PROBLEM OF THE EXISTENCE OF ω^* -PRIMITIVES

Stanisław Kowalczyk

Institute of Mathematics, Academia Pomeraniensis ul. Arciszewskiego 22b, 76-200 Słupsk, Poland e-mail: stkowalcz@onet.eu

Abstract. If (X, ϱ) is a dense in itself metric space and $f: X \to \mathbb{R}$, then we define $\omega^*(f, x) = \inf_{r>0} \sup_{y,z \in \mathbf{B}(x,r) \setminus \{x\}} |f(y) - f(z)|$. We say that a function $F: X \to \mathbb{R}$ is an ω^* - primitive for $f: X \to \mathbb{R}$ if $\omega^*(F, \cdot) = f$. We discuss problem of the existence of ω^* -primitives for an arbitrary upper semicontinuous function $f: X \to [0, \infty)$ defined on a dense in itself metric space. At the end we show that if an upper semicontinuous function $f: X \to [0, \infty)$ is defined on a nonmetrizable topological space, then ω^* -primitive may not exists.

Let (X, ϱ) be a metric space, $\mathbf{B}(x, r)$ is an open ball with center x and radius r and let $f \colon X \to \mathbb{R}$ be any function. Then we may define an oscillation of the function f as:

$$\omega(f, x) = \inf_{r > 0} \sup_{y, z \in \mathbf{B}(x, r)} |f(y) - f(z)|.$$

It is well known that $\omega(f,\cdot): X \to [0,+\infty]$ is an upper semicontinuous function vanishing at isolated points of X. There were investigate the following problem.

Problem 1. Let $f: X \to [0, +\infty]$ be any upper semicontinuous function vanishing at isolated points of X. Does there exists a function $F: X \to \mathbb{R}$ such that $\omega(F, \cdot) = f$?

Positive answer was given by profesor J. Ewert and profesor S. Ponomarev:

Theorem 7 ([?]). Let (X, ϱ) be an arbitrary metric space. For every upper semicontinuous function $f: X \to [0, +\infty]$ vanishing at isolated points of X there exists a function $F: X \to \mathbb{R}$ such that $\omega(F, \cdot) = f$.

In the paper we consider similar problem. Let (X, ϱ) be a dense in itself metric space and let $f: X \to \mathbb{R}$ be any function. Then we may define a function $\omega^*(f, \cdot): X \to [0, +\infty]$,

$$\omega^*(f, x) = \inf_{r > 0} \sup_{y, z \in \mathbf{B}(x, r) \setminus \{x\}} |f(y) - f(z)|.$$

Similarly, $\omega(f,\cdot)$ is an upper semicontinuous function. Although, definitions of $\omega(f,\cdot)$ and $\omega^*(f,\cdot)$ are similar, their properties may be quite different.

Example 1. Let $X = \{\frac{2k-1}{2^n} : k = 1, \dots, 2^{n-1}, n \ge 0\} \subset \mathbb{R}$ and $f: X \to \mathbb{R}$, $f(\frac{2k-1}{2^n}) = \frac{1}{2^n}$ for $\frac{2k-1}{2^n} \in X$.

It is easily seen that $\omega(f,\cdot) = f$ and $\omega^*(f,\cdot) = 0$. Hence, $\omega(f,x) \neq \omega^*(f,x)$ for $x \in X$.

So, we have the following question:

Problem 2. Let (X, ϱ) be a dense in itself metric space and let $f: X \to [0, +\infty]$ be an upper semicontinuous function. Does there exists a function $F: X \to \mathbb{R}$ such that $\omega^*(F, \cdot) = f$?

We say that a function $F: X \to \mathbb{R}$ is an ω^* - primitive for $f: X \to \mathbb{R}$ if $\omega^*(F, \cdot) = f$.

First, we make some observations. For a function $F: X \to \mathbb{R}$ we may define upper and lower Baire functions:

$$M_f(x) = \inf_{r>0} \sup_{y \in \mathbf{B}(x,r)} f(y)$$

and

$$m_f(x) = \sup_{r>0} \inf_{y \in \mathbf{B}(x,r)} f(y).$$

Then $\omega(F, x) = M_f(x) - m_f(x)$ for $x \in X$.

Next, if (X, ϱ) is a dense in itself metric space then for a function $F: X \to \mathbb{R}$ we may define

$$\limsup_{t\to x} f(t) = \inf_{r>0} \sup_{y\in \mathbf{B}(x,r)\backslash \{x\}} f(y),$$

$$\liminf_{t \to x} f(t) = \sup_{r>0} \inf_{y \in \mathbf{B}(x,r) \setminus \{x\}} f(y)$$

and then

$$\omega^*(F, x) = \limsup_{t \to x} f(t) - \liminf_{t \to x} f(t)$$

for $x \in X$ (if we assume that $\infty - \infty = \infty = -\infty - (-\infty)$)

In the following we will need the following denotations. Let $\varrho(x,A) = \inf\{\varrho(x,a) : a \in A\}$ denotes the distance of the point x from the nonempty set A in a metric space (X,ϱ) and let

$$\mathbf{B}(A,\varepsilon) = \bigcup_{x \in A} \{ t \in X : d(x,t) < \varepsilon \} = \bigcup_{x \in A} \mathbf{B}(x,\varepsilon).$$

for $\emptyset \neq A \subset X$ and $\varepsilon > 0$.

We will give the positive answer of Problem 2 in the case of upper semicontinuous functions with finite values $f: X \to [0, +\infty)$. We can prove even more. First, we start from the following technical lemma.

Lemma 1. Let (X, ϱ) be a metric space. For every subset M dense in X, nonempty set $A \subset X$ and $\varepsilon > 0$ there exists a set $T_{M,A,\varepsilon} \subset M$ such that

- [1] $\varrho(z_1, z_2) \geq \varepsilon$ for every $z_1, z_2 \in T_{M,A,\varepsilon}$,
- [2] $\varrho(z,A) < \varepsilon$ for every $z \in T_{M,A,\varepsilon}$,
- [3] $\rho(x, T_{M,A,\varepsilon}) < 2\varepsilon$ for every $x \in A$.

Proof. Observe that another way of stating (2) is to say $T_{M,A,\varepsilon} \subset \mathbf{B}(A,\varepsilon)$ and an equivalent formulation of (3) is $A \subset \mathbf{B}(T_{M,A,\varepsilon},2\varepsilon)$. Since M is a dense subset of $X, M \cap \mathbf{B}(A,\varepsilon) \neq \emptyset$.

Let \mathfrak{B} be the set of all subsets B of X satisfying the following conditions

- (a) $B \subset M \cap \mathbf{B}(A, \varepsilon)$,
- (b) $\rho(z_1, z_2) \geq \varepsilon$ for each $z_1, z_2 \in B$.

The family \mathfrak{B} is nonempty because contains all singletons $\{x\}$ for $x \in M \cap \mathbf{B}(A, \varepsilon)$. Moreover, \mathfrak{B} is partially ordered by inclusion. It is easily seen that if $\{B_s : s \in S\}$ is a chain in X then the set $B = \bigcup_{s \in S} B_s$ belongs to \mathfrak{B} and B is above all elements from $\{B_s : s \in S\}$. Hence, by Zorn Lemma the family \mathfrak{B} has a maximal element $T_{M,A,\varepsilon}$.

We will show that the set $T_{M,A,\varepsilon}$ fulfils all required properties. By (a) it is clear that $T_{M,A,\varepsilon} \subset M$ and $T_{M,A,\varepsilon} \subset \mathbf{B}(A,\varepsilon)$, so $\varrho(z,A) < \varepsilon$ for every $z \in T_{M,A,\varepsilon}$. Next $\varrho(z_1,z_2) \geq \varepsilon$ for $z_1,z_2 \in T_{M,A,\varepsilon}$ from (b).

Assume that $\varrho(x_0, T_{M,A,\varepsilon}) \geq 2\varepsilon$ for some $x_0 \in A$. Since M is a dense subset of X, there exists $z_0 \in M$ such that $\varrho(x_0, z_0) < \varepsilon$. Hence

$$\varrho(t,z_0) \ge \varrho(t,x_0) - \varrho(x_0,z_0) \ge \varrho(x_0,T_{M,A,\varepsilon}) - \varrho(x_0,z_0) > 2\varepsilon - \varepsilon = \varepsilon$$

for each $t \in T_{M,A,\varepsilon}$. It follows that $T_{M,A,\varepsilon} \cup \{z_0\} \in \mathfrak{B}$. Since $T_{M,A,\varepsilon}$ is a maximal element of \mathfrak{B} , this is a contradiction. Therefore $\varrho(x,T_{M,A,\varepsilon}) < 2\varepsilon$ for every $x \in A$ and the set $T_{M,A,\varepsilon}$ satisfies conditions (1) - (3).

Remark 1. From condition (1) of the Lemma it follows that $T_{M,A,\varepsilon}$ is a closed and discrete set.

Now, we formulate the main theorem of the paper

Theorem 8. Let (X, ϱ) be a dense in itself metric space and let Y be dense subset of X. Let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be a pair of functions such that f is upper semicontinuous, g is lower semicontinuous and $g \leq f$. Then there exists **one** function $F: X \to \mathbb{R}$ for which

[1]
$$\limsup_{t\to x} F(t) = f(x)$$
 and $\liminf_{t\to x} F(t) = g(x)$ for $x\in X$,

[2]
$$F(x) = g(x)$$
 for $x \in X \setminus Y$.

Proof. Let

$$K = \{(n, k) \in \mathbb{Z} : -n^2 \le k < n^2\}.$$

Let \leq be a relation in K defined as follows

$$(n_1, k_1) \leq (n_2, k_2) \Leftrightarrow n_1 < n_2 \lor (n_1 = n_2 \land k_1 \leq k_2).$$

It is easily seen that K is well ordered by \leq . Define

$$A_{n,k} = \left\{ x \in X : \frac{k}{n} \le f(x) < \frac{k+1}{n} \right\}$$

and

$$B_{n,k} = \left\{ x \in X : \frac{k}{n} \le g(x) < \frac{k+1}{n} \right\}$$

for $(n,k) \in K$. We shall construct two families $\{R_{n,k} : (n,k) \in K\}$ and $\{S_{n,k} : (n,k) \in K\}$ of closed and discrete subsets of X which satisfy the following conditions:

(a)
$$R_{n_1,k_1} \cap R_{n_2,k_2} = \emptyset = S_{n_1,k_1} \cap S_{n_2,k_2}$$
 for $(n_1,k_1), (n_2,k_2) \in K$, $(n_1,k_1) \neq (n_2,k_2)$ and $R_{n,k} \cap S_{i,j} = \emptyset$ for $(n,k), (i,j) \in K$,

(b)
$$\bigcup_{(n,k)\in K} (R_{n,k}\cup S_{n,k})\subset Y$$
,

(c)
$$R_{n,k} \subset \mathbf{B}(A_{n,k}, \frac{1}{n})$$
, $S_{n,k} \subset \mathbf{B}(B_{n,k}, \frac{1}{n})$ for $(n,k) \in K$,

(d)
$$\varrho(x,R_{n,k})<\frac{2}{n}$$
 for $x\in A_{n,k},\ (n,k)\in K$ and $\varrho(x,S_{n,k})<\frac{2}{n}$ for $x\in B_{n,k},\ (n,k)\in K$.

If $(n,k) \in K$ and $A_{n,k} = \emptyset$ then we set $R_{n,k} = \emptyset$ and if $B_{n,k} = \emptyset$ then we set $S_{n,k} = \emptyset$. Thus we have to define $R_{n,k}$ if $A_{n,k} \neq \emptyset$ and $S_{n,k}$ if $B_{n,k} \neq \emptyset$. We will make it inductively. Let $R_{1,-1} = T_{Y,A_{1,-1},1}$ where $T_{Y,A_{1,-1},1}$ is the set from Lemma 1 for M = Y, $A = A_{1,-1}$ and $\varepsilon = 1$. Since $R_{1,-1}$ is a closed and discrete subset of X and X is dense in itself, the set $Y \setminus R_{1,-1}$ is dense in X. Thus we can set $S_{1,-1} = T_{Y \setminus R_{1,-1},B_{1,-1},1}$. Next, let

 $\widetilde{Y}_{1,0} = Y \setminus (R_{1,-1} \cup S_{1,-1}), \quad R_{1,0} = T_{\widetilde{Y}_{1,0},A_{1,0},1} \text{ and } S_{1,0} = T_{\widetilde{Y}_{1,0}\setminus R_{1,0},B_{1,0},1}.$ Fix $(n,k) \in K$. Assume that the closed and discrete sets $R_{i,j}$ and $S_{i,j}$ satisfying conditions (a)-(d) are choosen for $(i,j) \prec (n,k)$ and let

$$\widetilde{Y}_{n,k} = Y \setminus \bigcup_{(i,j) \prec (n,k)} (R_{i,j} \cup S_{i,j}).$$

$$R_{n,k} = T_{\widetilde{Y}_{n,k},A_{n,k},\frac{1}{n}} \quad \text{and} \quad S_{n,k} = T_{\widetilde{Y}_{n,k} \setminus R_{n,k},B_{n,k},\frac{1}{n}}.$$

Define

It is obvious that the families

$$\{R_{n,k}:(n,k)\in K\}$$
 i $\{S_{n,k}:(n,k)\in K\}$

constructed inductively satisfy conditions (a)-(d). Let us define a function $F\colon X\to\mathbb{R}$ as follows

$$F(x) = \begin{cases} \frac{k}{n} & if \quad x \in R_{n,k}, \quad (n,k) \in K, \\ \frac{k+1}{n} & if \quad x \in S_{n,k}, \quad (n,k) \in K, \\ g(x) & if \quad x \in X \setminus \bigcup_{(n,k) \in K} (R_{n,k} \cup S_{n,k}). \end{cases}$$

We shall show that (1) and (2) hold. Fix $x_0 \in X$ and $\varepsilon > 0$. There exists $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \varepsilon$ and $f(x_0) < n_0 + 1$. For every $n \ge n_0$ we may find $-n^2 \le k_n < n^2$ for which $\frac{k_n}{n_0} \le f(x_0) < \frac{k_n + 1}{n_0}$. Thus $x_0 \in A_{n,k_n}$. From (d) for every $n \ge n_0$ there exists $y_n \in R_{n,k_n}$ such that $d(x_0, y_n) < \frac{2}{n}$. Hence $\lim_{n \to \infty} y_n = x_0$. From this we obtain

$$F(y_n) = \frac{k_n}{n} \quad \text{and} \quad 0 \le f(x) - F(y_n) < \frac{1}{n}.$$

This gives $\lim_{n\to\infty} F(y_n) = f(x_0)$. Thus we have proved that (*) $\lim \sup_{x\to x_0} f(x) \ge f(x_0)$.

In the same manner we can see that $\liminf_{x\to x_0} f(x) \leq g(x_0)$.

Let $(x_m)_{m\in\mathbb{N}}$ be a sequence of elements of X converging to $x_0, x_m \neq x_0$ for $n \in \mathbb{N}$ and $\lim_{m\to\infty} F(x_m) = \alpha, \alpha \in \mathbb{R} \cup \{-\infty, +\infty\}$. Without the loss of generality we may assume that all elements of the sequence belong to one of the three sets

$$\bigcup_{(n,k)\in K} R_{n,k}, \quad \bigcup_{(n,k)\in K} S_{n,k} \quad \text{or} \quad X \setminus \bigcup_{(n,k)\in K} (R_{n,k} \cup S_{n,k}).$$

First, suppose that $x_m \in \bigcup_{(n,k)\in K} R_{n,k}$ for $m \geq 1$. Then for every $m \in \mathbb{N}$ we can find $(n_m, k_m) \in K$ such that $x_m \in R_{n_m, k_m}$. The sets $R_{n,k}$ are closed

and discrete and for fixed $m \in \mathbb{N}$ there is only a finite number $k \in \mathbb{Z}$ for which $(n,k) \in K$. Besides, $(x_m)_{m \in \mathbb{N}}$ is convergent and is not constant. Hence $\lim_{m \to \infty} n_m = +\infty$. From (c) for every $m \in \mathbb{N}$ there exists $z_m \in A_{n_m,k_m}$ such that $d(x_m, z_m) < \frac{2}{n}$. Moreover

$$F(x_m) = \frac{k_m}{n_m}$$
 and $\frac{k_m}{n_m} \le f(z_m) < \frac{k_m + 1}{n_m}$.

Since the function f is upper semicontinuous.

$$\alpha = \lim_{m \to \infty} F(x_m) = \lim_{m \to \infty} f(z_m) \le f(x_0).$$

Now, let $x_m \in \bigcup_{(n,k)\in K} S_{n,k}$ for $m \geq 1$. Then for every $m \in \mathbb{N}$ we can find $(n_m, k_m) \in K$ such that $x_m \in S_{n_m, k_m}$. In the same manner as before we can prove that $\lim_{m\to\infty} n_m = +\infty$. From (c) for every $m \in \mathbb{N}$ there exists $z_m \in B_{n_m, k_m}$ such that $d(x_m, z_m) < \frac{2}{n}$. Besides

$$F(x_m) = \frac{k_m + 1}{n_m}$$
 and $\frac{k_m}{n_m} \le g(z_m) < \frac{k_m + 1}{n_m}$.

Since $g \leq f$ and f is upper semicontinuous, it follows that

$$\alpha = \lim_{m \to \infty} F(x_m) = \lim_{m \to \infty} g(z_m) \le \limsup_{m \to \infty} f(z_m) \le f(x_0).$$

At the end, if $x_m \in X \setminus \bigcup_{(n,k)\in K} (R_{n,k} \cup S_{n,k})$, then $F(x_m) = g(x_m)$ for $m \in \mathbb{N}$. Therefore

$$\alpha = \lim_{m \to \infty} F(x_m) = \lim_{m \to \infty} g(x_m) \le \limsup_{m \to \infty} f(x_m) \le f(x_0).$$

Thus we have proved that $\alpha \leq f(x_0)$. Since α is an arbitrary limit number of f at x_0 , $\limsup_{x\to x_0} F(x) \leq f(x_0)$. Together, with (*) we get

$$\lim \sup_{x \to x_0} F(x) = f(x_0)$$

for every $x_0 \in X$.

Applying lower semicontinuity of g in the same way we can prove $\liminf_{t\to x} F(t) = g(x)$ for $x\in X$. The equality F(x) = g(x) for $x\in X\setminus Y$ is obvious, becouse $\bigcup_{(n,k)\in K}(R_{n,k}\cup S_{n,k})\subset Y$ and F(x)=g(x) for $x\notin \bigcup_{(n,k)\in K}(R_{n,k}\cup S_{n,k})$. The proof is complete.

Remark 2. If under the notation from the proof of the last theorem we define a function $\widetilde{F} \colon X \to \mathbb{R}$ in the following way

$$\widetilde{F}(x) = \begin{cases} \frac{k}{n} & if \quad x \in R_{n,k}, \quad (n,k) \in K, \\ \frac{k+1}{n} & if \quad x \in S_{n,k}, \quad (n,k) \in K, \\ f(x) & if \quad x \in X \setminus \bigcup_{(n,k) \in K} (R_{n,k} \cup S_{n,k}), \end{cases}$$

.

then it is easily seen that

$$\limsup_{t\to x} \widetilde{F}(t) = f(x)$$
 and $\liminf_{t\to x} \widetilde{F}(t) = g(x)$ for $x\in X$.

Hence we get a theorem analogous with Theorem 8.

Theorem 9. Let (X, ϱ) be a dense in itself metric space and let Y be dense subset of X. Let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be a pair of functions such that f is upper semicontinuous, g is lower semicontinuous and $g \leq f$. Then there exists a function $F: X \to \mathbb{R}$ for which

[1]
$$\limsup_{t\to x} F(t) = f(x)$$
 and $\liminf_{t\to x} F(t) = g(x)$ for $x\in X$,

[2]
$$F(x) = f(x)$$
 for $x \in X \setminus Y$.

C Let (X, ϱ) be a dense in itself metric space. For every upper semicontinuous function $f: X \to [0, \infty)$ there exists a function $F: X \to \mathbb{R}$ such that $\omega^*(F, x) = f(x)$ for $x \in X$.

For upper and lower Baire functions M_f and m_f theorem analogous to Theorem 2 is not true.

Example 2. Let $X = \{\frac{2k-1}{2^n} : k = 1 \dots, 2^{n-1}, n \geq 0\} \subset \mathbb{R}$ and $f : X \to \mathbb{R}$, $f(\frac{2k-1}{2^n}) = 1 + \frac{1}{2^n}$ for $\frac{k}{2^n} \in X$. Then X is dense in itself, f is upper semicontinuous. Suppose, that there exists a function $F : X \to \mathbb{R}$ such that $M_F(x) = f(x)$ and $m_F(x) = 0$ for $x \in X$. Then $0 \leq F \leq f$. It is easy to prove that $\limsup_{t\to x} f(t) = 1$ for every $x \in X$. Hence $\limsup_{t\to x} F(t) \leq 1$ for every $x \in X$. Since $M_F(x) = \max\{F(x), \limsup_{t\to x} F(x)\}$, it have to be F(x) = f(x) for every $x \in X$. But then $m_F = 1$. Thus we have proved that there is \mathbf{no} a function $F : X \to \mathbb{R}$ such that $M_F(x) = f(x)$ and $m_F(x) = 0$ for $x \in X$.

At the end we will consider problems of the existence of ω -primitives and ω^* -primitives for nonmetrizable topological spaces. The problem of the existence of ω -primitive has a positive solution for some nonmetrizable topological spaces, for example:

Theorem 10. Let (X, \mathcal{T}) be a regular separable topological space. Then for every upper semicontinuous function $f \colon X \to [0, +\infty]$ vanishing at isolated points of X there exists a function $F \colon X \to \mathbb{R}$ such that $\omega(F, \cdot) = f$.

Theorem 11 ([?]). Let (X, \mathcal{T}) be a regular Baire space. Then for every upper semicontinuous function $f: X \to [0, +\infty]$ vanishing at isolated points of X there exists a function $F: X \to \mathbb{R}$ such that $\omega(F, \cdot) = f$.

The problem of the existence of ω^* -primitives for nonmetrizable topological spaces is more complicated.

Example 3. Let (X, \mathcal{T}) , $X = \mathbb{R} \times [0, +\infty)$ be a Niemytzky plane. Then X is a "nice" nonmetrizabe, separable, Tychonoff, Baire topological space. Define $f: X \to \mathbb{R}$,

$$f(x) = \begin{cases} 1 & if \quad x \in \mathbb{Q} \times \{0\}, \\ 0 & if \quad x \notin \mathbb{Q} \times \{0\}. \end{cases}$$

We will show that ω^* -primitive for f does **not** exist. Let $F: X \to \mathbb{R}$ be any function such that $\omega^*(F, x) = f(x)$ for $x \in X \setminus (\mathbb{Q} \times \{0\})$. Then the function F has a limit at (x, 0) for every $x \in \mathbb{R} \setminus \mathbb{Q}$. Let

$$A_{n,k} = \left\{ x \in \mathbb{R} \setminus \mathbb{Q} : F(v) \in \left(\frac{k}{4} - \frac{1}{4}, \frac{k}{4} + \frac{1}{4}\right) \text{ for } v \in \left(x - \frac{1}{n}, x + \frac{1}{n}\right) \times (0, \frac{1}{n}) \right\}$$

for every $n,k\in\mathbb{N}$. Then $\mathbb{R}\setminus\mathbb{Q}=\bigcup_{n,k\in\mathbb{N}}A_{n,k}$ and by Baire Theorem there exist $n_0,k_0\in\mathbb{N}$ and an open interval (a,b) such that A_{n_0,k_0} is dense in (a,b). But then for every $x_0\in(a,b)\cap\mathbb{Q}$ there exists a neighbourhood U of $(x_0,0)\in X$ such that $\sup_{u,v\in U\setminus\{(x_0,0)\}}|F(u)-F(v)|\leq \frac{1}{2}$. Therefore $\omega^*(F,x_0)\leq \frac{1}{2}$. Thus $\omega^*(F,x_0)\neq f(x_0)=1$ and $\omega^*(F,\cdot)\neq f$. So, we have proved that ω^* -primitive for f does **not** exists.

References

- [1] C. Di Bari, C. Vetro. The primitive with respect to oscillation Rend. Circ. Mat. Palermo (2), 51, no. 1, 175–178, 2002. no. 1, 175-178.
- [2] Z. Duszyński, Z. Grande, S. Ponomarev. On the ω -primitive, Math. Slovaca 51, 469–476, 2001.
- [3] J. Ewert, S. Ponomarev. ω -primitives on σ -discrete spaces, Tatra Mt. Math. Publ. 24, 13–27, 2002.
- [4] J. Ewert, S. Ponomarev. On the existence of ω -primitives on arbitrary metric spaces, Math. Slovaca 53, 51–57, 2003.
- [5] J. Ewert, S. Ponomarev. Oscillation and ω -primitives, Real Anal. Exchange 26, 687–702, 2001-2002.
- [6] P. Kostyrko. Some properties of oscillation, Math. Slovaca 30, 157–162, 1980.