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Introduction 

 For a long time, unusual properties of crystals with transition metal and rare earth 

ions have been fascinating physicists and chemists as a non-exhausting source of   

unsolved puzzles and enigmas, understanding and explanation of which advances our 

knowledge about matter, helps developing new technologies and gives an esthetic 

satisfaction to the researchers. An enormous potential of these compounds as new 

materials has become evident and is not questioned. Applictions in different fields are 

now established, such as new laser materials, infrared to visible up conversion mate-

rials, systems involving photoredox processes for solar energy conversion, new    

photovoltaic devices, phosphorescent sensors, in particular electroluminescent       

devices, etc.  

 All these applications are based on the possibility to add some impurities – other 

chemical elements – to a crystal lattice. Even a small amount of impurity ions, intro-

duced into the crystal either artificially or naturally, can change drastically its optical 

properties. A classic example is that one of corundum, or aluminum oxide Al2O3. If it 

is chemically „pure”, it appears to be either colorless or greyish crystal. But if it con-

tains a small (about few percent) contribution of chromium ions, corundum changes 

its color to pink or red, and it becomes a precious stone ruby. If, on the contrary, there 

are not chromium but titanium and iron additions, the color of corundum is changed 

to blue and it becomes another precious stone, blue sapphire.

 The ability of different materials to absorb and emit light as well as the potetial 

for possible applications are directly related to the properties of the electronic ground 

state and the lower-lying excited states of a particular ion in a particular host matrix. 

It took scientists quite long time to arrive at this conclusion. Thus, the four well-

known sharp lines of hydrogen atom in the visible spectral range were a mystery until 

J.J. Balmer in 1885 suggested an empirical equation, which allowed to calculate the 

wavelengths of those lines. But an explanation (not a simple description!) should 

have waited until E. Rutherford and N. Bohr in early XX century developed  a plane-

tary model of an atom, which eventually led to creation of quantum mechanics –  
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a special branch of physics aimed at the proper description of small objects –

molecules, atoms, electrons. 

 An enormous step towards understanding and modeling of optical properties of 

impurities in crystals was advanced by H. Bethe, when he wrote an article „Splitting 

of Terms in Crystals” [1]. In this paper he laid down the foundations of the modern 

crystal field theory; besides, he has given a concise explanation of how the group 

theory can be applied to the analysis of spectra of impurity ions in crystal field of  

various symmetry. The further developments in the crystal field theory are linked 

with the names of J.H. Van Vleck, S. Sugano, Y. Tanabe, D.J. Newman etc.

 Those factors, which affect the impurity ion energy level scheme, are as follows: 

i) electrical charges of the impurity ion and host lattice ions, ii) interionic separations, 

iii) coordination number (number of the nearest neighboring ions around impurity), 

symmetry of an environment around impurity etc. In the next section we review 

briefly the main ideas underlying the quantitative theory of crystal field. 

Basic foundations of the crystal field theory 

 From the quantum mechanical point of view, the energy levels � of an impurity 

ion with unfilled electron shell, in no relativistic case, can be represented as the solu-

tions of the following Schrödinger equation: 

�� �� ���	

 � �
���
���
�� � �
���
��� � ��                         (1) 

where: � ���	

  is the kinetic energy of the i-th electron with mass �, �
���
� is the 

potential energy of the i-th electron in the electrostatic field created by the impurity 

ion’s nucleus and its remaining electrons and  

�
������� � �� ����� ����!���"�#$��                                          (2) 

is the potential energy of the i-th electron of impurity ion in the electrostatic field 

created by crystal lattice ions with charges %$ (in units of the proton charge) with the 

position vectors  ���$ & �
���
� is the crystal field operator. The summation in Eq. (1) is 

carried over all electrons in the impurity ion’s unfilled shell, and the summation in 

Eq. (2) is extended over N ions of crystal lattice. Eq. (2) is usually solved using the 

perturbation theory, i.e. assuming that  �
������� ' � �� ���	

 � �
���
���
�� . 

The wave functions of the free ion LS-terms (which, actually, are linear combinations 

of the one-electron wave functions; L and S stand for the orbital and spin momenta of 

a particular multielectron state, respectively) can be taken as the first approximation, 

and effects of a small perturbation produced by a crystal field on these free-ion states 
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will be considered. The matrix elements of the crystal field should be calculated on 

the wave functions ��, ��� of free ion as follows:  

��(�� � )��*+�
�������,-                                         (3) 

Integration in the last equation is carried over all spatial coordinates -. The main 

question now is how to evaluate the integral in Eq. (3). To this end, it is convenient to 

expand the perturbation operator �
���� in terms of the spherical harmonics: 

�
���� � � ����� ����!����#$�� � %.�� � /01/2134 56�78�� 97	
:( ;�97	*****+*<:$ ( ;$=7	�!7�7�>#$��   (4) 

Here ?@ and ?A are the smallest and the greatest of r (electron coordinate) and Rj (dis-

tance between the central ion and surrounding point charges), 
:( ;� and <:$ ( ;$= are 

the spherical angular coordinates corresponding to ��� and  ���$*
B � C(D ( E�, respec-

tively. At first, it may seem that Eq. (4) does not make the calculation procedure easi-

er at all, although in fact the introduced simplifications are enormous. Although the 

summation in Eq. (4) is from F � G to F � � (thus implying an infinite number of 

terms), many terms are vanishing. First of all we note that the matrix elements from 

Eq. (3) are proportional to the following integrals from the product of three spherical 

functions 

��(��H) ) 9I4�4
:( ;�+97	
:( ;�9I���
:( ;�JKL:,:,;6>�6>                (5) 

with quantum numbers M� and M� being different in general. This integral can be ex-

pressed in terms of the Wigner 3j-symbols: 

N N 9I4	4+�6
>

6
> 97	9I�	�JKL:,;,: �


�C�	4O
�I48��
�78��
�I�8��56 PM� F M�G G GQ R M� F M���� � ��S                 (6) 

 The following conditions should be fulfilled in order to make the integral in  

Eq. (6) non-zero: i) G T F T 
M� � M��; ii) k takes only even values from the above 

specified interval. That is why, for our case of d-electrons only the values k = 0, 2, 4 

should be considered (if, for example, the atoms with f electrons are analyzed, only 

terms with k = 0, 2, 4, 6 would be non-zero). 

 Thus, the crystal field potential can be expressed in terms of the spherical har-

monics, and the coefficients of such a combination depend on the positions and 

charges of ions of crystal lattice. To summarize the above-given mathematcal deriva-

tions, we mention here that nowadays it is already a common practice to express the 
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energy levels of ions with an unfilled electron shell in a crystal field as the eigenva-

lues of the following crystal field Hamiltonian: 

U � � � VW7XW7W7�!W�IW�>                                          (7) 

where XW7 are the linear combinations of irreducible tensor operators acting on the 

angular parts of the impurity ion wave functions. 

 It is instructive to note that the second order contribution (with k = 2) vanishes if 

the surrounding ions form an ideal octahedron, tetrahedron, or cube (such a situation 

is said to represent a cubic crystal field case). However, the second order contribution 

is not zero in all other cases. Generally speaking, the maximal number of the non-

zero terms in Eq. (7) can be 14 and 27 for the d and f electrons, respectively. The 

term with k = 0 in Eq. (7) is a constant, which does not depend on the electron coor-

dinates and appears in the same manner in all matrix elements. It does not have any 

influence on the overall energy level scheme other than a simultaneous shift of all 

energy levels and, therefore, can be omitted without any lack of generality. 

 It should be pointed out that several definitions and normalizations of operators XW7 can be found in the literature [2]. To be consistent, in what follows, we shall use 

the Stevens’ normalization [3]. The VW7 entries in Eq. (7) are the crystal field parame-

ters (CFP) containing all information about the geometrical structure around impurity 

center. 

 There are two different (actually, opposite) ways of determination of the VW7 val-

ues. The first one is to extract their values from fitting the calculated energy levels to 

the experimentally deduced ones. Such a method is merely a mathematical approach; 

it is based on the non-linear least square fitting procedures. Nevertheless, in this case 

one has, first of all, to assume the symmetry of a considered impurity center to identi-

fy which CFP are not zero and are then allowed to vary freely. The final set of the 

CFP obtained as a result of the fitting procedure may be not unique, since it is always 

possible to be trapped in a local minimum for minimization, which may lead to  

a wrong crystal field parameterization and, finally, not proper description of the    

impurity ion energy levels. 

 The second method is based on a direct calculation of the CFP values using the 

crystal structure data (using as few fitting parameters as possible). Then the calcu-

lated CFP are used to diagonalize the crystal field Hamiltonian and compare the ob-

tained energy levels with the experimental spectra. This is more physically based ap-

proach, since no initial assumptions about the symmetry of an impurity center are 

needed, and the calculations start from the available crystal structure data. A small 

number of the fitting parameters allow for meaningful treatment of the symmetry  

effects on the impurity ion energy level scheme and comparison of the CFP sets for 

different ions/different crystals. One of the first methods of this kind was the super-

position model (SM) of crystal field [4, 5]. This model is based on the assumptions 

that only the nearest neighbors (ligands) determine the crystal field around an impuri-

ty ion and interaction between each ligand and impurity is axial-symmetric. The 
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number of the SM parameters is 4 for 3d ions and 6 for 4f ions. For further details of 

this model, the reader can look into many original publications [6]. 

 A further development of the SM was proposed by B.Z. Malkin [7]. He suggested 

representing the CFP VW7 as a sum of two terms: 

VW7 � VW(Y7 � VW(Z7                                                (8) 

The first contribution is due to the electrostatic interaction between optical electrons 

of an impurity ion and ions of crystal lattice (which are considered as the point 

charges located at the crystal lattice sites, without taking into account their electron 

structure), and the second one is proportional to the overlap of the wave functions of 

an impurity ion and ligands. This term takes into account all effects of the covalent 

bond formation and exchange interaction. Inclusion of these effects significantly im-

proves an agreement between the calculated and experimentally observed energy le-

vels. The expression for calculating the first contribution to the total CFP in the case 

of a 3d-ion is as follows: 

VW(Y7 � �[W7.�\?W]� -
 _̂1
`"(a"�b"_34
                                   (9) 

 The sums are carried out over lattice ions denoted by i with charges -
, c
 ( :
 ( ;
are the spherical coordinates of the i-th ion of crystal lattice in the system of 

reference centered at the impurity ion. The averaged values \?W] of p-th power of the 

impurity ion electrons coordinate can be either found in the literature, or calculated 

numerically using the corresponding ions’ wave functions. The values of the numeri-

cal factors [W7 and expressions for the polynomials �W7 can be all found in the original 

paper [7]. The second term in Eq. (8) can be calculated as follows:  

VW(Z7 � [W7.� �
�W8��d � <eZf
J�
� � egf
h�
� � iWe6f
��
�= _̂1
`"(a"�b"
        (10) 

 The overlap integrals between d-functions of the central ion and p- and  

s-functions of the ligands are denoted by fj, fg, f6 (they correspond to the following 

integrals (in the kM�lM���m notation): f
J� � k,GlJGm, f
h� � k,GlnGm,  f
o� � k,ClnCm. The ej, eg, e6 entries are dimensionless adjustable parameters of 

the model, which are determined from the positions of the first three absorption 

bands. Very often they can be assumed to be equal to each other: ej � eg =**e6 � e
(in this case only the first absorption band is required to determine the value of G), 

and in this paper we use this simplified model. The numerical factor iW in the case of 

d-electrons is i� � C and i5 � �p qr . 
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 The operators XW7 are the Stevens homogeneous spherical polynomials and are 

expressed in terms of the spherical operators sW7 � O 56�W8�9W7 (9W7 are the spherical 

functions) as follows: 

XW7 � �t_1 %W7                                                 (11) 

and %W7 are the real tesseral harmonics 

%W7 � u sW!7 � 
�C�7sW7( F v GsW7 ( F � G�K<sW!7 � 
�C�7sW7=( F w Gx                              (12) 

 As we have already mentioned, the maximum number of terms in Eq. (7) is 14 for 

d-ions, and 27 for f-ions (in this case 13 terms with p = 6 are added). However, the 

number of non-zero CFP can be reduced significantly if the symmetry of the consi-

dered complex is high enough. Thus, in the case of perfect cubic symmetry only two 

parameters survive in Eq. (7): V5> and V55 � yV5>. This significantly simplifies diago-

nalization of the crystal field Hamiltonian, which can even be done analytically in 

many cases.  

 The exchange charge model can be also successfully applied not only to the anal-

ysis of the energy levels and absorption spectra of 3d ions in crystals, but to the esti-

mations of the parameters of the electron-vibrational interaction and probabilities of 

the non-radiative transitions as well [8, 9]. The exchange charge model also has been 

successfully used for description of the spectra of rare-earth ions in crystals [10-12]. 

More examples related to 3d ions can be found in a recently published book [13]. 

Density functional theory 

 The crystal field theory, although capable of calculating impurity ions energy  

levels (as will be shown below), can not get a handle on proper description of the 

energetic band structure of solids. This can be efficiently managed by the density 

functional theory (DFT), which is a widely used branch of quantum-chemical me-

thods which is based on Hohenberg-Kohn theorems [14, 15]. 

 In a simplistic form the first theorem states that the ground state energy from the 

Schrödinger equation is a unique functional of the electron density: 

z
�� � {� 

+
��


��#
��                                      (13) 

which is expressed in terms of the one-electron wave functions 


��. The pre-

multiplier of 2 appears in front of the summation sign because of the electron’s spin. 

Another way of stating the same theorem is to say that the ground-state electron   
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density uniquely determines all properties of a ground state, including its energy and 

wave function. An essential result of this theorem is that it allows to reduce finding 

solution of the Schrödinger equation with 3N variables to simply finding a suitable 

function of three spatial variable, which describe the electron density distribution, and 

which then, by virtue of the first Hohenberg-Kohn theorem, will provide exact      

description of the system’s ground state. 

 At the same time, the first Hohenberg-Kohn theorem postulating existence of the 

electron density functional says nothing about what this functional looks like. This is 

the second Hohenberg-Kohn theorem, which gives a key to the choice of the electron 

density functional: the electron density that minimizes the energy of the overall    

functional is the true electron density corresponding to the full solution of the 

Schrödinger equation.  

 If the „true” functional were known, the electron density could be varied until 

reaching the energy minimum. This variational principle forms the key stone of     

application of these two theorems. The energy functional can be written as: 

�|

} � �7�~��|

} � ���|

}                                (14) 

where 

is the one-electron wave function, the first term in the right-hand side 

represents all “known” terms containing the kinetic and potential energies of all elec-

trons and nuclei in the considered system, and all everything else is hidden in the 

second term of the right-hand side, also known as the exchange-correlation function-

al.  

 Kohn and Sham have shown that the right electron density can be found by solv-

ing a set of the one-electron equations, each of which involves only one electron and 

is very similar to the Schrödinger equation: 

�� ���	
� � �
�� � ��
�� � ���
���


�� � �



��               (15) 

with: 

��
�� � .� ) �
���l�!��l,���                                       (16) 

being the Hartree potential. It describes the Coulomb repulsion between that electron 

which is considered in one of the Kohn-Sham equations and the total electron density 

defined by all electrons in the system. It also incorporates the so-called self-

interaction, because the considered electron also contributes to the formation of the 

total electron density. Therefore, it describes, in other words, the Coulomb interaction 

between the electron and itself, which is an unphysical interaction, of course. The 

correction for such an unphysical interaction is also included into the exchange-

correlation potential ���
��, which is defined as the functional derivative of the    

exchange-correlation energy: 
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���
�� � ����
����
��                                              (17)

 Here the functional derivative (which, strictly speaking, is not equal to the func-

tions’s derivative) is shown by symbol �. 

 It can be seen that the electron density z
�� enters the Hartree potential. At the 

same time, it is a key-variable to determine the exchange-correlation potential ���
��. To find an exit from this locked circle, the following algorithm is applied: 

1) An initial (trial) electron density z
�� is defined. It can be a “good guess” or an 

already known density for a similar system. 

2) The Kohn-Sham equations are solved with this trial density to find the single-

electron wave functions 


��. 
3) The electron density z
�� is calculated with those 


��.   
4) The calculated in step 3 electron density is compared with that one used in step 

1. If these two densities are identical, the ground state electron density is found 

and it can be used to calculate the total energy of a system etc. If these two 

densities are different, than the trial density should be updated and the whole 

procedure is repeated until the difference between the two electron densities 

from two consecutive iteration procedures will not exceed an earlier chosen 

accuracy limit. 

After we have “set the stage” by having shortly described the basic foundations of the 

crystal field theory and DFT, we continue with several examples of application of 

these calculating techniques to some real physical systems. 

Example of application of the exchange charge model: Mn
5+

 ions in Li3PO4, 

Ca2PO4Cl and Sr5(PO4)3Cl crystals 

 Crystals doped with transition metal ions having 3d
2
 external electronic configu-

ration, V
3+

, Cr
4+

, Mn
5+

, Fe
6+

, etc., are of interest for applications as solid-state laser 

active media [13]. These ions usually lie in sites having tetrahedral oxygen coordina-

tion either with low (V
3+

, Cr
4+

) or strong (Mn
5+

, Fe
6+

) crystal field. In the former case 

the broadband emission from the 
3
T2 state in the near infrared spectral region is     

attractive for tunable laser application, whereas in the latter the emission from the 
1
E 

level consists mainly of a sharp feature suitable for laser action only in some favour-

able host lattices. The analysis of the energy level structure of these dopants in suit-

able hosts is then important in order to assess their perspective applications. In this 

section we show how the exchange charge model can be applied to the comparative 

analysis of the low temperature absorption spectra of the Mn
5+

 ion in Li3PO4, 

Ca2PO4Cl and Sr5(PO4)3Cl crystals [16]. Using the exchange charge model, as       

described in section 2, we calculated the crystal field parameters acting on the Mn
5+

ions in all chosen hosts and the Mn
5+

 energy levels, which were compared with the 

experimental absorption spectra shown in Figs. 1-3.  
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 The main message which can be taken from Figs. 1-3 is that all peaks in the expe-

rimental absorption spectra (solid lines) can be given an exact assignment in terms of 

the Mn
5+

 energy levels split in the tetrahedral crystal field. All notations in the figures 

are standard ones in the crystal field theory and are based on the irreducible represen-

tations of the Td point group. Without going into fine details of the performed calcu-

lations, we note that the experimentally observed maxima of absorption are in very 

good agreement with the calculated Mn
5+

 energy levels. Moreover, the structure of 

the absorption peaks is perfectly accounted for by the low-symmetry splitting of the 

orbitally degenerated states of manganese ions. Comparison of the calculated split-

tings of the 
3
T1 states at about 16000-18000 cm

-1
 allowed to find the following trend 

of symmetry lowering of the MnO4 units: Li3PO4 (highest symmetry − smallest split-

ting) � Sr5(PO4)3Cl (intermediate case − intermediate splitting) � Ca2PO4Cl (lowest 

symmetry − highest splitting). Such a behavior was found to be in line with increase 

of the second rank crystal field invariants in the same direction. The performed calcu-

lations together with low-temperature spectroscopic studies of these three materials 

helped remove some earlier existing ambiguities in interpretation of their optical 

spectra [16]. 

Fig. 1. 10 K unpolarized absorption spectrum of Li3PO4:Mn
5+

. The calculated Mn
5+ 

energy  

levels are shown by vertical lines. 

Li3PO4:Mn
5+
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Fig. 2. 10 K polarized absorption spectrum of Sr5(PO4)3Cl:Mn
5+

. The calculated Mn
5+ 

energy  

levels are represented as vertical lines. 

Fig. 3. 10 K polarized absorption spectrum of Ca2PO4Cl:Mn
5+

. The calculated Mn
5+ 

energy  

levels are shown by vertical lines. 

Sr5(PO4)3Cl:Mn
5+

Ca2PO4Cl:Mn
5+
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Example of ab initio analysis of the optical and elastic properties of crystals: 

ZnWO4, CdWO4 and transition metal monocarbides 

 First-principles calculations of the structural, electronic, optical and elastic prop-

erties of crystals become now an indispensable tool for search for new materials and 

careful explanation of the properties of already existing ones.  

 In particular, recently we have studied in details two technologically important 

crystals − CdWO4 and ZnWO4 − which are used as scintillator materials [17]. The 

calculations were performed using the CASTEP module [18] of the Materials Studio 

package; all the necessary details can be found in the above-cited paper. As an illu-

stration of the obtained results, we show here the calculated band structures of both 

materials (Fig. 4), obtained by employing the general gradient approximation (GGA) 

and local density approximation (LDA). 

 As seen from Fig. 2, electronic states exhibit considerable dispersion, to a larger 

extent in the conduction band (CB) and to a smaller extent in the valence band (VB), 

which is indicative of significant anisotropy of the effective masses of the charge car-

riers (and thus electric conductivity) in both crystals along various directions in the  

k-space. The lowest part of the CB in CdWO4 consists of the tungsten 5d, whereas 

the cadmium 5s states contribute to its upper part. The oxygen 2p states are mixed 

with the Cd and W states and thus can be also seen in the CB. The lowest part of the 

VB is composed of the well-localized Cd 4d states. The W 5d and O 2p states form 

the top part of the VB.  

 In ZnWO4 the CB displays two clearly separated sub-bands. The lower one (from 

~ 5 to 6 eV) is basically due to the W 5d states, while the upper one (from 7 to 11 eV) 

is formed by the Zn 4s states. A small contribution originating from the O 2p states 

hybridized with the metal states can be also traced down in the CB. The Zn 3d states 

are spread over the whole VB, with a well-pronounced maximum at about -5 eV. The 

oxygen 2p states form the upper part of the VB along with the W 5d states slightly 

contributing to the VB due to the hybridization effects.  

 An experimental verification of the calculated electronic structure comes from the 

X-ray photoelectron spectroscopy (XPS). Fig. 5 shows the comparison between the 

theoretical DOS diagrams obtained in the present work and experimental XPS spectra 

[19]. 

 The low-energy XPS peak at about 1 eV in Fig. 5 is mainly due to the O 2p states 

in both crystals. A minor contribution of the Zn 3d states to this peak is noticeable in 

ZnWO4, while the contribution the Cd 4d states at this energy is substantially smaller 

in CdWO4. The contributions of the W 5d states applied only to the lowest XPS 

peaks and were considered practically identical for CdWO4 and ZnWO4 [19].     

However, they are different in our case. The presence of the W 5d states in the lowest 

XPS peak is non-negligible in CdWO4, whereas in ZnWO4, they mainly contribute to 

the second XPS peak at about 5 eV. This second, most intensive peak located at about  

6 eV in CdWO4 and 5 eV in ZnWO4 is mainly due to the Cd 4d (Zn 3d) states,       

respectively. 



Mikhail G. Brik

18 

 The third experimental XPS peak at about 16-17 eV is basically due to the oxy-

gen 2s states, with a smaller but still distinct contribution from the W 5d states due to 

the hybridization of the latter with the O states. So, these calculations of electronic 

properties allowed to explain completely the experimental XPS spectra. 

Fig. 4. Band structures calculated for CdWO4 (a) and ZnWO4 (b). The LDA and GGA results  

are shown by the solid and dashed lines, respectively. 
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Fig. 5. Comparison of experimental XPS spectra [19] and partial density of states (DOS)  

diagrams for CdWO4 and ZnWO4. 



Mikhail G. Brik

20 

Fig. 6. Directional dependence of the Young’s moduli for ScN, TiN, VN, CrN, ZrN and NbN. The 

GGA results were used for plotting all surfaces and cross-sections. The axes units are GPa. 

 Another important application of the ab initio calculations is an analysis of the 

elastic properties of solids. As an illustration of such consideration, we show in Fig. 6 

the three-dimensional visualisation of the Young’s moduli in six transition metal 

monocarbides: TiC, VC, CrC, NbC, MoC, and HfC [20]. These materials have 

unique combination of high hardness, high melting point and conductivity, which 

makes them to be suitable for many technological applications, i.e. coating, corrosion 

resistance on machine tooling etc. The meaning of these figures is as follows: the   

distance from the center of those figures to the surface is equal to the Young’s 

modulus along a chosen direction in a crystal lattice. 
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 The main conclusion which can be drawn up from the shown figures is as        

follows: all compounds are elastically anisotropic; in other words, they react in dif-

ferent ways to the stresses applied along different directions. In particular, CrC exhi-

bits remarkable anisotropy: it is a very hard material if the stress is applied along the 

crystallographic axis, and turns out to be fragile if the stress is applied along any oth-

er direction. Such a circumstance undoubtedly imposes certain limitations to the use 

of CrC as a coating material, for example, or as a part of machines and rotating tools. 

Combination of semi-empirical and ab initio methods of analysis of optical 

properties of doped crystals: ZnAl2S4:Co
2+

 crystals 

 ZnAl2S4 is a „classical” representative of a large group of spinel crystals. Its 

structure is such that it can be easily doped with transition metal ions. In particular, 

Co
2+

 ions can occupy the Zn
2+

 sites, surrounded by four sulfur ions. 

 We performed a combined analysis (employing the exchange charge model of 

crystal field and CASTEP module of Materials Studio) of the spectroscopic proper-

ties of ZnAl2S4:Co
2+

 [21]. The main results of these studies are summarized in Figs. 7 

and 8. 

 As Fig. 7 shows, the CASTEP calculated absorption spectrum reproduces well 

the basic features of the experimental spectrum. In addition, the calculated (using the 

exchange charge model) energy levels of trivalent vanadium are in very good agree-

ment with positions of the experimental absorption bands maxima.  

Fig. 7. Comparison between the experimental (solid line), ab initio calculated (dashed line)  

absorption spectra of ZnAl2S4:Co
2+

 and calculated (crystal field theory, vertical lines)  

energy levels of Co
2+

. 
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Fig. 8. The calculated band structure of ZnAl2S4 with superimposed energy levels of Co
2+

 ions. 

 Finally, combination of the ab initio calculated electronic structure with the re-

sults of the vanadium energy levels calculations allows to draw the complete energy 

level structure of ZnAl2S4:Co
2+

 (Fig. 8), which includes the host’s band structure and 

impurity energy levels superimposed onto it. The key result here is that the position 

of the lowest energy level of Co
2+ 

impurity in the ZnAl2S4 band gap was established 

to be located at about 0.5 eV above the top of the valence band. 

Conclusions 

 We have shown several examples of how the semi-empirical crystal field analy-

sis, based on the exchange charge model of crystal field, and DFT-based first prin-

ciples calculations of the structural, electronic, optical and elastic properties can be 

combined together to gain a complementary picture of the physical properties of crys-

tals doped with the transition metal and rare earth ions. An interested reader is kindly 

advised to read the articles cited in the list of references. 
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