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A NOTE ON WEAKLY ̺-UPPER CONTINUOUS

FUNCTIONS

KATARZYNA NOWAKOWSKA, MAŁGORZATA TUROWSKA

Abstract

In the article we present definition and some properties of weakly ̺-upper continuous
functions. We find maximal additive and maximal multiplicative families for the class of
weakly ̺-upper continuous functions.

1. Preliminaries

In the article we apply standard symbols and notations. By R we denote
the set of all real numbers, by N we denote the set of all positive integers.
By L we denote the family of Lebesgue measurable subsets of the real line.
The symbol λ(·) stands for the Lebesgue measure on R. In the whole article,
I will denote an open interval (not necessarily bounded) with ends a, b and f

– a real function defined in I. By A we denote the class of all approximately
continuous functions defined in I.

Let E be a measurable subset of R and x be a real number. According
to [1], the numbers

d
+
(E, x) = lim sup

t→0+

λ(E ∩ [x, x+ t])

t

and

d
−
(E, x) = lim inf

t→0+

λ(E ∩ [x− t, x])

t
are called the right upper density of E at x and left upper density of E

at x, respectively. The number

d(E, x) = max
{

d
+
(E, x), d

−
(E, x)

}

is called the upper density of E at x.
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Recall the definition of ̺-upper continuous function.

Definition 1. [2] Let E be a measurable subset of R. If x ∈ R and
0 < ̺ < 1, then we shall say that x is a point of ̺-type upper density of E
if d(E, x) > ̺.

Definition 2. [2] Let x ∈ I. A real-valued function f defined on I is called
̺-upper continuous at x provided that there is a measurable set E ⊂ I such
that x is a point of ̺-type upper density of E, x ∈ E and f |E is continuous
at x. If f is ̺-upper continuous at each point of I, we say that f is ̺-upper
continuous.

By UC̺ we denote the class of all ̺-upper continuous functions defined
in an open interval I.

2. Weakly ̺-continuous functions

Now, we shall give the basic definitions of this paper.

Definition 3. Let E be a measurable subset of R and x ∈ R. If ̺ ∈ (0, 1),
then we say that x is a point of weak ̺-type upper density of E if d(E, x) ≥ ̺.

Definition 4. A real-valued function f defined in I is called weakly ̺-upper
continuous at x ∈ I provided that there is a measurable set E ⊂ I such that
x is a point of weak ̺-type upper density of E, x ∈ E and f |E is continuous
at x. If f is weakly ̺-upper continuous at each point of I, we say that f is
weakly ̺-upper continuous.

By wUC̺ we denote the class of all weakly ̺-upper continuous functions
defined on an open interval I.

In an obvious way we define one-sided weak ̺-upper continuity at a point
x and f is weakly ̺-upper continuous at x if and only if it is weakly ̺-upper
continuous at x on the right or on the left.

Corollary 1. If 0 < ̺1 < ̺2 < 1, x0 ∈ I and f : I → R is weakly ̺2-upper
continuous at x0, then f is weakly ̺1-upper continuous at x0.

Corollary 2. If 0 < ̺ < 1 and f : I → R is ̺-upper continuous at some
point x0 from I, then f is weakly ̺-upper continuous at x0.

Example 1. Let ̺ ∈ (0, 1). We shall show that there exists f : R→ R such
that f ∈ wUC̺ \ UC̺.

Let (xn)n≥1 be a sequence of real numbers such that lim
n→∞

xn = 0 and

xn+1 < xn for every n ≥ 1. For each n ≥ 1 take any yn ∈ (xn+1, xn) such
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that xn − yn = ̺(xn − xn+1). Define a function f : R→ R letting

f(x) =























0 if x ∈ (−∞, 0) ∪
∞
⋃

n=1
{xn} ∪ (x1,∞),

1 if x ∈ {0} ∪
∞
⋃

n=1
[yn, xn),

linear on each interval [xn+1, yn], n ≥ 1.

Clearly, f is ̺-upper continuous at every point except at 0. Take any ε > 0.
Then

λ ({x ∈ [xn+1, yn] : |f(x)− 1| < ε}) = ελ ([xn+1, yn]) =

= ε(1− ̺)λ ([xn+1, xn]) .

Therefore,

λ ({x ∈ [0, xn] : |f(x)− 1| < ε}) =

=

∞
∑

k=n

(̺λ ([xk+1, xk]) + ε(1− ̺)λ ([xk+1, xk])) =

= (̺+ ε(1− ̺))

∞
∑

k=n

λ ([xk+1, xk]) = (̺+ ε(1− ̺))λ ([0, xn]) .

Then

d ({x : |f(x)− 1| < ε}, 0) = lim
n→∞

λ ({x ∈ [0, xn] : |f(x)− 1| < ε})

λ ([0, xn])
=

= ̺+ ε(1− ̺).

Since lim
ε→0+

d ({x : |f(x)− 1| < ε}, 0) = lim
ε→0+

(̺+ ε(1− ̺)) = ̺, we conclude

that f is not ̺-upper continuous at 0 and f is weakly ̺-upper continuous
at 0. Hence f ∈ wUC̺ \ UC̺.

Corollary 3. If 0 < ̺1 < ̺2 < 1 and f : I → R is weakly ̺2-upper contin-
uous at some point x0 from I, then f is ̺1-upper continuous at x0.

Example 2. We shall show that if 0 < ̺1 < ̺2 < 1, then there is a function
f : (a, b)→ R such that f ∈ UC̺1 \ wUC̺2 .

Let a < 0 < b. We can find a sequence ([an, bn])n≥1 of pairwise disjoint
closed intervals such that 0 < bn+1 < an < bn for each n and

d
+

(

∞
⋃

n=1

[an, bn], 0

)

=
̺1 + ̺2

2
.
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Let ([cn, dn])n≥1 be a sequence of pairwise disjoint closed intervals such that

[an, bn] ⊂ (cn, dn) for every n ≥ 1 and d
+
(

∞
⋃

n=1
([cn, dn] \ [an, bn]), 0

)

= 0.

Put In = [an, bn], Jn = [cn, dn] for every n ≥ 1. Define a function
f : (a, b)→ R letting

f(x) =























0 if x ∈ {0} ∪
∞
⋃

n=1
In,

1 if x ∈ (a, 0) ∪
∞
⋃

n=1
[dn+1, cn] ∪ [d1, b),

linear on each interval [cn, an], [bn, dn], n ≥ 1.

The function f is continuous at every point except at 0. If E =
∞
⋃

n=1
In∪ {0},

then the function f restricted to E is constant, so in particular, it is con-
tinuous at zero. Moreover,

d(E, 0) ≥ d
+
(E, 0) = d

+

(

∞
⋃

n=1

In, 0

)

=
̺1 + ̺2

2
> ̺1.

Hence f ∈ UC̺1 . But

d
+
({x : f(x) < 1}, 0) ≤ d

+

(

∞
⋃

n=1

Jn, 0

)

≤

≤ d
+

(

∞
⋃

n=1

In, 0

)

+ d
+

(

∞
⋃

n=1

(Jn \ In), 0

)

=
̺1 + ̺2

2
< ̺2.

Moreover d
−
({x : f(x) < 1}, 0) = 0. Thus d ({x : f(x) < 1}, 0) < ̺2 and f

is not weakly ̺2-upper continuous at 0. Hence f 6∈ wUC̺2 .

Corollary 4.
⋃

̺∈(0,1)

UC̺ =
⋃

̺∈(0,1)

wUC̺.

Corollary 5.
⋂

̺∈(0,1)

UC̺ =
⋂

̺∈(0,1)

wUC̺.

Definition 5. We say that a real-valued function f defined on an open
interval I has Denjoy property at x0 ∈ I if for each ε > 0 and δ > 0 the set

{x ∈ (x0 − δ, x0 + δ) : |f(x)− f(x0)| < ε}

contains a measurable subset of positive measure. We say that f has Denjoy
property if it has Denjoy property at each point x ∈ I.

Immediately from Theorem 2.1 in [2], Remark 2.1 in [2] and Corollary 2
we obtain the following results.
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Corollary 6. If 0 < ̺ < 1 and f ∈ wUC̺, then f is measurable.

Corollary 7. If 0 < ̺ < 1 and f ∈ wUC̺, then f has Denjoy property.

The proof of the next corollary follows directly from Theorem 2.4 in [4].

Corollary 8. There exists function f such that f ∈
⋂

̺∈(0,1)

wUC̺ and f does

not belong to the Baire class 1.

We shall need the following lemma.

Lemma 1. [3] If 0 < ̺ ≤ 1 and {En : n ∈ N} is a descending family of

measurable sets such that x ∈
∞
⋂

n=1
En and d(En, x) ≥ ̺ for n ≥ 1, then there

exists a measurable set E such that d(E, x) ≥ ̺, x ∈ E, and for each n ∈ N
there exists δn > 0 for which E ∩ [x− δn, x+ δn] ⊂ En.

We shall give an equivalent condition of weak ̺-upper continuity at
a point.

Theorem 1. If 0 < ̺ < 1 and f : I → R is a measurable function, then f

is weakly ̺-upper continuous at x ∈ I if and only if

d ({y ∈ I : |f(x)− f(y)| < ε}, x) ≥ ̺ for every ε > 0.

Proof. Assume that f is weakly ̺-upper continuous at x. Let E ⊂ I be
a measurable set such that x ∈ E, f |E is continuous at x and d(E, x) ≥ ̺.
Since f |E is continuous at x, for each ε > 0 we can find δ > 0 such that
[x− δ, x+ δ] ∩ E ⊂ {y ∈ E : |f(x)− f(y)| < ε}. Hence for each ε > 0

d ({y ∈ I : |f(x)− f(y)| < ε}, x) ≥ d ({y ∈ E : |f(x)− f(y)| < ε}, x) =

= d(E, x) ≥ ̺.

Finally, assume that for each ε > 0,

d
(

{y ∈ I : |f(x)− f(y)| < ε}, x
)

≥ ̺.

By Lemma 1 for sets En =
{

y ∈ I : |f(x)− f(y)| < 1
n

}

, where n ∈ N, we

can construct a measurable set E such that x ∈ E, d(E, x) ≥ ̺ and for
each n there exists δn > 0 for which E ∩ [x − δn, x + δn] ⊂ En. The last
condition implies that f |E is continuous at x. It follows that f is weakly
̺-upper continuous at x, what was to be shown. �

Now we will show that the family of weakly ̺-upper continuous functions
is closed under uniform limits, i.e. every limit of uniformly convergent
sequence of functions from wUC̺ belongs to this family.
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Theorem 2. If 0 < ̺ < 1 and a sequence (fn)n≥1 of weakly ̺-upper con-
tinuous functions is uniformly convergent to a function f , then f is weakly
̺-upper continuous.

Proof. Let (fn)n≥1 be a sequence of weakly ̺-upper continuous functions
uniformly converges to f . Let x0 ∈ I and ε > 0. There exists n0 ≥ 1 such
that for every k > n0 and every x ∈ I the inequality

|fk(x)− f(x)| <
ε

3

holds. Fix n > n0. Since fn is weakly ̺-upper continuous at x0, there exists
a measurable set E ⊂ I such that x0 ∈ E, fn|E is continuous at x0 and
d(E, x0) ≥ ̺. Then there exists a positive δ such that

[x0 − δ, x0 + δ] ∩ E ⊂
{

x ∈ E : |fn(x)− fn(x0)| <
ε

3

}

.

Notice that

|f(x)− f(x0)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(x0)|+ |fn(x0)− f(x0)| < ε

if x ∈ [x0 − δ, x0 + δ] ∩ E. Therefore
{

x ∈ E : |fn(x)− fn(x0)| <
ε

3

}

⊂ {x : |f(x)− f(x0)| < ε}.

Hence

d ({x : |f(x)− f(x0)| < ε}, x0) ≥

≥ d
({

x ∈ E : |fn(x)− fn(x0)| <
ε

3

}

, x0

)

= d(E, x0).

Therefore

d ({x : |f(x)− f(x0)| < ε}, x0) ≥ d(E, x0) ≥ ̺.

It means that the function f is weakly ̺-upper continuous at x0. �

Example 3. We shall show that the family of ̺-upper continuous functions
is not closed under the operation of uniform convergence.

Define the function f in the same way as in Example 1. Let fn : R→ R,
fn = min{1 − 1

n
, f} for each n ≥ 1. Then, clearly, the sequence (fn)n≥1

uniformly converges to f and f 6∈ UC̺. Since
{

x : fn(x) = 1− 1
n
= f(0)

}

=
{

x : |f(x)− 1| < 1
n

}

and d
(

{x : |f(x)− 1| < 1
n
}, 0
)

= ̺ + 1
n
(1 − ̺) > ̺, we infer that fn ∈ UC̺

for each n ≥ 1.
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3. Maximal additive family

Definition 6. Let F be any family of real valued functions defined on I.
The set Ma(F) = {g : ∀f∈F f + g ∈ F} is called a maximal additive family
for F .

Remark 1. If a zero (constant) function is a member of a family of func-
tions F , then Ma(F) ⊂ F .

Lemma 2. [3] Let numbers c and γ fulfil the inequality 0 < c < γ < 1.

Moreover, let E be a measurable subset of R with the property d
+
(E, x) = c

for some point x ∈ R. Then there exists a measurable set H such that

E ⊂ H, d
+
(H,x) ≥ γ and d

+
(H \ E, x) ≤ γ − c(1− γ).

The proof of next theorem is based on the proof of Theorem 2.1 in [3],
where the maximal additive class for ̺-upper continuous functions is dis-
cussed.

Theorem 3. If 0 < ̺ < 1, then for each f ∈ wUC̺\A there exists g : I → R

such that g ∈ wUC̺ and f + g 6∈ wUC̺.

Proof. Since f 6∈ A, there exist x0 ∈ I and ε > 0 such that

d
+
({x ∈ I : |f(x)− f(x0)| ≥ ε}, x0) > 0

or

d
−
({x ∈ I : |f(x0)− f(x)| ≥ ε}, x0) > 0.

Without loss of generality we may assume that the first inequality holds.

Put E = {x ∈ I : |f(x) − f(x0)| ≥ ε} and c = d
+
(E, x0). Therefore

c > 0. Let γ be a real number satisfying conditions γ ≥ ̺, c < γ < 1 and
γ − c(1− γ) < ̺. By Lemma 2, there exists a measurable set H such that

E ⊂ H, d
+
(H,x0) ≥ γ and d

+
(H \E, x0) ≤ γ− c(1−γ). Next one can find

a sequence ([an, bn])n≥1 of closed intervals such that x0 < bn+1 < an < bn
for each n ≥ 1 and

d
+

(

∞
⋃

n=1

[an, bn] \H,x0

)

= d
+

(

H \
∞
⋃

n=1

[an, bn], x0

)

= 0.

Thus d
+
(

∞
⋃

n=1
[an, bn], x0

)

= d
+
(H,x0) ≥ γ ≥ ̺.

Let ([cn, dn])n≥1 be a sequence of pairwise disjoint closed intervals such

that [an, bn] ⊂ (cn, dn) for all n and d
+
(

∞
⋃

n=1
([cn, dn] \ [an, bn]), x0

)

= 0.

Put In = [an, bn] and Kn = [cn, dn] for each n ≥ 1. Define a function
g : (a, b)→ R letting
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g(x) =























0 if x ∈ {x0} ∪
∞
⋃

n=1
In,

−f(x) + f(x0) + ε if x ∈ (a, x0) ∪
∞
⋃

n=1
[dn+1, cn] ∪ [d1, b),

linear on each interval [cn, an], [bn, dn], n ≥ 1.

Since f ∈ wUC̺, g is weakly ̺-upper continuous at each point except
at x0. Applying inequality

d ({x : g(x) = g(x0) = 0}, x0) ≥ d
+

(

∞
⋃

n=1

In, x0

)

≥ ̺,

we conclude that g is weakly ̺-upper continuous at x0, too. It means that
g ∈ wUC̺.

Now, we shall show that f + g is not weakly ̺-upper continuous at x0.
Put

F = {x ∈ I : |(f + g)(x)− (f + g)(x0)| < ε}.

For x 6∈
∞
⋃

n=1
Kn ∪ {x0}, we have (f + g)(x) − (f + g)(x0) = ε. Therefore

F ⊂
∞
⋃

n=1
Kn∪{x0}. If x ∈

∞
⋃

n=1
In, then (f+g)(x)−(f+g)(x0) = f(x)−f(x0)

and consequently
∞
⋃

n=1
In ∩ F ⊂

∞
⋃

n=1
In \ E. Thus

d(F, x0) = d
+
(F, x0) ≤ d

+

(

F ∩
∞
⋃

n=1

In, x0

)

+ d
+

(

F \
∞
⋃

n=1

In, x0

)

≤

≤ d
+

(

∞
⋃

n=1

In \ E, x0

)

+ d
+

(

∞
⋃

n=1

(Kn \ In), x0

)

=

= d
+
(H \ E, x0) ≤ γ − c(1− γ) < ̺.

It follows that f + g is not weakly ̺-upper continuous at x0. Hence
f + g 6∈ wUC̺, which completes the proof. �

The proof of the following lemma is identical to the proof of Lemma 2.2
in [3] and we omit it.

Lemma 3. Let f : I → R, g : I → R be weakly ̺-upper continuous at
some point x ∈ I, where 0 < ̺ < 1. If at least one of those functions
is approximately continuous at x, then f + g and f · g are weakly ̺-upper
continuous at x.



A NOTE ON WEAKLY ̺-UPPER CONTINUOUS FUNCTIONS 203

Corollary 9. Let g : I → R be weakly ̺-upper continuous at some point
x ∈ I, where 0 < ̺ < 1. If f : I → R is approximately continuous at x,
then f + g and f · g are weakly ̺-upper continuous at x.

Corollary 10. Let f : I → R, g : I → R be weakly ̺-upper continuous in I,
where 0 < ̺ < 1. If Dap(f) ∩Dap(g) = ∅, where Dap(f) denotes the set of
all points at which f is not approximately continuous, then f + g and f · g
are weakly ̺-upper continuous in I.

Theorem 4. If 0 < ̺ < 1, then Ma(wUC̺) = A.

Proof. By Theorem 3, we have wUC̺ ∩ Ma(wUC̺) ⊂ A. By Remark 1,
we have the inclusion Ma(wUC̺) ⊂ wUC̺. Therefore Ma(wUC̺) ⊂ A.
Finally, by Lemma 9, we have A ⊂Ma(wUC̺). �

4. Maximal multiplicative family

Definition 7. If F is any family of real valued functions defined on an open
interval I, then the set {g : ∀f∈F f ·g ∈ F} is called a maximal multiplicative
family for F and is denoted by Mm(F).

Remark 2. If a constant function equalled to 1 is a member of a family of
functions F , then Mm(F) ⊂ F .

Lemma 4. If 0 < ̺ < 1 and a measurable function f : I → R is not
approximately continuous at some point x0 from I for which f(x0) 6= 0,
then there exists g : I → R such that g ∈ wUC̺ and f · g 6∈ wUC̺.

Proof. Without loss of generality we may assume that f is not approxi-
mately continuous from right side at x0. Then we can find a positive ε such
that ε < |f(x0)| and

d
+(
{x ∈ I : |f(x)− f(x0)| ≥ ε}, x0

)

= c > 0.

Put E = {x ∈ I : |f(x)− f(x0)| ≥ ε}. Take γ such that

̺ ≤ γ < 1, c < γ and γ − c(1− γ) < ̺.

By Lemma 2, there exists a measurable set H such that

E ⊂ H, d
+
(H,x0) ≥ γ and d

+
(H \ E, x0) ≤ γ − c(1− γ).

Similarly as in proof of Lemma 3.1 in [3] we can find a sequence ([an, bn])n≥1
of closed intervals such that x0 < bn+1 < an < bn for each n ≥ 1 and

d
+

(

∞
⋃

n=1

[an, bn] \H,x0

)

= d
+

(

H \
∞
⋃

n=1

[an, bn], x0

)

= 0.

Then d
+
(

∞
⋃

n=1
[an, bn], x0

)

= d
+
(H,x0) ≥ γ ≥ ̺.
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Let ([cn, dn])n≥1 be a sequence of pairwise disjoint closed intervals such

that [an, bn] ⊂ (cn, dn) for all n and d
+
(

∞
⋃

n=1
([cn, dn] \ [an, bn]), x0

)

= 0.

Denote now In = [an, bn], Kn = [cn, dn] for each n ≥ 1. Define a function
g : (a, b)→ R by

g(x) =























1 if x ∈ {x0} ∪
∞
⋃

n=1
In ∪ [b1, b),

0 if x ∈ (a, x0) ∪
∞
⋃

n=1
[dn+1, cn],

linear on each interval [cn, an], [bn+1, dn+1], n ≥ 1.

Then g is continuous except at x0. Moreover,

d ({x ∈ I : g(x) = 1}, x0) ≥ d
+

(

∞
⋃

n=1

In, x0

)

= d
+
(H,x0) ≥ γ ≥ ̺

and g restricted to {x ∈ I : g(x) = 1} is continuous at x0. It follows that g

is weakly ̺-upper continuous at x0. Therefore g ∈ wUC̺.
Moreover, (f · g)(x0) = f(x0) and

{x : |(f · g)(x)− (f · g)(x0)| < ε} ∩

(

(a, x0) ∪
∞
⋃

n=1

[dn+1, cn]

)

= ∅.

Then

d ({x ∈ I : |(f · g)(x)− (f · g)(x0)| < ε} , x0) ≤

≤ d
+

({

x ∈
∞
⋃

n=1

Kn : |(f · g)(x)− (f · g)(x0)| < ε

}

, x0

)

=

= d
+

({

x ∈
∞
⋃

n=1

In : |f(x)− f(x0)| < ε

}

, x0

)

=

= d
+
({x ∈ H : |f(x)− f(x0)| < ε} , x0) =

= d
+
({x ∈ H \ E : |f(x)− f(x0)| < ε} , x0) ≤ γ − c(1− γ) < ̺.

It implies that f · g is not weakly ̺-upper continuous at x0 i.e. fg 6∈ wUC̺.
�

Definition 8. If 0 < ̺ < 1, then by W(̺) we shall denote the family of all
measurable functions f : I → R such that at each x0 ∈ Dap(f) the following
two conditions hold

(W1) f(x0) = 0 (in other words Dap(f) ⊂ Nf , where Nf ={x : f(x) = 0});
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(W2) for each ε > 0 and for each measurable set F such that F ⊃ Nf and

d(F, x0) ≥ ̺ we have

d(F ∩ {x ∈ I : |f(x)− f(x0)| < ε}, x0) ≥ ̺.

Theorem 5. Mm(wUC̺) =W(̺) for each ̺ such that 0 < ̺ < 1.

Proof. Fix ̺ from the interval (0, 1). Let f ∈ W(̺) and g ∈ wUC̺. Take
any x0 ∈ I. Then we can find a measurable set E such that x0 ∈ E,
d(E, x0) ≥ ̺ and g|E is continuous at x0.

First, we assume that f is approximately continuous at x0. Then, by
Lemma 9, f · g is weakly ̺-upper continuous at x0.

Now, we assume that x0 ∈ Dap(f). By condition (W1), we obtain
f(x0) = 0. Since g|E is continuous at x0, there exist positive numbers
r and M such that |g(x)| < M for x ∈ E∩ [x0−r, x0+r]. Put F = E∪Nf .

Then Nf ⊂ F and d(F, x0) ≥ ̺. Let ε > 0. Then

{x ∈ I : |(f · g)(x)| < ε} ∩ [x0 − r, x0 + r] ⊃

⊃ F ∩
{

x ∈ I : |f(x)| < ε
M

}

∩ [x0 − r, x0 + r].

By condition (W2), we have

d
(

{x : |(f · g)(x)| < ε}, x0
)

≥ d
({

x : |f(x)| < ε
M

}

∩ F, x0
)

=

= d
(

{x : |f(x)| < ε′} ∩ F, x0
)

≥ ̺,

where ε′ = ε
M

. By Theorem 1, f · g is weakly ̺-upper continuous at x0.
Hence f · g ∈ wUC̺. In this way, we have proven that W(̺) ⊂Mm(wUC̺).

Finally, assume that f ∈Mm(wUC̺). If x0 ∈ Dap(f), then, by Lemma 4,
we obtain f(x0) = 0. Therefore f satisfies the condition (W1). Take any
measurable set F such that Nf ⊂ F and d(F, x) ≥ ̺. Identically as in the
proof of Theorem 3.1 in [3] we can find sequences ([an, bn])n≥1, ([cn, dn])n≥1,
([a′n, b

′
n])n≥1, ([c

′
n, d

′
n])n≥1, (αn)n≥1, (α

′
n)n≥1 that satisfy conditions listed

in that proof.
Define a function g : (a, b)→ R by

g(x) =























1, if x ∈
∞
⋃

n=1
[an, bn] ∪

∞
⋃

n=1
[a′n, b

′
n] ∪ (a, a′1] ∪ [b1, b) ∪ {x0},

αn, if x ∈ [dn+1, cn], n = 1, 2, . . . ,
α′n, if x ∈ [d′n, c

′
n+1], n = 1, 2, . . . ,

linear on each [cn, an], [bn+1, dn+1], [c
′
n+1, a

′
n+1], [b

′
n, d

′
n], n ≥ 1.

It follows directly from the definition of g, that g is continuous at each point
except at x0. Since

d

(

∞
⋃

n=1

[an, bn] ∪
∞
⋃

n=1

[a′n, b
′
n], x0

)

= d(F, x0)
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and g restricted to the set
∞
⋃

n=1
[an, bn] ∪

∞
⋃

n=1
[a′n, b

′
n] ∪ {x0} is constant, g is

weakly ̺-upper continuous at x0. Thus g ∈ wUC̺. Hence f · g ∈ wUC̺.
Moreover, (f · g)(x0) = 0. Put

Eε = {x ∈ I : |(f · g)(x)− (f · g)(x0)| < ε} = {x ∈ I : |(f · g)(x)| < ε}

if 0 < ε < 1. Since f · g ∈ wUC̺, d(Eε, x0) ≥ ̺. On the other hand, in the
same way as in mentioned proof, we obtain

d
+
(Eε, x0) ≤ d

+(
{x ∈ F : |f(x)| < ε}, x0

)

,

d
−
(Eε, x0) ≤ d

−(

{x ∈ F : |f(x)| < ε}, x0
)

if 0 < ε < 1. Thus d
(

{x ∈ F : |f(x)| < ε}, x0
)

≥ d(Eε, x0) ≥ ̺. It follows
that the condition (W2) is satisfied and f ∈ W(̺). �

Corollary 11. If a measurable function f : I → R satisfies the following
conditions:

(1) x0 ∈ Dap(f),

(2) d(Nf , x0) ≥ ̺,
(3) f(x0) = 0

for some x0 ∈ I and ̺ ∈ (0, 1), then f ∈ W(̺).

Corollary 12. Ma(wUC̺) = A  Mm(wUC̺).
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