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FUZZIFIED PROBABILITY: FROM KOLMOGOROV TO

ZADEH AND BEYOND

ROMAN FRIČ, MARTIN PAPČO

Abstract

We discuss the fuzzification of classical probability theory. In particular, we point
out similarities and differences between the so-called fuzzy probability theory and the
so-called operational probability theory.

1. Introduction

Clearly, the classical (Kolmogorovian) probability theory ([12]), CPT for
short, based on Boolean logic and set theory, has its limitations when mod-
elling real life situations and when uncertainty is to be taken into account.
Accordingly, L. A. Zadeh ([19]) proposed to extend random events to fuzzy
random events. In the literature, there are various approaches to uncer-
tainty based on fuzzy sets and fuzzy logic. Also, there are several gener-
alizations of CPT and we will deal with two of them, both deserving to
be called fuzzified probability theory; just to avoid misunderstanding, we
call them fuzzy probability theory, FPT for short, and operational probabil-
ity theory, OPT for short. While FPT is more oriented to applications and
engineering and its basic ideas and constructions are outlined in [1], OPT
originated in modelling quantum phenomena in physics, but its mathemat-
ical results can be used, e.g., in social sciences, and the interested reader is
referred to [11], [2], [3], [7], and references therein.
We aim at a better understanding of the fuzzification of CPT. Since we

will work with more than one probability theory, we need to put them into
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a perspective. To do so, we first analyse and discuss some basic notions and
constructions of probability theory.
Our paper is written as a series of questions and answers. This way we

hope to provide more information (stress is on “why” and “what”) within
a limited space and make the presentation more readable.

2. Basic notions of CPT and their roles

Probability theory has been axiomatized (mathematized) by A. N. Kol-
mogorov. The influence of his “Grundbegriffe” ([12]) on the education in
the area of probability and its impact on research in stochastics cannot be
overestimated. In this section we present few remarks about basic mathe-
matical notions of CPT: random events, probability measures, and random
variables.
At the beginning we have a probability space (Ω,A, P ), where Ω is the

set of all outcomes of a random experiment, A is a σ-field of subsets of Ω,
each A ∈ A is called an event, events of the form A = {ω}, ω ∈ Ω,
are called elementary events, and P : A → [0, 1] is a normed σ-additive
measure called probability ; P (A)measures how “big” is A ∈ A in comparison
to Ω. The most important example is (R,BR, p), where R are the real
numbers, BR is the real Borel σ-field, and p is a probability on BR. Let f
be a measurable map of Ω into R, i.e., f←(B) = {ω ∈ Ω | f(ω) ∈ B} ∈ A

for all B ∈ BR. If p(B) = P (f←(B)) for all B ∈ BR, then f is said to be
a random variable and p is said to be the distribution of f . More generally,
if (Ξ,B) is a measurable space then a measurable map g : Ω −→ Ξ is said
to be a (Ξ,B)-valued random variable. If points of Ω and Ξ are viewed as
the degenerated probability point-measures, then g gives rise to a map Tg

on the set P(A) of all probability measures on A into the set P(B) of all
probability measures on B, Ω ⊂ P(A), Tg and g coincide on Ω.

Remark 2.1. Each random event A ∈ A can be viewed as the indicator
(characteristic) function χA of A, or as a propositional function “ω ∈ A”
and operations on events correspond to (Boolean) logical operations on propo-
sitional functions. Observe that P can be viewed as a fuzzy subset of A.

Remark 2.2. A random variable is neither a variable, nor random. Indeed,
f is a function and the assignment ω 7→ f(ω) is not random. Instead, for
example, if F : R→ [0, 1] is a distribution function corresponding to p, then
the pair (R,F ) looks like “randomized real variable”. In probability theory
and mathematical statistics, in fact, laws of probability on R, Rn, or RR

(in terms of distribution functions, characteristic functions, density func-
tions) are the main objects of study and the random variables, as measurable
functions, play only an auxiliary role.



FUZZIFIED PROBABILITY 181

Remark 2.3. In some sense, more important than a random variable f is
its dual preimage map f←, mapping BR into A. Indeed, f← “preserves” the
Boolean structure of BR, i.e. it is a Boolean homomorphism mapping real
events BR into the events of the original (sample) space (Ω,A, P ), and p is
the composition P ◦ f← of f← and P . The stochastic information about an
“observed” event B ∈ B is obtained by finding the corresponding “theoretical”
event f←(B) ∈ A and P (f←(B)) is the needed stochastic information about
B. In CPT, strange enough, f← does not have its name.

Remark 2.4. Let f be a measurable map of Ω into R. Then f induces
a map Df of the set P(A) of all probability measures on A into the set
P(BR) of all probability measures on BR: for Q ∈ P(A) we define

Df (Q) = Q ◦ f←;

we say that f pushes forward Q to Df (Q). If we identify each ω ∈ Ω
and the Dirac point-probability δω and, similarly, each r ∈ R and δr, then
a straightforward calculation shows that Df (δω) = δf(ω). Consequently,
the distribution map Df can be considered as an extension of f , mapping
Ω ⊆ P(A) into R ⊆ P(BR), to Df mapping P(A) into P(BR).

QUESTION 1. What is the role of a random variable in CPT?

ANSWER 1. It is a channel through which stochastic information is trans-
ported (the dual preimage map transports the real random events BR into
the sample random events A and each probability measure P on A is trans-
ported via the composition of the preimage map and P to become a proba-
bility measure on BR).

3. Basic notions of FPT and their roles

In order to understand the transition from CPT to FPT, we first recollect
some facts about FPT. The next lines are borrowed from [1]:

“The development of fuzzy probability theory was initiated
by H. Kwakernaak ([13]) with the introduction of fuzzy ran-
dom variables in 1978. . . Fuzzy probability theory is an ex-
tension of probability theory to dealing with mixed probabi-
listic/non-probabilistic uncertainty. . . If a set of uncertain
perceptions of a physical quantity is present in the form
of a random sample, then the overall uncertainty possesses
a mixed probabilistic/non-probabilistic character. Whilst
the scatter of the realizations of the physical quantity pos-
sesses a probabilistic character (frequentative or subjective),
each particular realization from the population may, addi-
tionally, exhibit non-probabilistic uncertainty. Consequently,
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a realistic modelling in those cases must involve both prob-
abilistic and non-probabilistic uncertainty. This modelling
without distorting or ignoring information is the mission of
fuzzy probability theory. A pure probabilistic modelling
would introduce unwarranted information in the form of
a distribution function that cannot be justified and Fuzzy
Probability Theory would thus diminish the trustworthiness
of the probabilistic results.”

QUESTION 2. What is the meaning of “fuzzy probability law”?

ANSWER 2. A classical distribution function F represents a classical
probability law and its fuzzification F̃ , called fuzzy distribution function, rep-
resents a “fuzzy probability law”. The fuzzification is based on a suitable non-
probabilistic procedure transforming a classical probability space (R,BR, F )

into (R,BR, F̃ ) ≡ (R,BR, µ, F ), where µ is a membership function con-
structed via a map of Ω into the fuzzy real numbers (satisfying certain tech-

nical conditions) and F̃ represents the fuzzy set of distribution functions
determined by µ.

Remark 3.1. Observe that random events in CPT and FPT are crisp sets
forming a σ-field of sets. The transition from CPT to FPT is based on the
transition from F to F̃ .

QUESTION 3. What is the role of fuzzy random variables?

M. R. Puri and D. A. Ralescu ([18]) formalized fuzzy random variables
(also called random fuzzy sets) as an extension of random sets as follows.
Let B be a separable Banach space. Denote K(B) the set of all non-empty
bounded closed subsets of B and denote F(B) the class of the normal upper
semi-continuous [0, 1]-valued functions defined on B with bounded closure
of the support. Let (Ω,A, P ) be a probability space. A fuzzy random
variable is a mapping X : Ω −→ F(B) such that, for all α ∈ [0, 1], the set-
valued α-level mapping Xα : Ω −→ K(B), Xα(ω) = (X(ω))α is a compact
random set, that is, it is Borel measurable with respect to the Borel σ-field
generated by the topology associated with the well-known Hausdorff metric
on K(B).
The usefulness of this somewhat technical notion follows, e.g., from a de-

tailed discussion in [4] explaining how, using the notion of fuzzy random
variable as a tool, classical methods of mathematical statistics can be mod-
ified to get corresponding methods of “fuzzy statistics”.

ANSWER 3. Fuzzy random variables serve as a (non-random) tool to
transform classical probability law (in terms of distribution functions) into
fuzzy probability law (in terms of fuzzy distribution functions)
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4. Basic notions of OPT and their roles

In OPT (cf. [11], [2], [3]) random events (called also effects) are measur-
able fuzzy sets and fuzzified probability measures (also called states) are
integrals with respect to probability measures — this is in accordance with
Zadeh’s proposal ([19]). The essential novelty is in the fuzzification of ran-
dom variables: the outcome ω of a random experiment can be mapped to
a probability measure on BR (or on some other target measurable space)!
Accordingly, the measurability of operational random variable (also statis-
tical map, or a fuzzy random variable in the Bugajski-Gudder sense) and
the corresponding probability distribution have to be defined in a differ-
ent way than in CPT. This leads to different interpretation, mathematical
apparatus, and applications (cf. [5], [14], [15], [16], [17], [10]).

QUESTION 4. What is the role of operational random variables?

Figure 1

To avoid technicalities, we illustrate the involved notions and construc-
tions on the discrete (finite) case (cf. [9]). So, assume that

Ω = {ω1, ω2, ..., ωn}

and
Ξ = {ξ1, ξ2, ..., ξm}

are two finite sets, A and B are the sets of all subsets of Ω and Ξ, and
P and Q are probability measures on A and B, respectively. Then P

and Q reduce to probability functions P = (p1, p2, ..., pn), pl = P ({ωl}),
l = 1, 2, ..., n, and P (A) =

∑

ωl∈A
pl, A ⊆ Ω, resp. Q = (q1, q2, ..., qm),

qk = Q({ξk}), k = 1, 2, ...,m, and Q(B) =
∑

ξk∈B
qk, B ⊆ Ξ. Each map

f : Ω −→ Ξ is measurable and f is a ((Ξ,B)-valued, classical) random vari-
able whenever Q(B) = P (f←(B)), where qk = Q({ξk}) =

∑

ωl∈f←({ξk})
pl
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and Q(B) =
∑

ξkB
qk=

∑

ωl∈f←(B) pl. Simply, the random variable f can be

viewed as a system of pipelines through which the probability measure P is
distributed to become Q, see Fig. 1. Observe that each pl goes exactly to
one ξk.
An operational random variable can be viewed as a more complex sys-

tem of fuzzified pipelines, see Fig. 2. Each pl is distributed along Ξ via
the probability function (measure) (w1l, w2l, ..., wml).

Figure 2

For each l ∈ {1, 2, ..., n}, pl is distributed among the elements of Ξ as
follows: wklpl goes to ξk, k ∈ {1, 2, ...,m}, and the sum

∑n
l=1wklpl repre-

sents the total input qk of the probability which flows into ξk. Further, for
B ⊆ Ξ, the sum

∑

ξk∈B
qk represents the probability Q(B) and, explicitly,

Q(B) =
∑

ξk∈B

n
∑

l=1

wklpl =
n

∑

l=1

pl
∑

ξk∈B

wkl.

This points to a fuzzy event uB ∈ [0, 1]Ω defined by uB(ωl) =
∑

ξk∈B
wkl,

l ∈ {1, 2, ..., n}, and to a canonical map hc (defined by hc(χB) = uB)
sending crisp events B to fuzzy events [0, 1]Ω.
The importance of hc comes from the fact, that Q(B) is “the integral of

uB with respect to P ”!
Finally, hc can be canonically extended to a map h on fuzzy events [0, 1]Ξ

into fuzzy events [0, 1]Ω so that “the integral with respect to Q” is the
composition of h and “the integral with respect to P ”!!
Next, we briefly outline how the discrete case of OPT can be extended

to the general case.

Remark 4.1. Let (Ω,A) be a measurable space (remember, we consider sub-
sets as crisp fuzzy sets). Denote M(A) the set of all measurable functions
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of Ω into the unit interval [0, 1]. In OPT the operations on fuzzy random
events M(A) (generalizations of Boolean operations on classical random
events) follow the Łukasiewicz logic: x ⊕ y = min{1, x + y}, xc = 1 − x,
x ⊙ y = max{0, x + y − 1} for the unit interval [0, 1], and coordinate-wise
for fuzzy sets. Observe that if T = {∅, {a}} is a two-element field of sets,
then [0, 1] ≡M(T).

Remark 4.2. Let X be a set and let [0, 1]X be the set of all fuzzy subsets of
X carrying the coordinate-wise partial ordered (v ≤ u whenever v(x) ≤ u(x)
for all coordinates x) and the partial binary operation of difference “⊖”
defined coordinate-wise: (u⊖ v)(x) = u(x)− v(x) whenever v(x) ≤ u(x) for
all coordinates x. In OPT, an important role is played by D-posets of fuzzy
sets, i.e., subsets X ⊆ [0, 1]X carrying the inherited coordinate-wise partial
ordered, containing the top element 1X , the bottom element 0X , and closed
with respect to the inherited partial binary operation of difference. Both A

and M(A), A ⊂ M(A), are distinguished D-posets of fuzzy sets: they
model random events in CPT and in OPT, respectively. Let h be a map on
a D-poset of fuzzy sets Y ⊆ [0, 1]Y into a D-poset of fuzzy sets X ⊆ [0, 1]X .
If h preserves the order, the top and bottom elements, and the difference,
then it is called a D-homomorphism. Sequentially continuous (with respect
to the coordinate-wise convergence of sequences) D-homomorphisms play
a crucial role in OPT (cf. Lemma 4.1 and Corollary 4.2 in [6]).

Theorem 4.3. Let (Ω,A) and (Ξ,B) be measurable spaces.

(i) Each sequentially continuous D-homomorphism on B into M(A)
can be uniquely extended to a sequentially continuous D-homomorph-
ism on M(B) into M(A);

(ii) Integrals onM(A) with respect to probability measures on A are ex-
actly sequentially continuous D-homomorphism onM(A) into [0, 1].

Remark 4.4. Observe that, according to the Lebesgue Dominated Con-
vergence Theorem, every integral with respect to a probability measure is
sequentially continuous. It is easy to verify that a composition of two se-
quentially continuous D-homomorphisms is a sequentially continuous D-
homomorphism. Consequently, a composition of a sequentially continu-
ous D-homomorphism onM(B) intoM(A) and a sequentially continuous
D-homomorphism onM(A) into [0, 1] is an integral onM(B) with respect
to a probability measure on B.

Definition 4.5. Let (Ω,A), (Ξ,B) be measurable spaces. Let T be a map on
P(A) into P(B) such that, for each B ∈ B, the assignment ω 7→

(

T (δω)
)

(B)
yields a measurable map on Ω into [0, 1] and

(BG)
(

T (P )
)

(B) =

∫

(

T (δω)
)

(B) dP
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for all P ∈ P(A) and all B ∈ B. Then T is said to be a operational random
variable (also a statistical map, or a fuzzy random variable in the sense of
Bugajski and Gudder).

Remark 4.6. The assignment ω 7→
(

T (δω)
)

(B) results in a sequentially
continuous D-homomorphism hc on B into M(A), hence can be uniquely
extended to a sequentially continuous D-homomorphism h on M(B) into
M(A). It is known that this way to each operational random variable T

of P(A) into P(B) there corresponds a unique sequentially continuous D-
homomorphism h = T ⊳ on M(B) into M(A) called observable and, vice
versa (via the composition of a sequentially continuous D-homomorphism h

onM(B) intoM(A) and integrals in (BG)), to each sequentially continu-
ous D-homomorphism h on M(B) into M(A) there corresponds a unique
T and h = T ⊳.

ANSWER 4. It is a channel through which a fuzzified stochastic infor-
mation is transported. Each outcome of a random experiment is mapped to
a “local” probability measure (possibly a degenerated point-measure, always
in CPT) which fuzzifies the corresponding observation and each probability
measure P on the sample random events A, and hence the corresponding
integral on M(A) (taking into the account all “local” probability measures)
is then transformed to a fuzzified “global” probability measure Q on the ob-
served crisp random events B, and hence the corresponding integral on the
observed fuzzy random events M(B). This yields an operational random
variable T : P(A) −→ P(B). To T there corresponds a unique observable
T ⊳ :M(B) −→M(A) and the composition of T ⊳ and the integral onM(A)
with respect to P is the integral on M(B) with respect to Q.

5. CPT embedded in OPT

Since to each σ-field A there corresponds exactly one D-poset of fuzzy
sets M(A) and to each probability measure P on A there corresponds
exactly one integral on M(A) with respect to P , the extension of CPT to
OPT looks “conservative”. The real novelty is revealed when comparing the
corresponding notions of a random variable.

QUESTION 5. What is the difference between random variables and ob-
servables in CPT and OPT?

ANSWER 5. Both a classical random variable and a operational random
variable model channels through which probability measures are transported,
but the latter has a quantum character: a degenerated probability point-
measure can be mapped to a non-degenerate probability measure. Dually,
both a classical observable and a fuzzy observable map events (represented
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by special D-posets of fuzzy sets) to events, but the latter can map a crisp
event to a genuine fuzzy one.

QUESTION 6. How are CPT and OPT related?

ANSWER 6. CPT can be embedded into OPT in a natural way: classical
random evens form a σ-field A and are embedded into the fuzzy random
eventsM(A), every generalized probability measure is an integral onM(A)
with respect to a classical probability measure on A, each classical probability
measure is the restriction of such integral to A, and there is a one-to-one
correspondence between random events (σ-fields of sets) and fuzzy random
events (measurable maps into [0, 1]). Since every sequentially continuous
D-homomorphism on A into [0, 1] ≡ M(T) can be uniquely extended to
an observable on M(A) to M(T), to every probability measure P on crisp
events A there corresponds a unique observable (integral with respect to P )
on fuzzy events M(A) into M(T). Consequently, generalized probability
measures in OPT become observables. Hence probability measures in CPT
are “shadows” of fuzzy morphisms.

Additional information on categorical approach to probability theory can
be found in [7], [8].
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