SCIENTIFIC ISSUES Jan Długosz University in Częstochowa Mathematics XIX (2014) 195–206

A NOTE ON WEAKLY ρ -UPPER CONTINUOUS FUNCTIONS

KATARZYNA NOWAKOWSKA, MAŁGORZATA TUROWSKA

Abstract

In the article we present definition and some properties of weakly ρ -upper continuous functions. We find maximal additive and maximal multiplicative families for the class of weakly ρ -upper continuous functions.

1. Preliminaries

In the article we apply standard symbols and notations. By \mathbb{R} we denote the set of all real numbers, by \mathbb{N} we denote the set of all positive integers. By \mathcal{L} we denote the family of Lebesgue measurable subsets of the real line. The symbol $\lambda(\cdot)$ stands for the Lebesgue measure on \mathbb{R} . In the whole article, I will denote an open interval (not necessarily bounded) with ends a, b and f– a real function defined in I. By \mathcal{A} we denote the class of all approximately continuous functions defined in I.

Let E be a measurable subset of \mathbb{R} and x be a real number. According to [1], the numbers

$$\overline{d}^+(E,x) = \limsup_{t \to 0^+} \frac{\lambda(E \cap [x,x+t])}{t}$$

and

$$\overline{d}^{-}(E,x) = \liminf_{t \to 0^{+}} \frac{\lambda(E \cap [x-t,x])}{t}$$

are called the right upper density of E at x and left upper density of E at x, respectively. The number

$$\overline{d}(E,x) = \max\left\{\overline{d}^+(E,x), \overline{d}^-(E,x)\right\}$$

is called the upper density of E at x.

[•] Katarzyna Nowakowska — e-mail: nowakowska_k@go2.pl

Pomeranian University in Słupsk.

[•] Małgorzata Turowska — e-mail: malgorzata.turowska@apsl.edu.pl Pomeranian University in Słupsk.

Recall the definition of ρ -upper continuous function.

Definition 1. [2] Let E be a measurable subset of \mathbb{R} . If $x \in \mathbb{R}$ and $0 < \rho < 1$, then we shall say that x is a point of ρ -type upper density of E if $\overline{d}(E, x) > \rho$.

Definition 2. [2] Let $x \in I$. A real-valued function f defined on I is called ϱ -upper continuous at x provided that there is a measurable set $E \subset I$ such that x is a point of ϱ -type upper density of E, $x \in E$ and $f|_E$ is continuous at x. If f is ϱ -upper continuous at each point of I, we say that f is ϱ -upper continuous.

By \mathcal{UC}_{ϱ} we denote the class of all ϱ -upper continuous functions defined in an open interval I.

2. Weakly ρ -continuous functions

Now, we shall give the basic definitions of this paper.

Definition 3. Let E be a measurable subset of \mathbb{R} and $x \in \mathbb{R}$. If $\rho \in (0, 1)$, then we say that x is a point of weak ρ -type upper density of E if $\overline{d}(E, x) \geq \rho$.

Definition 4. A real-valued function f defined in I is called weakly ρ -upper continuous at $x \in I$ provided that there is a measurable set $E \subset I$ such that x is a point of weak ρ -type upper density of E, $x \in E$ and $f|_E$ is continuous at x. If f is weakly ρ -upper continuous at each point of I, we say that f is weakly ρ -upper continuous.

By $u\mathcal{UC}_{\varrho}$ we denote the class of all weakly ϱ -upper continuous functions defined on an open interval I.

In an obvious way we define one-sided weak ρ -upper continuity at a point x and f is weakly ρ -upper continuous at x if and only if it is weakly ρ -upper continuous at x on the right or on the left.

Corollary 1. If $0 < \varrho_1 < \varrho_2 < 1$, $x_0 \in I$ and $f: I \to \mathbb{R}$ is weakly ϱ_2 -upper continuous at x_0 , then f is weakly ϱ_1 -upper continuous at x_0 .

Corollary 2. If $0 < \rho < 1$ and $f: I \to \mathbb{R}$ is ρ -upper continuous at some point x_0 from I, then f is weakly ρ -upper continuous at x_0 .

Example 1. Let $\rho \in (0,1)$. We shall show that there exists $f : \mathbb{R} \to \mathbb{R}$ such that $f \in u\mathcal{UC}_{\rho} \setminus \mathcal{UC}_{\rho}$.

Let $(x_n)_{n\geq 1}$ be a sequence of real numbers such that $\lim_{n\to\infty} x_n = 0$ and $x_{n+1} < x_n$ for every $n \geq 1$. For each $n \geq 1$ take any $y_n \in (x_{n+1}, x_n)$ such

that $x_n - y_n = \varrho(x_n - x_{n+1})$. Define a function $f \colon \mathbb{R} \to \mathbb{R}$ letting

$$f(x) = \begin{cases} 0 & \text{if } x \in (-\infty, 0) \cup \bigcup_{n=1}^{\infty} \{x_n\} \cup (x_1, \infty), \\ 1 & \text{if } x \in \{0\} \cup \bigcup_{n=1}^{\infty} [y_n, x_n), \\ \text{linear on each interval } [x_{n+1}, y_n], n \ge 1. \end{cases}$$

Clearly, f is $\varrho\text{-upper continuous at every point except at 0. Take any <math display="inline">\varepsilon>0.$ Then

$$\begin{split} \lambda\left(\{x\in [x_{n+1},y_n]\colon |f(x)-1|<\varepsilon\}\right) &= \varepsilon\lambda\left([x_{n+1},y_n]\right) = \\ &= \varepsilon(1-\varrho)\lambda\left([x_{n+1},x_n]\right). \end{split}$$

Therefore,

$$\lambda \left(\left\{ x \in [0, x_n] \colon |f(x) - 1| < \varepsilon \right\} \right) =$$

$$= \sum_{k=n}^{\infty} \left(\varrho \lambda \left([x_{k+1}, x_k] \right) + \varepsilon (1 - \varrho) \lambda \left([x_{k+1}, x_k] \right) \right) =$$

$$= \left(\varrho + \varepsilon (1 - \varrho) \right) \sum_{k=n}^{\infty} \lambda \left([x_{k+1}, x_k] \right) = \left(\varrho + \varepsilon (1 - \varrho) \right) \lambda \left([0, x_n] \right).$$

Then

$$\overline{d}\left(\{x\colon |f(x)-1|<\varepsilon\},0\right) = \lim_{n\to\infty} \frac{\lambda\left(\{x\in[0,x_n]\colon |f(x)-1|<\varepsilon\}\right)}{\lambda\left([0,x_n]\right)} = \varrho + \varepsilon(1-\varrho).$$

Since $\lim_{\varepsilon \to 0^+} \overline{d} \left(\{x : |f(x) - 1| < \varepsilon\}, 0 \right) = \lim_{\varepsilon \to 0^+} (\varrho + \varepsilon(1 - \varrho)) = \varrho$, we conclude that f is not ϱ -upper continuous at 0 and f is weakly ϱ -upper continuous at 0. Hence $f \in u\mathcal{UC}_{\varrho} \setminus \mathcal{UC}_{\varrho}$.

Corollary 3. If $0 < \varrho_1 < \varrho_2 < 1$ and $f: I \to \mathbb{R}$ is weakly ϱ_2 -upper continuous at some point x_0 from I, then f is ϱ_1 -upper continuous at x_0 .

Example 2. We shall show that if $0 < \varrho_1 < \varrho_2 < 1$, then there is a function $f: (a, b) \to \mathbb{R}$ such that $f \in \mathcal{UC}_{\varrho_1} \setminus u\mathcal{UC}_{\varrho_2}$.

Let a < 0 < b. We can find a sequence $([a_n, b_n])_{n \ge 1}$ of pairwise disjoint closed intervals such that $0 < b_{n+1} < a_n < b_n$ for each n and

$$\overline{d}^+\left(\bigcup_{n=1}^{\infty} [a_n, b_n], 0\right) = \frac{\varrho_1 + \varrho_2}{2}.$$

Let $([c_n, d_n])_{n \ge 1}$ be a sequence of pairwise disjoint closed intervals such that $[a_n, b_n] \subset (c_n, d_n)$ for every $n \ge 1$ and $\overline{d}^+ \left(\bigcup_{n=1}^{\infty} ([c_n, d_n] \setminus [a_n, b_n]), 0 \right) = 0$. Put $I_n = [a_n, b_n], J_n = [c_n, d_n]$ for every $n \ge 1$. Define a function $f: (a, b) \to \mathbb{R}$ letting

$$f(x) = \begin{cases} 0 & \text{if } x \in \{0\} \cup \bigcup_{\substack{n=1\\ \infty}}^{\infty} I_n, \\ 1 & \text{if } x \in (a,0) \cup \bigcup_{\substack{n=1\\ n=1}}^{\infty} [d_{n+1},c_n] \cup [d_1,b), \\ \text{linear on each interval } [c_n,a_n], [b_n,d_n], n \ge 1. \end{cases}$$

The function f is continuous at every point except at 0. If $E = \bigcup_{n=1}^{\infty} I_n \cup \{0\}$, then the function f restricted to E is constant, so in particular, it is continuous at zero. Moreover,

$$\overline{d}(E,0) \ge \overline{d}^+(E,0) = \overline{d}^+\left(\bigcup_{n=1}^{\infty} I_n, 0\right) = \frac{\varrho_1 + \varrho_2}{2} > \varrho_1.$$

Hence $f \in \mathcal{UC}_{\varrho_1}$. But

$$\overline{d}^+ \left(\{ x \colon f(x) < 1 \}, 0 \right) \le \overline{d}^+ \left(\bigcup_{n=1}^{\infty} J_n, 0 \right) \le$$
$$\le \overline{d}^+ \left(\bigcup_{n=1}^{\infty} I_n, 0 \right) + \overline{d}^+ \left(\bigcup_{n=1}^{\infty} (J_n \setminus I_n), 0 \right) = \frac{\varrho_1 + \varrho_2}{2} < \varrho_2$$

Moreover $\overline{d}^-(\{x: f(x) < 1\}, 0) = 0$. Thus $\overline{d}(\{x: f(x) < 1\}, 0) < \varrho_2$ and f is not weakly ϱ_2 -upper continuous at 0. Hence $f \notin u\mathcal{UC}_{\varrho_2}$.

$$\textbf{Corollary 4. } \bigcup_{\varrho \in (0,1)} \mathcal{UC}_{\varrho} = \bigcup_{\varrho \in (0,1)} u \mathcal{UC}_{\varrho}$$

Corollary 5. $\bigcap_{\varrho \in (0,1)} \mathcal{UC}_{\varrho} = \bigcap_{\varrho \in (0,1)} u\mathcal{UC}_{\varrho}.$

Definition 5. We say that a real-valued function f defined on an open interval I has Denjoy property at $x_0 \in I$ if for each $\varepsilon > 0$ and $\delta > 0$ the set

$$\{x \in (x_0 - \delta, x_0 + \delta) \colon |f(x) - f(x_0)| < \varepsilon\}$$

contains a measurable subset of positive measure. We say that f has Denjoy property if it has Denjoy property at each point $x \in I$.

Immediately from Theorem 2.1 in [2], Remark 2.1 in [2] and Corollary 2 we obtain the following results.

Corollary 6. If $0 < \rho < 1$ and $f \in u\mathcal{UC}_{\rho}$, then f is measurable.

Corollary 7. If $0 < \rho < 1$ and $f \in u\mathcal{UC}_{\rho}$, then f has Denjoy property.

The proof of the next corollary follows directly from Theorem 2.4 in [4].

Corollary 8. There exists function f such that $f \in \bigcap_{\varrho \in (0,1)} u\mathcal{UC}_{\varrho}$ and f does not belong to the Baire class 1.

ior belong to the Durre cluss 1.

We shall need the following lemma.

Lemma 1. [3] If $0 < \rho \le 1$ and $\{E_n : n \in \mathbb{N}\}$ is a descending family of measurable sets such that $x \in \bigcap_{n=1}^{\infty} E_n$ and $\overline{d}(E_n, x) \ge \rho$ for $n \ge 1$, then there exists a measurable set E such that $\overline{d}(E, x) \ge \rho$, $x \in E$, and for each $n \in \mathbb{N}$ there exists $\delta_n > 0$ for which $E \cap [x - \delta_n, x + \delta_n] \subset E_n$.

We shall give an equivalent condition of weak ϱ -upper continuity at a point.

Theorem 1. If $0 < \rho < 1$ and $f: I \to \mathbb{R}$ is a measurable function, then f is weakly ρ -upper continuous at $x \in I$ if and only if

$$d\left(\{y \in I \colon |f(x) - f(y)| < \varepsilon\}, x\right) \ge \varrho \quad \text{for every} \quad \varepsilon > 0.$$

Proof. Assume that f is weakly ρ -upper continuous at x. Let $E \subset I$ be a measurable set such that $x \in E$, $f|_E$ is continuous at x and $\overline{d}(E, x) \geq \rho$. Since $f|_E$ is continuous at x, for each $\varepsilon > 0$ we can find $\delta > 0$ such that $[x - \delta, x + \delta] \cap E \subset \{y \in E : |f(x) - f(y)| < \varepsilon\}$. Hence for each $\varepsilon > 0$

$$\overline{d}\left(\{y \in I : |f(x) - f(y)| < \varepsilon\}, x\right) \ge \overline{d}\left(\{y \in E : |f(x) - f(y)| < \varepsilon\}, x\right) = \overline{d}(E, x) \ge \varrho.$$

Finally, assume that for each $\varepsilon > 0$,

$$\overline{d}(\{y \in I : |f(x) - f(y)| < \varepsilon\}, x) \ge \varrho.$$

By Lemma 1 for sets $E_n = \{y \in I : |f(x) - f(y)| < \frac{1}{n}\}$, where $n \in \mathbb{N}$, we can construct a measurable set E such that $x \in E$, $\overline{d}(E, x) \ge \rho$ and for each n there exists $\delta_n > 0$ for which $E \cap [x - \delta_n, x + \delta_n] \subset E_n$. The last condition implies that $f|_E$ is continuous at x. It follows that f is weakly ρ -upper continuous at x, what was to be shown.

Now we will show that the family of weakly ρ -upper continuous functions is closed under uniform limits, i.e. every limit of uniformly convergent sequence of functions from $u\mathcal{UC}_{\rho}$ belongs to this family. **Theorem 2.** If $0 < \rho < 1$ and a sequence $(f_n)_{n\geq 1}$ of weakly ρ -upper continuous functions is uniformly convergent to a function f, then f is weakly ρ -upper continuous.

Proof. Let $(f_n)_{n\geq 1}$ be a sequence of weakly ρ -upper continuous functions uniformly converges to f. Let $x_0 \in I$ and $\varepsilon > 0$. There exists $n_0 \geq 1$ such that for every $k > n_0$ and every $x \in I$ the inequality

$$|f_k(x) - f(x)| < \frac{\varepsilon}{3}$$

holds. Fix $n > n_0$. Since f_n is weakly ρ -upper continuous at x_0 , there exists a measurable set $E \subset I$ such that $x_0 \in E$, $f_n|_E$ is continuous at x_0 and $\overline{d}(E, x_0) \geq \rho$. Then there exists a positive δ such that

$$[x_0 - \delta, x_0 + \delta] \cap E \subset \left\{ x \in E \colon |f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3} \right\}.$$

Notice that

$$|f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)| < \varepsilon$$

if $x \in [x_0 - \delta, x_0 + \delta] \cap E$. Therefore

$$\left\{x \in E \colon |f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}\right\} \subset \{x \colon |f(x) - f(x_0)| < \varepsilon\}.$$

Hence

$$\overline{d}\left(\left\{x\colon |f(x) - f(x_0)| < \varepsilon\right\}, x_0\right) \ge \\ \ge \overline{d}\left(\left\{x \in E \colon |f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}\right\}, x_0\right) = \overline{d}(E, x_0).$$

Therefore

$$\overline{d}\left(\{x\colon |f(x) - f(x_0)| < \varepsilon\}, x_0\right) \ge \overline{d}(E, x_0) \ge \varrho$$

It means that the function f is weakly ρ -upper continuous at x_0 .

Example 3. We shall show that the family of ρ -upper continuous functions is not closed under the operation of uniform convergence.

Define the function f in the same way as in Example 1. Let $f_n \colon \mathbb{R} \to \mathbb{R}$, $f_n = \min\{1 - \frac{1}{n}, f\}$ for each $n \ge 1$. Then, clearly, the sequence $(f_n)_{n\ge 1}$ uniformly converges to f and $f \notin \mathcal{UC}_{\varrho}$. Since

$$\left\{x: f_n(x) = 1 - \frac{1}{n} = f(0)\right\} = \left\{x: |f(x) - 1| < \frac{1}{n}\right\}$$

and $\overline{d}\left(\{x: |f(x)-1| < \frac{1}{n}\}, 0\right) = \varrho + \frac{1}{n}(1-\varrho) > \varrho$, we infer that $f_n \in \mathcal{UC}_{\varrho}$ for each $n \ge 1$.

3. Maximal additive family

Definition 6. Let \mathcal{F} be any family of real valued functions defined on I. The set $\mathcal{M}_a(\mathcal{F}) = \{g: \forall_{f \in \mathcal{F}} f + g \in \mathcal{F}\}$ is called a maximal additive family for \mathcal{F} .

Remark 1. If a zero (constant) function is a member of a family of functions F, then $\mathcal{M}_a(\mathcal{F}) \subset \mathcal{F}$.

Lemma 2. [3] Let numbers c and γ fulfil the inequality $0 < c < \gamma < 1$. Moreover, let E be a measurable subset of \mathbb{R} with the property $\overline{d}^+(E, x) = c$ for some point $x \in \mathbb{R}$. Then there exists a measurable set H such that $E \subset H$, $\overline{d}^+(H, x) \geq \gamma$ and $\overline{d}^+(H \setminus E, x) \leq \gamma - c(1 - \gamma)$.

The proof of next theorem is based on the proof of Theorem 2.1 in [3], where the maximal additive class for ρ -upper continuous functions is discussed.

Theorem 3. If $0 < \rho < 1$, then for each $f \in u\mathcal{UC}_{\rho} \setminus \mathcal{A}$ there exists $g: I \to \mathbb{R}$ such that $g \in u\mathcal{UC}_{\rho}$ and $f + g \notin u\mathcal{UC}_{\rho}$.

Proof. Since $f \notin A$, there exist $x_0 \in I$ and $\varepsilon > 0$ such that

$$\overline{d}^{\top} \left(\{ x \in I \colon |f(x) - f(x_0)| \ge \varepsilon \}, x_0 \right) > 0$$

or

$$\overline{d}^{-}\left(\{x \in I \colon |f(x_0) - f(x)| \ge \varepsilon\}, x_0\right) > 0.$$

Without loss of generality we may assume that the first inequality holds.

Put $E = \{x \in I : |f(x) - f(x_0)| \ge \varepsilon\}$ and $c = \overline{d}^+(E, x_0)$. Therefore c > 0. Let γ be a real number satisfying conditions $\gamma \ge \rho$, $c < \gamma < 1$ and $\gamma - c(1 - \gamma) < \rho$. By Lemma 2, there exists a measurable set H such that $E \subset H, \overline{d}^+(H, x_0) \ge \gamma$ and $\overline{d}^+(H \setminus E, x_0) \le \gamma - c(1 - \gamma)$. Next one can find a sequence $([a_n, b_n])_{n\ge 1}$ of closed intervals such that $x_0 < b_{n+1} < a_n < b_n$ for each $n \ge 1$ and

$$\overline{d}^+ \left(\bigcup_{n=1}^{\infty} [a_n, b_n] \setminus H, x_0 \right) = \overline{d}^+ \left(H \setminus \bigcup_{n=1}^{\infty} [a_n, b_n], x_0 \right) = 0.$$

Thus $\overline{d}^+ \left(\bigcup_{n=1}^{\infty} [a_n, b_n], x_0 \right) = \overline{d}^+ (H, x_0) \ge \gamma \ge \varrho.$

Let $([c_n, d_n])_{n \ge 1}$ be a sequence of pairwise disjoint closed intervals such that $[a_n, b_n] \subset (c_n, d_n)$ for all n and $\overline{d}^+ \left(\bigcup_{n=1}^{\infty} ([c_n, d_n] \setminus [a_n, b_n]), x_0 \right) = 0$. Put $I_n = [a_n, b_n]$ and $K_n = [c_n, d_n]$ for each $n \ge 1$. Define a function $g: (a, b) \to \mathbb{R}$ letting

$$g(x) = \begin{cases} 0 & \text{if } x \in \{x_0\} \cup \bigcup_{n=1}^{\infty} I_n, \\ -f(x) + f(x_0) + \varepsilon & \text{if } x \in (a, x_0) \cup \bigcup_{n=1}^{\infty} [d_{n+1}, c_n] \cup [d_1, b), \\ \text{linear on each interval } [c_n, a_n], [b_n, d_n], n \ge 1. \end{cases}$$

Since $f \in u\mathcal{UC}_{\varrho}$, g is weakly ϱ -upper continuous at each point except at x_0 . Applying inequality

$$\overline{d}\left(\{x\colon g(x)=g(x_0)=0\}, x_0\right) \ge \overline{d}^+\left(\bigcup_{n=1}^{\infty} I_n, x_0\right) \ge \varrho,$$

we conclude that g is weakly ρ -upper continuous at x_0 , too. It means that $g \in w\mathcal{UC}_{o}$.

Now, we shall show that f + g is not weakly ρ -upper continuous at x_0 . Put

$$F = \{ x \in I : |(f+g)(x) - (f+g)(x_0)| < \varepsilon \}.$$

For $x \notin \bigcup_{n=1}^{\infty} K_n \cup \{x_0\}$, we have $(f+g)(x) - (f+g)(x_0) = \varepsilon$. Therefore $F \subset \bigcup_{n=1}^{\infty} K_n \cup \{x_0\}$. If $x \in \bigcup_{n=1}^{\infty} I_n$, then $(f+g)(x) - (f+g)(x_0) = f(x) - f(x_0)$ and consequently $\bigcup_{n=1}^{\infty} I_n \cap F \subset \bigcup_{n=1}^{\infty} I_n \setminus E$. Thus

$$\overline{d}(F, x_0) = \overline{d}^+(F, x_0) \le \overline{d}^+ \left(F \cap \bigcup_{n=1}^{\infty} I_n, x_0\right) + \overline{d}^+ \left(F \setminus \bigcup_{n=1}^{\infty} I_n, x_0\right) \le$$
$$\le \overline{d}^+ \left(\bigcup_{n=1}^{\infty} I_n \setminus E, x_0\right) + \overline{d}^+ \left(\bigcup_{n=1}^{\infty} (K_n \setminus I_n), x_0\right) =$$
$$= \overline{d}^+ (H \setminus E, x_0) \le \gamma - c(1 - \gamma) < \varrho.$$

It follows that f + g is not weakly ρ -upper continuous at x_0 . Hence $f + g \notin u\mathcal{UC}_{\varrho}$, which completes the proof.

The proof of the following lemma is identical to the proof of Lemma 2.2 in [3] and we omit it.

Lemma 3. Let $f: I \to \mathbb{R}$, $g: I \to \mathbb{R}$ be weakly ϱ -upper continuous at some point $x \in I$, where $0 < \rho < 1$. If at least one of those functions is approximately continuous at x, then f + g and $f \cdot g$ are weakly ϱ -upper continuous at x.

Corollary 9. Let $g: I \to \mathbb{R}$ be weakly ρ -upper continuous at some point $x \in I$, where $0 < \rho < 1$. If $f: I \to \mathbb{R}$ is approximately continuous at x, then f + g and $f \cdot g$ are weakly ρ -upper continuous at x.

Corollary 10. Let $f: I \to \mathbb{R}$, $g: I \to \mathbb{R}$ be weakly ϱ -upper continuous in I, where $0 < \varrho < 1$. If $D_{ap}(f) \cap D_{ap}(g) = \emptyset$, where $D_{ap}(f)$ denotes the set of all points at which f is not approximately continuous, then f + g and $f \cdot g$ are weakly ϱ -upper continuous in I.

Theorem 4. If $0 < \rho < 1$, then $\mathcal{M}_a(w\mathcal{UC}_{\rho}) = \mathcal{A}$.

Proof. By Theorem 3, we have $u\mathcal{UC}_{\varrho} \cap \mathcal{M}_a(u\mathcal{UC}_{\varrho}) \subset \mathcal{A}$. By Remark 1, we have the inclusion $\mathcal{M}_a(u\mathcal{UC}_{\varrho}) \subset u\mathcal{UC}_{\varrho}$. Therefore $\mathcal{M}_a(u\mathcal{UC}_{\varrho}) \subset \mathcal{A}$. Finally, by Lemma 9, we have $\mathcal{A} \subset \mathcal{M}_a(u\mathcal{UC}_{\varrho})$.

4. MAXIMAL MULTIPLICATIVE FAMILY

Definition 7. If \mathcal{F} is any family of real valued functions defined on an open interval I, then the set $\{g: \forall_{f \in \mathcal{F}} f \cdot g \in \mathcal{F}\}$ is called a maximal multiplicative family for \mathcal{F} and is denoted by $\mathcal{M}_m(\mathcal{F})$.

Remark 2. If a constant function equalled to 1 is a member of a family of functions \mathcal{F} , then $\mathcal{M}_m(\mathcal{F}) \subset \mathcal{F}$.

Lemma 4. If $0 < \rho < 1$ and a measurable function $f: I \to \mathbb{R}$ is not approximately continuous at some point x_0 from I for which $f(x_0) \neq 0$, then there exists $g: I \to \mathbb{R}$ such that $g \in u\mathcal{UC}_{\rho}$ and $f \cdot g \notin u\mathcal{UC}_{\rho}$.

Proof. Without loss of generality we may assume that f is not approximately continuous from right side at x_0 . Then we can find a positive ε such that $\varepsilon < |f(x_0)|$ and

$$\overline{d}^+(\{x \in I \colon |f(x) - f(x_0)| \ge \varepsilon\}, x_0) = c > 0.$$

Put $E = \{x \in I : |f(x) - f(x_0)| \ge \varepsilon\}$. Take γ such that

$$\varrho \leq \gamma < 1, \quad c < \gamma \quad \text{and} \quad \gamma - c(1 - \gamma) < \varrho$$

By Lemma 2, there exists a measurable set H such that

$$E \subset H$$
, $\overline{d}^+(H, x_0) \ge \gamma$ and $\overline{d}^+(H \setminus E, x_0) \le \gamma - c(1 - \gamma)$.

Similarly as in proof of Lemma 3.1 in [3] we can find a sequence $([a_n, b_n])_{n \ge 1}$ of closed intervals such that $x_0 < b_{n+1} < a_n < b_n$ for each $n \ge 1$ and

$$\overline{d}^{+}\left(\bigcup_{n=1}^{\infty} [a_{n}, b_{n}] \setminus H, x_{0}\right) = \overline{d}^{+}\left(H \setminus \bigcup_{n=1}^{\infty} [a_{n}, b_{n}], x_{0}\right) = 0.$$

Then $\overline{d}^{+}\left(\bigcup_{n=1}^{\infty} [a_{n}, b_{n}], x_{0}\right) = \overline{d}^{+}(H, x_{0}) \ge \gamma \ge \varrho.$

Let $([c_n, d_n])_{n \ge 1}$ be a sequence of pairwise disjoint closed intervals such that $[a_n, b_n] \subset (c_n, d_n)$ for all n and $\overline{d}^+ \left(\bigcup_{n=1}^{\infty} ([c_n, d_n] \setminus [a_n, b_n]), x_0 \right) = 0$. Denote now $I_n = [a_n, b_n], K_n = [c_n, d_n]$ for each $n \ge 1$. Define a function $g: (a, b) \to \mathbb{R}$ by

$$g(x) = \begin{cases} 1 & \text{if } x \in \{x_0\} \cup \bigcup_{\substack{n=1\\n=1}}^{\infty} I_n \cup [b_1, b), \\ 0 & \text{if } x \in (a, x_0) \cup \bigcup_{\substack{n=1\\n=1}}^{\infty} [d_{n+1}, c_n], \\ \text{linear on each interval } [c_n, a_n], [b_{n+1}, d_{n+1}], n \ge 1. \end{cases}$$

Then g is continuous except at x_0 . Moreover,

$$\overline{d}\left(\{x \in I : g(x) = 1\}, x_0\right) \ge \overline{d}^+\left(\bigcup_{n=1}^{\infty} I_n, x_0\right) = \overline{d}^+\left(H, x_0\right) \ge \gamma \ge \varrho$$

and g restricted to $\{x \in I : g(x) = 1\}$ is continuous at x_0 . It follows that g is weakly ρ -upper continuous at x_0 . Therefore $g \in u\mathcal{UC}_{\rho}$.

Moreover, $(f \cdot g)(x_0) = f(x_0)$ and

$$\{x\colon |(f\cdot g)(x) - (f\cdot g)(x_0)| < \varepsilon\} \cap \left((a, x_0) \cup \bigcup_{n=1}^{\infty} [d_{n+1}, c_n]\right) = \emptyset.$$

Then

$$\overline{d}\left(\left\{x \in I : |(f \cdot g)(x) - (f \cdot g)(x_0)| < \varepsilon\right\}, x_0\right) \leq \\ \leq \overline{d}^+ \left(\left\{x \in \bigcup_{n=1}^{\infty} K_n : |(f \cdot g)(x) - (f \cdot g)(x_0)| < \varepsilon\right\}, x_0\right) = \\ = \overline{d}^+ \left(\left\{x \in \bigcup_{n=1}^{\infty} I_n : |f(x) - f(x_0)| < \varepsilon\right\}, x_0\right) = \\ = \overline{d}^+ \left(\left\{x \in H : |f(x) - f(x_0)| < \varepsilon\right\}, x_0\right) = \\ = \overline{d}^+ \left(\left\{x \in H \setminus E : |f(x) - f(x_0)| < \varepsilon\right\}, x_0\right) \leq \gamma - c(1 - \gamma) < \varrho.$$

It implies that $f \cdot g$ is not weakly ϱ -upper continuous at x_0 i.e. $fg \notin u\mathcal{UC}_{\varrho}$.

Definition 8. If $0 < \rho < 1$, then by $W(\rho)$ we shall denote the family of all measurable functions $f: I \to \mathbb{R}$ such that at each $x_0 \in D_{ap}(f)$ the following two conditions hold

(W1)
$$f(x_0) = 0$$
 (in other words $D_{ap}(f) \subset N_f$, where $N_f = \{x : f(x) = 0\}$);

(W2) for each $\varepsilon > 0$ and for each measurable set F such that $F \supset N_f$ and $\overline{d}(F, x_0) \ge \varrho$ we have

$$d(F \cap \{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) \ge \varrho.$$

Theorem 5. $\mathcal{M}_m(u\mathcal{UC}_{\rho}) = \mathcal{W}(\varrho)$ for each ϱ such that $0 < \varrho < 1$.

Proof. Fix ρ from the interval (0,1). Let $f \in \mathcal{W}(\rho)$ and $g \in u\mathcal{UC}_{\rho}$. Take any $x_0 \in I$. Then we can find a measurable set E such that $x_0 \in E$, $\overline{d}(E, x_0) \geq \rho$ and $g|_E$ is continuous at x_0 .

First, we assume that f is approximately continuous at x_0 . Then, by Lemma 9, $f \cdot g$ is weakly ρ -upper continuous at x_0 .

Now, we assume that $x_0 \in D_{ap}(f)$. By condition (W1), we obtain $f(x_0) = 0$. Since $g|_E$ is continuous at x_0 , there exist positive numbers r and M such that |g(x)| < M for $x \in E \cap [x_0 - r, x_0 + r]$. Put $F = E \cup N_f$. Then $N_f \subset F$ and $\overline{d}(F, x_0) \ge \rho$. Let $\varepsilon > 0$. Then

$$\{ x \in I \colon |(f \cdot g)(x)| < \varepsilon \} \cap [x_0 - r, x_0 + r] \supset$$

$$\supset F \cap \left\{ x \in I \colon |f(x)| < \frac{\varepsilon}{M} \right\} \cap [x_0 - r, x_0 + r].$$

By condition (W2), we have

$$\overline{d}\big(\{x\colon |(f\cdot g)(x)|<\varepsilon\}, x_0\big) \ge \overline{d}\left(\{x\colon |f(x)|<\frac{\varepsilon}{M}\}\cap F, x_0\right) = = \overline{d}\big(\{x\colon |f(x)|<\varepsilon'\}\cap F, x_0\big) \ge \varrho,$$

where $\varepsilon' = \frac{\varepsilon}{M}$. By Theorem 1, $f \cdot g$ is weakly ρ -upper continuous at x_0 . Hence $f \cdot g \in u\mathcal{UC}_{\rho}$. In this way, we have proven that $\mathcal{W}(\rho) \subset \mathcal{M}_m(u\mathcal{UC}_{\rho})$.

Finally, assume that $f \in \mathcal{M}_m(u\mathcal{UC}_{\varrho})$. If $x_0 \in D_{ap}(f)$, then, by Lemma 4, we obtain $f(x_0) = 0$. Therefore f satisfies the condition (W1). Take any measurable set F such that $N_f \subset F$ and $\overline{d}(F, x) \geq \varrho$. Identically as in the proof of Theorem 3.1 in [3] we can find sequences $([a_n, b_n])_{n\geq 1}, ([c_n, d_n])_{n\geq 1}, ([a'_n, b'_n])_{n\geq 1}, ([c'_n, d'_n])_{n\geq 1}, (\alpha_n)_{n\geq 1}, (\alpha'_n)_{n\geq 1}$ that satisfy conditions listed in that proof.

Define a function $g: (a, b) \to \mathbb{R}$ by

$$g(x) = \begin{cases} 1, & \text{if } x \in \bigcup_{n=1}^{\infty} [a_n, b_n] \cup \bigcup_{n=1}^{\infty} [a'_n, b'_n] \cup (a, a'_1] \cup [b_1, b) \cup \{x_0\}, \\ \alpha_n, & \text{if } x \in [d_{n+1}, c_n], \ n = 1, 2, \dots, \\ \alpha'_n, & \text{if } x \in [d'_n, c'_{n+1}], \ n = 1, 2, \dots, \\ \text{linear on each } [c_n, a_n], \ [b_{n+1}, d_{n+1}], \ [c'_{n+1}, a'_{n+1}], \ [b'_n, d'_n], n \ge 1 \end{cases}$$

It follows directly from the definition of g, that g is continuous at each point except at x_0 . Since

$$\overline{d}\left(\bigcup_{n=1}^{\infty} [a_n, b_n] \cup \bigcup_{n=1}^{\infty} [a'_n, b'_n], x_0\right) = \overline{d}(F, x_0)$$

and g restricted to the set $\bigcup_{n=1}^{\infty} [a_n, b_n] \cup \bigcup_{n=1}^{\infty} [a'_n, b'_n] \cup \{x_0\}$ is constant, g is weakly ϱ -upper continuous at x_0 . Thus $g \in u\mathcal{UC}_{\varrho}$. Hence $f \cdot g \in u\mathcal{UC}_{\varrho}$. Moreover, $(f \cdot g)(x_0) = 0$. Put

$$E_{\varepsilon} = \{x \in I : |(f \cdot g)(x) - (f \cdot g)(x_0)| < \varepsilon\} = \{x \in I : |(f \cdot g)(x)| < \varepsilon\}$$

if $0 < \varepsilon < 1$. Since $f \cdot g \in u\mathcal{UC}_{\varrho}$, $\overline{d}(E_{\varepsilon}, x_0) \ge \varrho$. On the other hand, in the same way as in mentioned proof, we obtain

$$\overline{d}^+(E_{\varepsilon}, x_0) \le \overline{d}^+(\{x \in F \colon |f(x)| < \varepsilon\}, x_0), \\ \overline{d}^-(E_{\varepsilon}, x_0) \le \overline{d}^-(\{x \in F \colon |f(x)| < \varepsilon\}, x_0)$$

if $0 < \varepsilon < 1$. Thus $\overline{d}(\{x \in F : |f(x)| < \varepsilon\}, x_0) \ge \overline{d}(E_{\varepsilon}, x_0) \ge \varrho$. It follows that the condition (W2) is satisfied and $f \in \mathcal{W}(\varrho)$.

Corollary 11. If a measurable function $f: I \to \mathbb{R}$ satisfies the following conditions:

(1)
$$x_0 \in D_{ap}(f),$$

(2) $\overline{d}(N_f, x_0) \ge \varrho$
(3) $f(x_0) = 0$

for some $x_0 \in I$ and $\varrho \in (0,1)$, then $f \in \mathcal{W}(\varrho)$.

Corollary 12. $\mathcal{M}_a(\mathcal{uUC}_{\rho}) = \mathcal{A} \subsetneq \mathcal{M}_m(\mathcal{uUC}_{\rho}).$

References

- A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Mathematics, Vol. 659, Springer-Verlag Berlin Heidelberg New York, 1978.
- S. Kowalczyk, K. Nowakowska, A note on *ρ*-upper continuous functions, Tatra Mt. Math. Publ. 44 (2009), 153-158.
- [3] S. Kowalczyk, K. Nowakowska, Maximal classes for ρ-upper continuous functions, Real Anal. Exchange 36 (2010/2011), 307-324.
- [4] K. Nowakowska, Algebraic properties of ρ-upper continuous and [λ, ρ]-continuous functions, Ph.D. thesis (in Polish), Technical University in Łódź, 2012.

Received: September 2014

Katarzyna Nowakowska Pomeranian University in Słupsk, Institute of Mathematics, ul. Arciszewskiego 22d, 76-200 Słupsk, Poland *E-mail address:* nowakowska_k@go2.pl

Małgorzata Turowska Pomeranian University in Słupsk, Institute of Mathematics, ul. Arciszewskiego 22d, 76-200 Słupsk, Poland *E-mail address:* malgorzata.turowska@apsl.edu.pl