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Abstract. Periodic B-spline functions have got many useful properties. Especially
it is the property of its Fourier coefficients. In this article it is introduced and proved
a similar property of Fourier coefficients of spline wavelets.

1. Spline wavelets

In this section, we shall briefly summarize the essences of the theory of the
wavelet expansion. We start by defining of a multiresolution analysis.

Definition: The multiresolution analysis of L?(IR) is a sequence of closed
subspaces V; of L?(R), j € Z, with the following properties:

[1] Vi € Vi

2] f(@) €V} < f(20) € Vi

B8] flx)eVoe flz+1) eV

[4] '+LOJO V; is dense in L?*(R) and 'Jﬁo V; = {0}
j=—00 j=—oo

[5] A scaling function ¢ € Vj, with a non-vanishing integral, exists such
that the collection {¢(z — )|l € Z} is a Riesz basis of V.

Since ¢ € Vo C Vi, a sequence (hy) € (?(Z) exists such that the scaling
function satisfies the dilation equation

o) = V3S hio (2 — k) 1)

kEZ
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It is immediately to view that the collection of functions {¢; x| k € Z}, with
¢jx(x) = 27/29(2 2 — k), is a Riesz basis of V.
We will define a space W; complementing V; in Vi1, i.e. a space that
satisfies
Visi =V, & Wy,

oo
where symbol @ stands for direct sum. From this follows the relation @ W; =
j=—00

L%(R). This subspace W; is called "wavelet subspace" and is generated by
Yik(x) = 23¢)(22 — k), where function () is called the "wavelet" and
collection of functions {¢(x — k)|k € Z} forms a Riesz basis of Wj.

Since the wavelet v is an element of V;, a sequence (g,) € ¢*(Z) exists
such that

U(x) = V2 grd(2x — k). (2)

keZ

We described wavelets and scaling functions defined on the real line. For
many applications it is necessary, or at least more natural, to work on a
subset of the real line. Many of these cases can be dealt with by introducing
periodized scaling function and wavelets, which we define as follows:

6\ (2) = 28 Y 6(2 (2 — n)) (3)
nez

WO (2) = 28 Y w(2 (2 — n)). (4)
nez

Functions ¢§0,1) (r—k277) and wéo’”(a: —k277) for k=0,1,..,27 —1 are linear
independent and generate the spaces Vj<0’1> eventually WJ.<O’1>. Let us define
for j € N,j > jo and n; = 27 the set K; = {0, 1,..,n; —1} and take equidistant
partition of the interval (0,1) with step width h; = % The points x{c are
defined by z; = & for k € K.

Characteristic function on the interval (0, 1) is defined as

J1 x €(0,1)
X730 elsewhere

For r > 1 we define x" as the convolution

1
X' (@)= | X" Nz —y)x(y)dy.
/
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This function is B-spline on R of the order r. If we take ¢(x) = x"(z), where

¢(x) is scaling function introduced above, then qu(.O’l) for k € Kj is B-spline of
the order r (piecewise polynomial of order r — 1) on the interval (0,1). To this

scaling function we can build (as was shown earlier) functions ¢§0’1> (x—k277).

2. Property of Fourier coefficient of B-spline and spline wavelets

Fourier series of one-periodic function gi) ) have form
1 0,1 omi
@) = B,
PEZL

where $§0’1> (p) are Fourier coefficient defined by formula

1
= [ @emrnaa. (©)
0

Theorem 1. Let S? is the space of one-periodic B-spline of order d + 1
(piecewise polynomial of degree d) with knots xj = %, where n is arbitrary
natural number, j = 0,...,n—1. Let us defineaset A, = {p € Z; =5 <p < §}.

Then for Fourier coefficients of one-periodic B-spline gg equality holds
(D) DG(p+ In)(p+ )™ = dp)p™!,  1€Z,peShper, (T)

This equality was proved in [1].
Relation between Fourier coefficients of functions qu(.o’l and gb arise

from dilation equation by the following way:

]+1

>0 e = 6 (@)

PEZL

=3 o5 (@ — k279

keZ
Zh Z¢ 27rzpz k27771
- k i (
keZ PEZL
~0.1 o o1 .
- S (z ) e
PEZL keZ
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By comparing of Fourier coefficients we obtain
0,1 0,1
6" (p) = 915 (PImya (), ®)

where mj1(p) = Y ez hre 27PR277 71 i function with period 291 Tt is
valid for this function

mj+1(2p) = m;(p) (9)
and
mj+1(2j) =0. (10)

Using this relation, we can prove following theorem.

Theorem 2. Let <Z>j<.0’1) is a member of space Vj<0’1> = ng one-periodic
B-spline of order d + 1 , where n; = 27 and 1/J]<-0’1> is corresponding spline
wavelet from the space I/Vj<0’1>, aset Ap;, = {p € Z; —% <p< %} Then for

Fourier coefficients of spline wavelets 1/JJ<-0’1> in the space I/Vj<0’1> the relation
holds

(D) D (p+ ) (p+ ) = p(p)p™, 1€2-Z,p € Wj,pe Ay, (11)

where the set 2 - Z is the set of even integral numbers.
Proof We can write

B @) = Do e,

PEZ

where @O’D(p) are Fourier coefficients. It follows from (2)

20 e = oY ()

PEZL

= > gl (@ — k277

keZ

= o o e

keZ  peZ

=SS (e ) e

PEZL kEZ
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Now we compare Fourier coefficients.

~0,1 —omipk2—I—1
o) = 0157 0) Y g

keZ
= @gﬁ? () Z(—l)khl_ke”m’p’”‘j_l
kez
— ]+1 Zekmh B 6727mpk2 J—1
keZ
- J+1 Zh e—2mip(1=k)277 1 (1-k)mi
keZ
_ aﬂ? (p)eﬁi(l—pQ_j) Z hk627ripk2_j_1€—k7ri
kEZ
O (e S ek
kEZ
= O (e iy (p— 27)

For mj1(p) # 0 we can write
G ) = 6 @mil ) [~ = 2)| . (12)

When we propound n = 2/ and A, = {p € Z;—%5 < p < 5} asin (7) and

signify $§0’1>(p) = éb\(p) For A, = {p € Z; -2 < p < 2771} follows this
mj+1(p) # 0. Further with using the relation (7) we can write

_1\(d+1)70,1) d+1 _

(-1) Y (p+In)(p+In)*T =

= (—1)l(d+1)$§0’1> (p+1n)(p+ )™ m L (p+In)-

—27r7..(p+ln) .
—e 271 mj+1(p +Iln — 2]) .
Since it holds

. o
mjy1(p+1n) = the 2mi(p-+Hin)k2 I
kez
= Z hype— 2miPIR2 I =2miin)k2 I
keZ

for n = 29 we obtain

mjt1(p+1In) = Zh e 2mi(p)k277~ 1( 1)”c
kEZ



106 Jana Simsové

When we write ,
6727ri(ln)k2*]*1 — o 2milk

we obtain for even numbers [
(~)! DGO () (p + )T+ =
= 3 mi o) [~ g (o= 20)
= o

From preceding it follows the property (11) for spline wavelets.
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