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Teaching Calculus with Original Historical Sources -
I' Function

Ondrej Moc

Teaching calculus with original historical sources has an important ad-
vantage. It is convenient to observe, how a new mathematical idea grows
up in the mind of the author and it is convenient to make a similar image in
the mind of students. It is possible to watch causes, which lead to the cre-
ations of the term. It is very important too, that students understand the
way of thinking of the author, and the students can master work methods,
which are used by creative mathematicians.

In the following text I would like to talk about the historical develop-
ment of the function I'. T mention only some aspects, because this paper
is too short for a detailed description. I choose this topic, because I have
an auspicious reference from students of PF UJEP, who were visiting my
lectures last year.

One of the simplest task, which one can meet with work on number
sequences, is looking for a general expression which would give all the terms
of the progression
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If we denote by S, the n-th term of the progression (1), then
S. = 3n(n+1) holds. The meaning of the rule will become obvious for the
famous task of adding of the first hundred positive integers. Instead of slow
adding it simplifies computation to three fixed arithmetic operations: one
addition, one multiplication and one division. Moreover, the formula solves
the problem of interpolating between the terms of progression (1), because
we obtain the meaningful results by substituing of noninteger values into
the formula. Function I" arose from as a result of finding similar formula
for the sequence of factorials. Mathematicians were looking for a formula,
which would enable to compute values of factorials without a tedious mul-
tiplication and, moreover, which would solve a problem of interpolating
between the factorials. The difficulties turned up for a very rapidly growth
of factorials. The number 100! has 158 digits if it is written out.
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A lot of mathematicians such as JAMES STIRLING (1692 — 1770), CHRI-
STIAN GOLBACH (1690 — 1764) or DANIEL BERNOULLI (1700 — 1784), were
interested in a solving of the problem mentioned above. But the first ma-
thematician who established the theory of the function I' was surely LEo-
NHARD EULER (1707 - 1783).

If we want to solve the described problem at the present time, we have
an easy target. Our solving consists in constructing such a function, which
is equal 1 for points 0 and 1, acquired an arbitrary values between the ones.
The values of the rest variable could be computed by help of the recurrence
relationship (n+ 1)! = (n+ 1) - n!

This approach is based on today’s concept of a function. Today, a
function is a relationship between two sets of numbers, where an element
of the first set is assigned to an element of the second set. But in the 18th
century, a function meant such an ezpressio analytica, i.e., formula which
could be derived from elementary manipulations with addition, subtraction,
multiplication, division, differentiation, integration, etc. Euler’s task was
to find an analytical expression which would yield factorials when a positive
integer was inserted, but which would still be meaningful for other values
of the variable. Now let’s show how Euler solved the mentioned problem.

Euler’s solution is described in [2]. The English translation [3] of [2]
is available in the URL http://home.sandiego.edu/~langton/. At the
beginning of the article Euler expressed factorials in the form of an infinite
product
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This assertion is introduced in [2] without an explanation of derivation. La-
ter Euler described his solution in the article De termino generali serierum
hypergeometricarum (1776).

As Euler wrote, this product never breaks off whether n is a whole
number or a fraction, but only gives approximately values, except in the
cases n = 0 and n = 1, in which it just becomes 1. There is a question in
this place, how far Euler was able to make the limit transformation of (2)
in his mind.

Euler knew that (2) is not too applicable for a computation. But right
side (2) is defined for all kinds of n other than negative integers. Euler
noticed that if we set n = 1/2 then (2) becomes the famous infinite product
of JouN WALLIs (1616 — 1703)

n!
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This formula meant for Wallis that the circle was to the square of its dia-
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If diameter of the circle is equal 1, the area of one will be
24 4-6 6-8 8-10
383 .8.-8 7.7 9.8
From this we can conclude that for n = 1/2 the product (2) is equal to the
square root of the circle with diameter = 1. The correspondence between
the factorials and the area of circle led Euler to the idea to express factorials

by integral.
Euler took up the integral [ z¢(1 — z)"dz. First Euler expressed
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then he multiplied both sides of the equation by z° and integrated it. Thus
he obtained

(1—z)”=1—%x+
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The value of form on the right side of (5) is equal 0 for z = 0. Euler set
z = 1, thereby the indefinite integral in (5) becomes a definite integral
f) 2¢(1 — z)"dz (I will resign Euler’s notation and I will write [ instead of

fol)- Thus, Euler obtained
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This exppresion has an important role, because it yields the following values
for given n
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The rule which provides the next terms is obvious. Thus, he obtained
a general formula for non-negative integers and arbitrary e
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Multiplying both sides of (7) by term e + n + 1 led to equality
£.5.8. . &
1 ‘(1-2)"dz = :
(e +n+ )/x( i = e (8)
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Substituing e by fraction f/g and dividing by ¢g” changed (8) into a
form

(f+( n-lf—lg f/g Siir gl 1:2:3:-n ; 9)
e (f+9)(f+29)--(f+ng)
Setting f =1 and g = 0 led to
1
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In the next part of the article Euler investigated the sense of the form

on the right side of (10). Therefore, he put ¢ 7¥3 in place of z, ﬂq_—gxﬁ%dz
in place of dz and set f =1 and g = 0. Thus, he obtained

f+(n+V)g [ g 2 \n i Sgye
e /f+g(1—xf+g) dz, resp. /T—dz

Now Euler considered the related expression (1 — z?)/z for vanishing z. He
differentiated the numerator and denumerator by a known (Hdspital’s) rule
and obtained il

—zdz

ETS) (11)
where [z means Inz in a present time. The term (11) produced —Iz for
z = 0. Thus, (1 -12°/0 = —Iz and (1 — 2z%"/0™ = (—Iz)". From this
1-2%"

On

gral [(—lz)"dz. Consequently the general term of the sequence factorials

is [(—lz)"dz. Thus

reason Euler derived that integral dz can be replaced by inte-

1
Bl = / (—Inz)" dz. (12)
0
The recurrence relation

1

1 1
/ (- Inz)"dz = [z(—Inz)"] + n/ (=Inz)* ldz = n/ (=Inz)* ldz

0 0 0
shows, that (12) really produced factorials. Moreover, the integral (12)
makes a meaningful values for arbitrary n € (—1,00). By these means
Euler solved the problem of the interpolation between the factorials for
arbitrary positive real number.

Substituing e~* for z in (12) we obtain a new relation

nl = /e'tt”dt. (13)
0
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This integral is defined for all n € (—1,00). Later ADRIEN MARIE
LEGENDRE (1752 — 1833) started to work with (13). He modified it into a
current form

2y i /e‘ttz_ldt. (14)
0

It is called the second Eulerian integral, or the gamma function and is
denoted by a letter I'. The function I' is defined by (14) for all z € (0, 00)
and its relation to factorials is given by the formula I'(n + 1) = n!.

A considerable advance came with the paper [4]. CARL FRIEDRICH
Gauss (1777 — 1855) solved the problem of interpolation between the fac-
torials by introducting the function
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In [4] Gauss derived important results, i.e. famous multiplication formula:
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Later Gauss proved that (15) can be used for extension factorials to the
region D := C\{-n;n € N}, where C denotes the set of complex numbers
and N stands for the set of positive integers.

In the next years many mathematicians started to looking for the
conditions, which characterized the function I'. The functional equation
f(z + 1) = zf(z) together with the condition f(1) = 1 were a natural
requirements, but it was showed that these conditions aren’t so strong for
unique characterization of the function I'. It was necessary to look for ad-
ditional conditions. It graduelly showed, that requirements on continuity,
differentiability, convexity aren’t sufficient. The logarithmic convexity of
the function I' is a searched property.

HARALD BonRr (1887-1951) and JOHANNES MOLLERUP (1872-1937)
proved that I'-function is the only function that satisfies f(z + 1) = z f(z),
f(1) = 1 and log f(z) is a convex function. The original proof was consi-
derably simplified by EMIL ARTIN (1898-1962) in [1] and so the theorem
is now known as Bohr-Mollerup-Artin theorem:

Theorem. Let f be a function with the following properties:
(@) fle+1)=2f(a), =€ Ry
(b) f(1)=1
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(c) f(z) is log-convex function on R

Then f(z) =TI'(z) for all z € Ry where Ry = (0;00).

Artin showed that the Bohr-Mollerup-Artin’s theorem considerably
helps to obtain simple proofs of some well-known assertions. Let us show
the importance of this theorem: We will prove a well-known relation be-
tween I'-function and the Beta function.

Euler studied another integral connected with [-function. Now we
call it Euler integral “of the first kind” or Beta function. It is defined by

equation:
1

B2k :/0 £71(1 — £)v=Ldt. (16)

Its values are dependent on both variables ¢ and y. This improper
integral exists for all z > 0 and y > 0. The main result of the theory of
Beta function is the so called Euler’s identity:

L(z)I'(y)

B(z,y) = W’

z,Y € R+' (17)

The idea of proof consists in verifying the conditions of the Bohr-
Mollerup-Artin’s theorem. Substituing z 4+ 1 for z and using (16), we
obtain

1 1 t z
Bigibidop)os: / e =gt = [ -y (——> dt.
0 0 Lt
Using integration by parts we derive the equation:

B(z +1,y) =

$+yB(fE,y) (18)

which holds for all z,y € R;. Now, we will study function (16) as a function
of variable ¢ with fixed value of y. We introduce a function f(z) to obtain
function which is a solution of equation f(z + 1) = z f(z):

f(z) = B(z,y)l'(z + y). (19)

Let’s verify that this function satisfies all the conditions of the Bohr-
Mollerup-Artin’s theorem.
The condition f(z + 1) = zf(z) is easily seen from

fla+1) =Ba+1LyT+y+1) = ——B(z,y)(@+y)l(z+y) = 2f(z).
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Clearly, the function f(z) is log-convex, as a product of two log-convex
function. The condition f(1) =1 is not true since

Hil.y) = /:(1 —t)¥ldt = 51/-, and also f(1) = if(l +y) =T(y).

Therefore, f(1) = B(1,y)I'(1+y) = y~*y T'(y) = ['(y). If the function f(z)
satisfies conditions (a), (c), it is easy to realize (b). Since we suppose (c) we
have f(1) > 0. Then f(z)/f(1) satisfies all three conditions and therefore
it is the [-function by Bohr-Mollerup-Artin theorem. Now we have

f(z) = f(1) -T(2) (20)
and for our function f(z) from (20) we have
f(z) =T(y)T' (). (21)

Comparison of (19) with (21) gives the equation (17) for integral in (16).
Preparation of teaching, which is led by this way, needs a detailed su-
rvey about the development of mathematics. It is good to know sources
providing original historical papers. I have used two main sources for a
preparation for my lecture. The first one is the Library of MFF UK in Pra-
gue. [ found the second one in Géttinger Digitalisierung Zentrum (GDZ),
which is possible to visit in the website:
http://gdz.sub.uni-goettingen.de/en/index.html.
Other informations about teaching with original historical sources are ava-
ilable in http://math.nmsu.edu/~history/.
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