal ICMC Θ(X) corresponding to the number X in the
system with modules m1,m2, . . . ,mk−1,m0 determined by the relation

|X|M =
k−1
∑

i=1

Mi,k−1χi,k−1 + Î(X)Mk−1 −Θ(X)M (3)

plays a key role [1]. Here Î(X) = |I(X)|m0
is a computer II of the number

X.
We introduce the following definition.
Definition 1. An integer number

J(X) =

⌊

I(X)

m0

⌋

(4)

is called the main II of an arbitrary integer number X with respect to the
module m0 (the integer part of a real number x is denoted by ⌊x⌋).

Definition 2. An integer number

N(X) =

⌊

X

M

⌋

(5)
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is called an interval number of an arbitrary integer number X with respect
to the modules m1,m2, . . . ,mk−1,m0.
By applying the Euclidean lemma from the theory of divisibility [7] to

an II I(X) in the form I(X) = Î(X) + J(X)m0, we have from (2)

X =
k−1
∑

i=1

Mi,k−1χi,k−1 + Î(X)Mk−1 + J(X)M.

Subtracting and adding the value Θ(X)M in the right-hand side of this
equality and considering (3), we receive

X =

k−1
∑

i=1

Mi,k−1χi,k−1 + Î(X)Mk−1 −Θ(X)M + J(X)M +Θ(X)M =

= |X|M + (J(X) + Θ(X))M. (6)

Hence, according to the Euclidean lemma, we conclude that for an inter-
val numbers N(X) (see (5)) the following relation is true

N(X) = J(X) + Θ(X). (7)

As it follows from (6) and (7), a necessary and sufficient condition for
the number X to belong to the considered range D is an execution of one
of the equalities: J(X)+Θ(X) = −1 or J(X)+Θ(X) = 0. In other words,
in the MRMNS a control of overrange of an integer number X is reduced
to forming a flag

Ω =

{

0 if J(X) + Θ(X) ∈ {−1, 0},

1 in other cases.
(8)

The obtained relations (6) and (7) also allow us to determine the sign
S(X) of a number X:

S(X) =

{

0 if J(X) + Θ(X) ≥ 0,

1 if J(X) + Θ(X) < 0.
(9)

Thus, in the MRMNS the operations of overflow check (8) and of sign
detection (9) are actually reduced to calculation of the main II J(X) and
the minimal ICMC Θ(X) corresponding to the integer number X in the
auxiliary MNS with the modules m1,m2, . . . ,mk−1,m0.
In [1] it was proved that if the module m0 satisfies the condition m0 ≥

k − 2, then the minimal ICMC Θ(X) possesses only two values: 0 or 1.
Let us note that in the MRMNS for implementation of the most com-

monly used arithmetic operations (addition, subtraction and multiplication
of numbers with overflow check), it is best to use the strictly symmetric



62 MIKHAIL SELIANINAU

range D0 = {−M + 1,−M + 2, . . . ,M − 1} which originates from the op-
erating range D by deleting a point −M . This feature introduces some
changes in the process of forming an overflow flag Ω because now the over-
flow takes place when N(X) ∈ {−1, 0} and X 6= −M . Thus, when using
the symmetric range, it is necessary to substitute the relation (8) by the
following modification:

Ω =

{

0 if J(X) + θ(X) ∈ {−1, 0} and X 6= −M,

1 in other cases.
(10)

4. Features of floating point numerical data representation

It is known that any real number x in a positional number system can
be represented in exponential form: x = m(x)pn(x), where m(x) is the
mantissa, p is the base radix and n(x) is the number exponent.
For representation of floating point data, the number record in a nor-

malized form is usually used. In this case, the mantissa m(x) satisfies the
following conditions: it must be a proper fraction and have the nonzero
digit in the first number position after the floating point. It should be em-
phasized that the requirement of normalization of numbers is introduced to
ensure the maximum accuracy of their representation.
As a result of calculations, the normalization is often violated, so it is

necessary to restore it. For example, when performing arithmetic operations
of addition and subtraction of mantissas the normalization of a resultant
mantissa can be violated at one digit to the left or at arbitrary number of
digits to the right.
If normalization is violated to the left, then the normalization of the result

is executed by shifting the resultant mantissa at one digit to the right and
the increment of the number exponent by one.
If normalization is violated to the right, then the normalization of the

result is executed by shifting the resultant mantissa at one digit to the left
and the decrement of the number exponent by one. These steps should be
continued till the condition 1/p ≤ |m(x)| < 1 is met.

5. Mantissa normalization in the MRMSS

On the basis of minimal redundant modular algorithmic structures it is
possible to construct different variants of MA of real numbers not only with
a fixed point but also with a floating point. For this purpose it is necessary
to develop additionally fast methods and algorithms of normalization of
mantissas represented in the minimal redundant MC.
The operation of number normalization refers to the category of non-

modular operations. The main methods of mantissa normalization in the
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MRMNS can be synthesized on the basis of parallel algorithms of forming
different ICMC (for example, coefficients of a symmetric polyadic code),
high-speed scaling procedures and arithmetic operations with overflow check
[2, 8].
Let us consider the approach to constructing the normalization proce-

dures when normalization is violated to the right which is based on the
multiplication by constants with overflow check.
In the MRMNS with the modules m1, m2, . . ., mk (mk ≥ 2m0 + k −

2, m0 ≥ k − 2), a mantissa m(x) is represented in terms of a fraction
m(x) = X/M which is defined by the MC (χ1, χ2, . . . , χk) of a number
X (χi = |X|mi

, i = 1, 2, . . . , k). As the normalization is violated to the
right 0 ≤ |m(x)| < 1/p, then 0 ≤ |X| < M/p. Therefore, the mantissa
normalization is reduced to transformation of a number X.
To normalize a numberX in MRMNS (X is an element of operating range

of the MRMNS, X 6= 0) means to find its representation in the exponential
form

X = m(X)p−n(X), (11)

where m(X) is an integer-valued mantissa satisfying the condition M/p ≤
|m(X)| < M ; n(X) is an exponent of a number X and p is a radix of the
exponential representation.
The relation (11) indicates that normalization of a number X is actually

reduced to computation of the exponent n(X). The value n(X) is uniquely
determined by the condition of normalization of the mantissa m(X) written
as

M/p ≤ |X|pn(X) < M.

From the relationship (11) it follows that the exponent n(X) of the initial
number X coincides with the number ν of the penultimate element of a
sequence X(0) = X, X(1) = X(0)p, X(2) = X(1)p, . . ., X(ν) = X(ν−1)p,
X(ν+1) = X(ν)p (ν ≥ 0), where numbers X(0), X(1), . . . , X(ν) belong and

X(ν+1) does not belong to the range of MRMNS.
Therefore, to obtain the value n(X) = ν it is enough to generate flags

Ω(X(j)) which indicate that the numbers X(j) = Xpj (j = 1, 2, . . . , ν)

belong and the number X(ν+1) does not belong to the number system range
(see (8), (10)).
Let us introduce the notation

χ
(l)
i,k−1 =

∣

∣

∣
M−1

i,k−1X
(l)
∣

∣

∣

mi

=
∣

∣

∣
plM−1

i,k−1χi

∣

∣

∣

mi

=
∣

∣

∣
plχi,k−1

∣

∣

∣

mi

(12)



64 MIKHAIL SELIANINAU

(i = 1, 2, . . . , k−1; l = 0, 1, . . . , ν+1). Using the IMF (2) and the Euclidean

lemma, we transform a number X(j) (j = 1, 2, . . . , ν + 1) as follows:

X(j) = pX(j−1) = p

(

k−1
∑

i=1

Mi,k−1χ
(j−1)
i,k−1 + I(X(j−1))Mk−1

)

=

=

k−1
∑

i=1

Mi,k−1

(

∣

∣

∣
pχ

(j−1)
i,k−1

∣

∣

∣

mi

+
⌊

pχ
(j−1)
i,k−1/mi

⌋

mi

)

+ pI(X(j−1))Mk−1 =

=

k−1
∑

i=1

Mi,k−1χ
(j)
i,k−1 +

(

pI(X(j−1)) +

k−1
∑

i=1

⌊

pχ
(j−1)
i,k−1/mi

⌋

)

Mk−1.

Hence, we conclude that for an II of a number X(j) the following formula
is true

I(X(j)) = pI(X(j−1)) +

k−1
∑

i=1

⌊

pχ
(j−1)
i,k−1/mi

⌋

. (13)

Therewith, the main II J(X(j)) =
⌊

I(X(j))/m0

⌋

of a number X with
respect to the modules m1,m2, . . . ,mk−1,m0 is determined by the relation

J(X(j)) =

⌊(

pI(X(j−1)) +

k−1
∑

i=1

⌊

pχ
(j−1)
i,k−1/mi

⌋

)

/m0

⌋

. (14)

To establish whether the numberX(j) is an element of the number system
range it is enough to calculate the corresponding minimal ICMC Θ(X(j)) in
the MNS with modules m1,m2, . . . ,mk−1,m0 by means of the ICMC gen-
eration algorithm [2, 8] and further to determine a flag Ω(X(j)) by applying

one of the formulas (8) or (10). The unit value of a flag Ω(X(j)) specifies

that the number X(j) exceeds the limits of operating range.
The algorithm of normalization of a number X = (χ1, χ2, . . . , χk) (X 6=

0) based on the assumptions stated above is reduced to execution of the
following steps.
N.1. The computer II Îk(X) of the initial number X is computed in

accordance with the calculated relations [2, 5]

Îk(X) =

∣

∣

∣

∣

∣

k
∑

i=1

Ri,k(χi)

∣

∣

∣

∣

∣

mk

;

Ri,k(χi) =

∣

∣

∣

∣

χi,k−1

Mk−1

∣

∣

∣

∣

mk

(i 6= k) Rk,k(χk) =

∣

∣

∣

∣

χk

Mk−1

∣

∣

∣

∣

mk

.
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Then the characteristics Î(X) and J(X) are determined by the tabular
method

Î(X) =



















∣

∣

∣
Îk(X)

∣

∣

∣

m0

if Îk(X) < m0;

∣

∣

∣
Îk(X)−mk

∣

∣

∣

m0

if Îk(X) ≥ mk −m0 − k + 2;

J(X) =















⌊

Îk(X)/m0

⌋

if Îk(X) < m0;

⌊

(Îk(X)−mk)/m0

⌋

if Îk(X) ≥ mk −m0 − k + 2.

N.2. Let us assume that j = 1, X(0) = X and χ
(0)
i = χi (i = 1, 2, . . . , k).

N.3. The MC (χ
(j)
1 , χ

(j)
2 , . . . , χ

(j)
k ) of the number X(j) = pX(j−1) (χ

(j)
i =

|pχ
(j−1)
i |mi

; i = 1, 2, . . . , k) and its interval-index characteristics

Î(X(j)) =

∣

∣

∣

∣

∣

R0(Î(X
(j−1))) +

k−1
∑

i=1

Ri(χ
(j−1)
i )

∣

∣

∣

∣

∣

m0

(15)

and

J(X(j)) = pJ(X(j−1)) +
⌊

pI(X(j−1))/m0

⌋

+

+

⌊(

R0(Î(X
(j−1))) +

k−1
∑

i=1

Ri(χ
(j−1)
i )

)

/m0

⌋

, (16)

where

R0(Î(X
(j−1))) =

∣

∣

∣
pÎ(X(j−1))

∣

∣

∣

m0

;

Ri(χ
(j−1)
i ) =

⌊

p
∣

∣

∣
M−1

i,k−1χ
(j−1)
i

∣

∣

∣

mi

/mi

⌋

=
⌊

pχ
(j−1)
i,k−1/mi

⌋

,

are formed using the digits of the MC (χ
(j−1)
1 , χ

(j−1)
2 , . . . , χ

(j−1)
k ) of the

number X(j−1) and the values Î(X(j−1)) and J(X(j−1)).
The calculating relations (15) and (16) follow directly from (13) and (14)

if one takes into account the designation (12) and considers that

I(X(j−1)) = Î(X(j−1)) + J(X(j−1))m0

and

pÎ(X(j−1)) =
∣

∣

∣
pÎ(X(j−1))

∣

∣

∣

m0

+
⌊

pÎ(X(j−1))/m0

⌋

m0.

N.4. The minimal ICMC Θ(X(j)) corresponding to the number X(j) in
the MNS with modules m1,m2, . . . ,mk−1,m0 is computed using the ICMC
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generation algorithm [2, 8]. As the input data of algorithm we specify the

values (χ
(j)
1 , χ

(j)
2 , . . . , χ

(j)
k−1) and Î(X(j)).

N.5. According to the obtained values of characteristics J(X(j)) and

Θ(X(j)) the flag Ω(X(j)) is formed by applying one of the formulas (8) or

(10). If the number X(j) is an element of a system range (Ω(X(j)) = 0),
then j is incremented by one (j = j + 1) and whereupon we move to the

step N.3, otherwise (Ω(X(j)) = 1) the cyclic process of multiplication by
a constant p is finished. Let it take place in the case j = ν + 1 (ν ≥ 0).

Then the values X(ν) and ν are fixed as the required values of the mantissa
m(X) and the exponent n(X) of a number X. Hence, the operation of
normalization is completed.
The normalization algorithm N.1 - N.5 becomes the simplest one for p =

2. In this case the values
⌊

pχ
(j−1)
i,k−1/mi

⌋

=
⌊

2χ
(j−1)
i,k−1/mi

⌋

(i = 1, 2, . . . , k−1)

can be equal only to 0 or 1. Therefore, after the computation of the II I(X)
of the initial number X the calculating relations (13)–(16) for the interval-

index characteristics of a number X(j) for each j ≥ 1 may be implemented
at a single module clock cycle, for example, by the tabular method.
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