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1. Introduction

The vital significance for development of Greek mathematics lied in the
idea of an inner similarity — self-reconstruction and self-duplication of
a given structures. That way the idea of symmetry was born which was
understood by Greeks as a conformity between parts and wholeness
as well as between individual parts of wholeness.

Consequently, the idea of similarity is a particular case of the idea
of symmetry. Idea of similarity shows invariance of some elements
(e.g. the ratio of suitable similar polygon sides) under some kind of
transformations. Transformations of space in itself, which preserve its
internal structure, are named automorphisms. Hence, this is symmet-
rical (as a part of a space) what is preserved by automorphisms of
the space. Leibniz expressed this thought in philosophical way saying
that such two things are symmetrical which we can not diverse when
we consider them in itself.

Consider the case of the Pythagorean School. Its vital point was
the concept of harmony. We can recognize and create it thanks to num-
bers and number ratios. The most important aspects of this harmony
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are: cosmos, analogy, symmetry, eurhythmy, musical harmony and
love. Harmony then plays a role of arche and discovered mathematics
shows how this world emerged from this harmony. By mathematics
we can notice a “unity” between finiteness and infiniteness

Look now at the “golden section” which is the central issue of
Pythagorean mathematics.

a—l—b_g
a b

(20)

It was treated as the most perfect kind of harmony. It appoints
at special kind of symmetry which can be often found among the
living nature. For this reason the Pythagoreans as a symbol of their
association adopted a pentagram which was for them a symbol of
health and perfect harmony.

Let us introduce the following notation ¢ = 3 and p = ol = 2
By the fixed proportion we obtain the next formulas: ¢? = ¢ + 1
and p? = 1 — p. These formulas allow us to calculate quantities ¢ =
@ and p = % Moreover, we obtain recurrence formulas (by
multiplying these formulas by ¢ and p", respectively):

¢n+2 — gbn—i-l 4 ¢n (21)
and

n-+2 n n—&—l. (22)

Let {u,} denote the Fibonacci sequence, i.e. a recursively defined
sequence as follows:

up = up = 1; (4)

Upyo = Upy1 + Up. (5)

Greeks didn’t notice a symmetry which lied in infiniteness. As we know, an
infinite set is characterized by existing some proper subset which is equinumerous
to this whole set. This definition is a realization of the property of inner similarity,
i.e. symmetry. In according to Greeks symmetry denotes absolute order and har-
mony, hence, it should remove, common in that time, the problem of consideration
of infinity and chaos as equivalent.
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It means that we obtain the following number sequence 1,1,2,3,5,8,13, ...,
this is that each next element of the sequence is the sum of the two
immediate preceding elements.

Notice that

Unp,
lim = p. 6
Up+1 g ( )
In order to prove it is sufficient to divide Eq. (5) by u,y1. We

obtain then =#*2 = 1 4 -f=— Denote lim -*=— by 7. If n — oo, then
n+1 Un+1 Un+1

we have % = 1+ r. The number p is the only positive number which
fulfils this equation, thus r = p.

The following relationships are true as well:

" = Punsr + un (7)

and
PP = (=) (g — pinga). (8)

Let us carry out an inductive proof of the property (7). Trueness
of this formula for n = 1, i.e. the formula ¢? = ¢ + 1, is caused by
formula (2). Assume that for some n we have ¢"™! = du, 1 + u,.
On the basis of formula (2) and the inductive assumption we obtain
0™ = GG = $( D1 +tn) = i1 + Gt = (S Vttny1 + Sutp =
PUp g1 + Uns1 + PUp = G(Upy1 + Up) + Unp1 = PUpio + Upqr. The last
equality is obtained on the basis of the property (5).

That has finished the proof of the property (7). These properties
demonstrate the direct relationship between Fibonacci sequence and
the geometric sequence ¢". The golden number ¢ is the quotient of
this sequence which is created recursively by Fibonacci sequence [6].

The number ¢ appears in many surprising situations. Pythagore-
ans and their successors had relish for tracing this number in various
arrangements and relationships. The most known is that the ratio of
a diagonal of a regular pentagon to its side is equal to ¢, and diag-
onals intersect at points of the golden section of each of diagonals.
Consequently, the points of diagonal intersection create in the pen-
tagon the smaller one. We can repeat this procedure to infinity. The
Pythagorean, being fascinating of this relationship, chose the penta-
gram (i.e. Pythagorean star) as theirs emblem.

It is interesting to notice how different philosophical systems take
basic intuitions from the properties of the pentagon, e.g. Plato’s cos-
mology is based on the analysis of Pentad — the number of love, perfect
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unification, beauty and fertility. It is condensed image of Decade (the
half of it) which is the most perfect number expressing the whole Cos-
mos. Moreover, it is the sum of Dyad (feminine number) and Triad
(male number). Then, it is a microcosmos, expresses the nature of
human being, and Pentagram is its graphic image.

If we then inscribe a regular decagon within a circle, then the ratio
of the radius to the side equals ¢.

We examine a triangle ABO, whereas O is the center of the circle
and A i B are the successive vertices of the regular decagon inscribed
within this circle. It is a isosceles triangle with the vertical angle
equal to 36°. From the point B we draw an arc with a radius a, which
intersects the side OA at a point D;. As a result we obtain a triangle
ABD; which is similar to the triangle ABO. It is easily to check that
=2 = & hence a*> = R(R — a). It is the golden proportion defining
the number ¢.

If we draw from the point D; an arc having now R — a as its
radius, then this arc intersects the interval AB at a point Dy and
we obtain again a triangle ADyD; similar to the triangle ABO. We
can continue this process to infinity and hence we receive an infinite
sequence of successive inscribed within itself similar triangles that have
a common vertex A. Thus, we obtain a "self-reproducing" structure
in the triangle ABO. It is an example of an ideal symmetry obtained
in the triangle ABO. We can say that this symmetry causes the gold
section.

Pay attention to still one more intriguing property of the golden
number. Let p, p?, p?, ... be a sequence of numbers on the interval [0; 1].
We obtain a sequence of intervals

L= [p% 0], I = [p% 0%, o Ly = [0 0771,
which have the following property

Ll  p=p
p|2n_|2 =T =ol=p)=pp’=7", (9)

i.e. the ratio of intervals lengths I, to intervals lengths [0; p*"~?] is

steady and equal to p3. Intervals I, are situated symmetrically on in-
tervals [0; p>"~2], respectively. Moreover, lengths of intervals I,, create
a decreasing geometrical sequence with the quotient p?.

Notice that in the case of the classic Cantor set the number 2 is

3
its “generato”; what we mean in the following sense. We take a point
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symmetrical to the point 2 relative to the middle of [0;1] (this sym-

metrical point is 1). Then we throw away the inside of the interval

[%; %] In the next 3step we proceed the same with two remained inter-
vals. This procedure is continued to infinity and the rest determines
the Cantor set (it is compact, dense in itself, uncountable and has
measure zero).

Analogically, each number of the open interval (%, 1) can be treated
as a generator of some Cantor set. The measure of this set does not
have to be zero, e.g. for the generator 0.6 = g this measure is equal
to 2.

Let ¢ denote a function which for every number from the inter-
val [3;1] assigns to the measure of a set generated by this number
in according to the procedure described above. Obviously, ¢ is an
increasing function and, for instance, ¢(1) =1, p(2) = 2, (5) = 0.

Notice that in the case of the analyzed number p, which determines
the golden section, we have:

06 <p< % (10)
and
o) = 0. (11)
p is he smallest number for which the function ¢
takes the value 0. (12)

Proof of the property (11).

On the successive steps of creating the Cantor set by means of the
number p we throw out intervals of the lengths:

L = p—p*=p(1 = p) = pp* = p*

21| =2(p* = p') = 2p°(1 - p) = 2p°p* = 2p”;

20| = 2" (pP T = ) = 20 P (L - p) = 20 PP =
2n=1p2ntl ete.

The sum S of these intervals come to:

S=) 2 =Cp) [2007) = 0p ) [20°)" =
2p? 1 2p° B
Pl oo, — o1 o2~

_ 1
2
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1 2p° 1 2p° 1 2p°
= P = p—— = op—5 = L.
20p—p* 2p(1—p) 27 p

This finishes the proof of the property (11).

Proof of the property (12)

For a fixed & > 5,k € N the number p>*~! — p¥ generates some
Cantor set. Let J;,, denotes an sequence of intervals

[(p— """V (0% + p) " D] = [ + pFy 71 = .
Hence,

|‘]/€,n = (p _ pk‘)p2(n—1) _ (p2 + pk;)pg(n_l) _

p2n71 . p2n72+k _ p2n . p2n72+k — p2n71(1 . p> . 2p2n72+k _

an—l—l . 2p2n—2+/€ _ an(p . 2pk—2>‘

And then the sum of lengths of all throwing out intervals, during
the construction of the Cantor set Cj,, comes to 1 — 2p*~3, hecause

D el =D 270 (0= 2072 = (p— 2057 Y 2" '™ =

;(p — 207 Y 2t = ;(p —20"7%) ) l(2%)" =

1 2 rho? 1 207 1 2
S P20 ) = (0= 2 )T = G2 ) = 12
Thus, we obtain that the measure of the Cantor set C} is equal
to 2p" 3. If k — oo, then |Cy| — 0. This also means that for none
number x < p the measure of the Cantor set generated by z can be
equal to zero.

The “maximal” Cantor set of measure zero generated by the num-
ber p can be named as “the golden Cantor set”.
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2. Symmetry and the concept of group

Hermann Weyl [13| presumed that every symmetry is connected to
some group of transformations. For example, symmetry of a system
referring to invariance of passing from one Cartesian system of coor-
dinates to another is connected with a certain group of space trans-
formations, whereas symmetry of a space which is drawn out from
undistinguishing of a given system elements (e.g. the set of locations
of a given particle) is connected with a group of permutations.

As we noticed before, transformations of a space in itself which
preserve its inner structure, are named automorphisms. Symmetry
then is connected to invariants of certain automorphisms which form
a group of transformations. Consequently, elements preserved by a
group of transformations are undistinguishable.

Thus, in Euclidean geometry we treat these figures, which we can
transform on each other by means of isometry, as identical. For ex-
ample, undistinguishable are intervals which have the same length
or circles of the same radius. Because all isometries form a group
of transformations, so we can treat the Euclidean geometry as some
structure based on a group of isometry and investigating invariants of
this group. From this observation Felix Klein drew out his proposition
to classify diverse geometries on the basis of transformations groups
and theirs invariants.

Notice that the geometrical space of the Newton mechanic is affinic
space and the invariants are inertial movements preserved by the
Galilean transformations [9].

We can say that groups are such tools which recognize symmetrical
structures. In the case of the golden section we can find suitable group
pointed at some hidden algebraical symmetry as follows.

Notice that the roots of the equation

(22 -1 -2 =0

are numbers p, —p, ¢, —¢. On the set of these roots we can define a
group of automorphisms G = {Id, f,, f,}, where Id is an identically
function, while f,(z) = —z and f,(z) = 2. Because % = ¢, it is a
permutations group of the above equation roots.

The structure {G,x*,e} is a group, if: 1. Aa,b € Glaxb € G); 2. Na €
G\ a'e€Gsuchthat axa ' =a"'*xa=e;3. \a€ Glaxe=e*a=a), where
e is named the neutral element of the group.
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3. Symmetry in the case of topological
manifolds

Notice that maps f, and f, are involutions, i.e.f> = Id and f? = Id. Tt
is not accidental because involution play essential role in investigation
and recognizing of symmetry. Both rotational symmetry and reflec-
tion symmetry (or other kinds of symmetries) are defined by suitable
involutions. Obviously, involution together with the identity form a
group of transformations.

In 1939 P.A. Smith showed ( [11], s. 707-711) that the set of fixed
points of a continuous involution defined on a sphere S™ is a sphere
of dimension & < n, where n < 3. In the case of the sphere S® we
have then four possible types of involutions, where the sets of fixed
points are respectively: spheres S? 5% S (a pair of points) and S1
(the empty set). It agrees with intuition that sphere symmetries are
reduced to mirror symmetries (i.e. plane, axis and centre symmetry).
In the case of spheres of dimension n > 3 some weaker theorem, saying
the set of fixed points of involution creates a homological sphere of
lower dimension, is true in Smith-Wilder sense ([11], [2] and [5]).

Analogical theorem is true for n-dimensional balls, n < 4, because
involutions are homeomorphisms, so they transform the boundary of
a ball in its boundary and interior in interior.

This perfect symmetry of balls and spheres (little weaker in the
case of spheres of dimension n > 3) can be partly found in the instance
of arbitrary topological manifolds. In 1930 M.H.A. Newman proved
the following

Newman’s theorem. The set of fixed points of a continuous, non
identity involution defined on a connected metric topological manifold
is nowhere dense [10].

It means that a subset of manifold, in which we could not “recog-
nize” any symmetry, is very “small”.

A homological manifold is a space X, which realizes the following properties:
(i) X is an Euclidean neighborhood retract.
(ii) The singular homology group H;(X, X — {x};Z) is isomorphic to the group

H;(R",R" —{0};Z).

An n-dimensional topological manifold is called a topological space being lo-
cally Euclidean n-dimensional space, i.e. for every neighborhood U there exists a
compact n-dimensional ball included in the set U.
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Therefore, the topological spaces possessing the property expressed
by Newman theorem can be called “symmetrical”. This property is
named as the Newman property, i.e. a space X has the Newman
property if the set of fixed points of any continuous, non-identity
involution on X has empty interior.

Thus, connected manifolds have the Newman property [10].

We can consider the Newman property in a topological space lo-
cally. It allows us to see “local symmetries”, which often lead to “whole-
ness’ symmetry.

A point z is a Newman point([3|, p. 1272) if for each neighbor-
hood V of x and for any continuous involution 1) on V' the point x is
not an accumulation point of the interior of the set of fixed points of
1 as well as of its complement; in other words,

rdmtSNV _29), (13)

where S is the set of fixed points of the mentioned involution.

Since manifolds are locally connected and any subregion of a man-
ifold is a connected manifold, we infer that each point of a manifold
is the Newman one.

Theorem 1. FEach point of a topological manifold is a Newman
point.

Proof. Assume in contrary that z is not a Newman point. Let ¢ :
V' — V be a continuous involution defined in some neighbourhood of
x such that the point z is the concentration point of identity-points set
interior and its complement. Because manifolds are locally connected,
so there is open connected neighbourhood U C V of x. Obviously,
U has a common part with interior of identity involutions. Because
pxr = x, so the set W = U U ¢(U) is connected. By continuity of
the involution ¢ we can choose the set U so small that 1 is included
in a suitable Euclidean sphere. Thus, ¢ is a continuous non-identity
involution defined on manifold W and the interior of fixed-points set
of this involution is non-empty. It is contrary to Newman’s theorem.

Later P. A. Smith [12] extended the Newman theorem to homo-
logical connected manifolds. The reasoning similar to the one before
implies that each point of a homological manifold is the Newman one
(cf. Cernavskii [4]). Hence, we have
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Theorem 2. If each point of a connected space X is a Newman
point then the space X has the Newman property.

Proof. Assume that X does not have the Newman property.
Thus, there is a continuous non-identity involution ¢ on X such that
the set of fixed points S of ¥ has non-empty interior. Fix a point x
which belongs to the boundary of the interior of fixed points of the
involution ¢. Take any neighbourhood U of x. The involution % is an
involution on the set V' = U N (U) which is a neighbourhood of x.

Since the set of non-fixed points is dense in X — int S, the point
x lies in the closure of non-identity points of 1; moreover, the point x
lies in the closure of the set int.S. Hence, the point x is not a Newman
point. m

Remark. The converse theorem is not true.

Example. The topological sinusoid F = {(z,sin 1);2 € (0,1]} U
{(0,y);y € [-1,1],2 = 0} has the Newman property, however points
of the interval {(x,y);y € [-1,1],z = 0} are not Newman points.

There exist continua such that all their points are the Newman
ones although they are not homological manifolds. Sierpinski universal
plane curve is an example.

It wiil mean that this curve has “full” inner symmetry like topo-
logical manifolds.

3.1. Involutions on Sierpinski universal curve

Let S be Sierpinski universal curve, i.e. a curve which is constructed
of topological disc R by removing the interiors of mutually disjoint
topological discs that are contained in the interior of R. These discs
must densely fill the disc R. Whyburn [15] showed that continua
defined in this way are homeomorphic with one another, particularly
with Sierpinski curve constructed of a plane square in the known way.
We can assume that boundaries of the components of the complement
of S in a plane are mutually disjoint sircles (call this circles boundary
circles of S). In Sierpinski curve one can mark off two kinds of points:

1. Rational points, i.e. points belonging to boundary circles of S.

2. Irrational points, i.e. remaining points of S.
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Krasinkiewicz |7] proved that homeomorphism of S on itself maps
rational points of S on rational points and irrational points on irra-
tional points. The method of the proof of this theorem is adapted in
the reasoning in the following lemmas.

Lemma 1. Ifh: U — U s a homeomorphism of a region of Sier-
pinski curve S then boundary circles of S contained in U are mapped
on boundary circles of S.

Proof. Let Z be a boundary circle of S contained in U. The set
h(Z) is a simple closed curve in a plane. The curve h(Z) separetes the
plane R? into two regions Ry i Ry and is their common boundary (by
Jordan’s theorem).

Note that h(Z) is a boundary circle of S because, on the contrary,
UNR; # 0 # UNR,. But this contradicts the facts that the property
of separating is topological invariant and boundary circles not separate

S . m

Lemma 2. 1. For any irrational point of S there exist arbitrary
small connected neighbourhoods of this point not containing rational
points on its boundary.

2. For any rational point x there exist arbitrary small connected
neighbourhoods of this point not containing rational points on its bound-
ary except the points of the boundary circle containing x.

Proof. Let x € S and let V' be any neighbourhood of x.

1. Assume that x is an irrational point of S.

Make the following (upper semi-continuous) decomposition of S.
The elements of it are boundary circles being the boundaries of the
bounded components of the complement of S in the plane and the
points of the unbounded component and all the irrational points of S.

We present the hyperspace K which is topologically equivalent to
a closed plane disc (by the Moore theorem [8|). The natural mapping
F : S — K is continuous and monotonic. Since the boundary circles
of S is countable number, so a disc K contains only countable number
of the points being the images (by the mapping F') of the rational
points of S. The number of different circles of the radius less then the
fix radius r and with the fix centre is uncountable. Hence there exists
circles (contained in K) with the centre at the point y = F(z) and an
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arbitrary small radius. These circles do not contain the points being
the images of the rational points. In the middle of them there exists
a circle T such that F'~(T') is contained in V. Since the (continuous)
mapping F' restricted to the set of the irrational points is the identity,
so F~1(T) is a simple closed curve contained in S. Let W denote the
geometric interior of the curve F~1(T). The set W is a region of S
containing the point x. Its boundary does not contain the rational
points of S.

2. If x is a rational point of S, then consider the following (upper
semi-continuous) decomposition of S: The elements of it are bound-
ary circles being the boundaries of the bounded components of the
complement of S in a plane except the circle T}, including the points
x and other points of S.

We present the hyperspace K which is topologically equivalent to
a circular plane ring (by the Moore theorem [8]). The natural mapping
F: S — K is continuous and monotonic.

The point y = F(x) is a point of the boundary of K. Let L
be an arc lying in the image of the boundary circle T, and let y lie
in the interior of L. There exists an uncountable number of circles
that centres lie at the bounded component of the complement of the
ring K in the plane. These circles include the ends of L and do not
include the images of rational points except the ends of the arc L (the
argumentation is similar as in the first part of the proof). Among them
there exists a circle T such that Ty = F~'((T'N K) U L) is included in
V. Since the (continuous) mapping F' restricted to the sum of the set
of irrational points of S and the set T}, is the identity, so T} is simple
bounded curve in the curve S.

The simple closed curve T does not contain the other rational
points of S except the points of the boundary circle containing x .
The common part W of the geometric interior of Ty and S is a region

of S. m

Theorem 3. Fach point of the Sierpiniski plane universal curve
s the Newman one.

Proof. Take an arbitrary point € S in the Sierpiriski universal
curve S. Assume on the contrary that x is not Newman. Thus there
exists a neighbourhood V' of x and a continuous involution ¢ on V'
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that satisfy the condition

reint ZN(V—-2), (14)

where Z is the set of the fixed points of the mentioned involution.

Since the curve S is locally connected, we may assume that the
neighbourhood V' is connected.

Consider two cases:

1. The point z is an irrational point of S. By lemma 2 (part 1)
there exists connected neighbourhood W of x contained in V' together
with its closure which does not contain the rational points of S on its
boundary. So, all the boundary circles of S either are contained in
W or are disjointed with this set. Moreover, the involution ¢ maps
boundary circles contained in W onto boundary circles.

Each point y of a disc can be uniquely represented as a convex
combination y = tyo + (1 — t)y1,0 < t < 1, of the centre y, of the disc
and the point y; on its boundary. Let C' be an arbitrary boundary
circle of S contained in W. Extend ¢|W from the circle C' to the
involution ¢* defined on the disc Q¢ (the circle C' is the boundary of
Qc) in the following way: If y € Q¢, then ¢*(y) =ty + (1 — t)p(y1),
where y; is the centre of the circle ¢(C).

In this way we give an imbedding ¢*W* — R? defined on the
region W* of the plane such that W* NS = W. Note that ¢* is the
identity on these discs and that the function ¢ is the identity on the
boundaries of them; there exist discs such that the function ¢* is not
the identity on them too. Consider the set U* = W* U ¢*(W*). The
set U* is the region of a plane (by the Brouwer property of a plane)
and ¢* is an involution on it.

If we assume that the set of fixed points of the involution ¢ on V'
has non-empty interior, then the set of fixed points of the involution ¢*
extended to W* has non-empty interior too; but by Newman theorem
it is impossible.

2. Let z be a rational point of S. By lemma 2 (part 2) there exists
connected neighbourhood W of z contained in V' together with its
closure which does not contain the rational points of .S on its boundary
except the points of the boundary circle T, containing x. So, the
boundary of the set W, = W \ T,, being a region of S, consists of
irrational points of S.
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So, all the boundary circles of S either are contained in W; or are
disjointed with this set. Moreover (by lemma 1) the involution ¢ maps
boundary circles contained in W; onto boundary circles.

Analogically, as at first part of the proof, we extend the function
©|W; to function ¢* defined on the region W of a plane. In this
way we give an imbedding ¢*W; — R? defined on the region W} of
the plane such that W NS = W;. Note that ¢ is the identity on
these discs and that the function ¢ is the identity on the boundaries
of them; there exist discs such that the function ¢* is not the identity
on them too. Consider the set U* = W U o*(W}). The set U* is the
region of a plane (by the Brouwer property of a plane) and ¢* is an
involution on it.

The point x lies in the interior of W and is a condensation point
of the interior of the fixed points as well as of the non-fixed points of
@. Since the set T, is boundary in the curve S, so Wiy Nint Z # () #
WiN(V\ Z). Hence can see that involution ¢* (defined on the region
Wi U @*(W7) of the plane) is non-identity involution and the set of
the fixed points of its has the non-empty interior. But this contradicts
the Newman theorem.

Note that points of Menger spatial curve are not Newman (it is
followed from Anderson characterization theorem of Menger spatial
curve)|1].
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