Akademia im. Jana Długosza w Częstochowie Wydział Matematyczno-Przyrodniczy

WYBRANE BADANIA W DZIEDZINIE KWASÓW AMINOALKILOFOSFONOWYCH

mgr Marcin H. Kudzin Instytut Włókiennictwa

Praca doktorska napisana pod kierunkiem Prof. dr hab. Józefa Drabowicza

CZĘSTOCHOWA 2014

Składam szczególne podziękowania promotorowi niniejszej pracy Panu Prof. Józefowi Drabowiczowi, za nieocenioną pomoc, dzięki której możliwe było jej napisanie.

Serdeczne podziękowania pragnę wyrazić również za wsparcie we wszystkich aspektach pracy naukowej Pani Dyrektor Instytutu Włókiennictwa Prof. Jadwidze Sójce-Ledakowicz.

SPIS TREŚCI		Str.
1.	WPROWADZENIE	8
2.	CZĘŚĆ TEORETYCZNA	10
2.1.	KWASY AMINOFOSFONOWE	10
2.2.	WŁAŚCIWOŚCI BIOLOGICZNE KWASÓW	11
	AMINOALKILOFOSFONOWYCH	11
2.3.	BADANIA NAD SYNTEZĄ KWASÓW 1-AMINOALKILOFOSFONOWYCH	17
2.4.	WŁAŚCIWOŚCI FIZYCZNE KWASÓW AMINOALKILOFOSFONOWYCH	23
2.4.1.	TEMPERATURY TOPNIENIA KWASÓW AMINOALKILOFOSFONOWYCH	23
2.4.1.1.	TERMOGRAWIMETRIA KWASÓW AMINOALKILOFOSFONOWYCH	26
2.4.2.	ROZPUSZCZALNOŚĆ KWASÓW AMINOALKILOFOSFONOWYCH	27
2.4.3.	WIDMA ABSORPCYJNE AMINOALKILOFOSFONOWYCH	28
2.4.3.1.	WIDMA UV KWASÓW AMINOFOSFONOWYCH	28
2.4.3.2.	WIDMA IR KWASÓW AMINOFOSFONOWYCH	32
2.4.3.3.	SPEKTROSKOPIA NMR KWASÓW AMINOALKILOFOSFONOWYCH	36
2.4.3.3.1.	SPEKTROSKOPIA ³¹ P-NMR	36
2.4.3.3.2.	SPEKTROSKOPIA ¹ H-NMR	42
2.4.3.3.3.	SPEKTROSKOPIA ¹³ C-NMR	52
2.4.4.	SPEKTROMETRIA MAS W CHARAKTERYZACJI KWASÓW	F7
	AMINOALKILO-FOSFONOWYCH	57
2.4.5.	STEREOCHEMIA KWASÓW 1-AMINOALKILOFOSFONOWYCH	58
2.5.	WŁAŚCIWOŚCI CHEMICZNE AMINOKWASÓW FOSFONOWYCH	59
2.5.1.	WŁAŚCIWOŚCI KWASOWO-ZASADOWE AMINOKWASÓW	60
	FOSFONOWYCH	00
3.	BADANIA WŁASNE	61
3.1.	SYNTEZA/RESYNTEZA WYBRANYCH REPREZENTATYWNYCH	61
	KWASÓW 1-AMINOALKILO-FOSFONOWYCH I POCHODNYCH	
3.1.1.	METODA PTC-AMINOFOSFONIANOWA	62
3.1.2.	HYDROFOSFONYLOWANIE IMIN	63
3.1.3.	REAKCJA AMIDOALKILOWANIA PCI ₃	63
3.1.4.	SYNTEZA KWASÓW 1-(N-ACYLOAMINO)ALKILOFOSFONOWYCH	64

3.2.	WŁAŚCIWOŚCI FIZYCZNE AMINOKWASÓW FOSFONOWYCH	65
3.2.1.	BADANIA NAD ROZPUSZCZALNOŚCIĄ AMINOKWASÓW	65
3.2.1.1.	BADANIA NAD ROZPUSZCZALNOŚCIĄ AMINOKWASÓW	66
	FOSFONOWYCH	
3.2.1.1.1.	OZNACZANIE AMINOKWASÓW FOSFONOWYCH W WODZIE	67
3.2.1.1.1.1.	METODA MIARECZKOWANIA pH-METRYCZNEGO	67
3.2.1.1.1.2.	METODA NMR-OWA	68
3.2.1.1.1.2.1.	KORELACJA POWIERZCHNI SYGNAŁU ³¹ P DLA AA ^P I WZORCA	68
3.2.1.1.1.2.2.	WYLICZENIA STĘŻENIA AMINOKWASU NA PODSTAWIE WIDMA	75
	³¹ P NMR MIESZANINY POWIERZCHNI SYGNAŁU AA ^P I WZORCA	
3.2.1.1.2.	BADANIA NAD WYZNACZANIEM ROZPUSZCZALNOŚCI	76
	AMINOKWASÓW FOSFONOWYCH	
3.2.1.1.2.1.	METODA KRYSTALIZACJI	76
3.2.1.1.2.1.1.	BADANIA OPTYMALIZACYJNE	76
3.2.1.1.2.2.	METODA SONIKACYJNA	79
3.2.1.1.2.2.1.	BADANIA OPTYMALIZACYJNE	79
3.2.1.1.3.	WYNIKI BADAŃ ROZPUSZCZALNOŚCI KWASÓW	81
	AMINOALKILOFOSFONOWYCH W WODZIE I MIESZANYCH	
	WODNO-ALKOHOLOWYCH UKŁADACH AA ^P -iPrOH-H ₂ O	
3.2.1.1.3.1.	WYNIKI BADAŃ ROZPUSZCZALNOŚCI KWASÓW	81
	AMINOALKILOFOSFONOWYCH W WODZIE	
3.2.1.1.3.2.	WYNIKI BADAŃ ROZPUSZCZALNOŚCI KWASÓW	82
	AMINOALKILOFOSFONOWYCH W MIESZANYCH	
	WODNO-ALKOHOLOWYCH UKŁADACH AA ^P -iPrOH-H ₂ O	
3.2.1.1.4.	DYSKUSJA WYNIKÓW I WNIOSKI	85
3.2.2.	WIDMA ABSORPCYJNE AMINOKWASÓW	89
3.2.2.1.	SPEKTROSKOPIA UV I IR	89
3.2.2.2.	SPEKTROSKOPIA NMR	89
3.2.2.2.1.	SPEKTROSKOPIA ³¹ P-NMR	89
3.2.2.2.2.	SPEKTROSKOPIA ¹ H-NMR	97
3.2.2.3.	SPEKTROSKOPIA ¹³ C-NMR	100

3.2.3.	BADANIA TERMOGRAWIMETRYCZNE KWASÓW	101
	AMINOFOSFONOWYCH	
3.2.4.	PIROLIZA KWASÓW AMINOFOSFONOWYCH	110
3.2.4.1.	BADANIA NAD PIROLIZĄ KWASÓW AMINOFOSFONOWYCH	118
3.2.4.1.1.	BADANIA NAD WPŁYWEM WARUNKÓW TEMPERATUROWYCH	118
	NA PRZEBIEG PIROLIZY	
3.2.4.1.1.1.	WYNIKI BADAŃ NAD WPŁYWEM TEMPERATURY NA PRZEBIEG	118
	TERMICZNEJ DEKOMPOZYCJI <i>p</i> -MePGly ^P	
3.2.4.1.2.	BADANIA NAD WPŁYWEM CZASU PIROLIZY NA PRZEBIEG ROZKŁADU	119
3.2.4.1.3.	BADANIA NAD ODTWARZALNOŚCIĄ TERMOLIZY	120
3.2.4.2.	BADANIA NAD PIROLIZĄ KWASÓW AMINOALKILOFOSFONOWYCH	120
3.2.4.2.1.	WPŁYW ODDALENIA	120
3.2.4.2.2.	WPŁYW R	121
3.2.4.2.3.	WPŁYW RZĘDOWOŚCI GRUPY AMINOWEJ	122
3.2.4.2.4.	WPŁYW RZĘDOWOŚCI WĘGLA Cα	123
3.2.4.3.	BADANIA NAD PIROLIZĄ KWASÓW	124
	AMINOALKILOARYLOFOSFONOWYCH	
3.2.4.3.1.	POCHODNE ARYLOWE Gly ^P (ArGly ^P)	124
3.2.4.3.1.1.	BADANIA NAD PIROLIZĄ POCHODNYCH Pgly ^P	125
3.2.4.3.1.2.	BADANIA NAD PIROLIZĄ POCHODNYCH NphGly ^P	127
3.2.4.3.2.	BADANIA NAD PIROLIZĄ Phe ^P	128
3.2.4.4.	BADANIA NAD PIROLIZĄ INNYCH KWASÓW FOSFONOWYCH	129
3.3.	WŁAŚCIWOŚCI CHEMICZNE AMINOKWASÓW FOSFONOWYCH	130
3.3.1.	STABILNOŚĆ AA ^P W ROZTWORACH ZASAD I KWASÓW	130
3.3.1.1.	BADANIA STABILNOŚCI KWASÓW 1-AMINOALKILOFOSFONOWYCH	132
	W ROZTWORACH ZASAD I KWASÓW	
3.3.1.1.1.	BADANIA STABILNOŚCI AA ^P W ROZTWORACH KWASÓW	133
3.3.1.1.2.	BADANIA STABILNOŚCI AA ^P W ROZTWORACH ZASAD	141
3.3.1.2.	BADANIA STABILNOŚCI KWASÓW 1-(N-ALKILOAMINO)ALKILO-	145
	FOSFONOWYCH W ROZTWORACH KWASÓW I ZASAD	

3.3.1.2.1.	BADANIA STABILNOŚCI KWASÓW 1-(N-ALKILOAMINO)ALKILO-	145
	FOSFONOWYCH W ROZTWORACH KWASÓW	
3.3.1.2.2.	BADANIA STABILNOŚCI KWASÓW 1-(N-ALKILOAMINO)ALKILO-	158
	FOSFONOWYCH W ROZTWORACH ZASAD	
3.3.1.3.	BADANIA STABILNOŚCI KWASÓW 1-AMINOFOSFONOWYCH	170
	W ROZTWORACH KWASÓW I ZASAD - WNIOSKI	
3.3.1.3.1.	STABILNOŚĆ KWASÓW 1-AMINOALKILOFOSFONOWYCH	170
3.3.1.3.2.	STABILNOŚĆ KWASÓW 1-(<i>N</i> -ALKILOAMINO)ALKILOFOSFONOWYCH	170
	I 1-(<i>N,N</i> -DIALKILOAMINO)ALKILOFOSFONOWYCH	
3.3.2.	REAKCJA OKSYDACYJNEJ DEAMINACJI AMINOKWASÓW	171
	FOSFONOWYCH	
3.3.2.1.	REAKCJA DEZAMINACJI/DEFOSFONYLACJI AMINOKWASÓW	171
	FOSFONOWYCH	
3.3.2.2.	REAKCJE AA ^P Z NADTLENKIEM WODORU	174
3.4.	BADANIA BIOLOGICZNE AMINOKWASÓW FOSFONOWYCH	187
3.4.1.	AKTYWNOŚĆ BAKTERIOBÓJCZA – POJĘCIA PODSTAWOWE	187
3.4.1.1.	METODY OKREŚLANIA AKTYWNOŚCI BAKTERIOBÓJCZEJ	190
3.4.2.	BADANIA BIOLOGICZNE AMINOKWASÓW FOSFONOWYCH	194
3.4.3.	BADANIA WŁASNE NAD BAKTERIOBÓJCZYMI WŁASNOŚCIAMI	196
	AMINOKWASÓW FOSFONOWYCH	
4.	CZĘŚĆ EKSPERYMENTALNA	201
4.1.	BADANIA SYNTETYCZNE	201
4.1.1.	ROZTWORY I REAGENTY	201
4.1.2.	PRACE ZWIĄZANE Z SYNTEZĄ/RESYNTEZĄ MODELOWYCH	204
	KWASÓW AMINOALKILOFOSFONOWYCH	
4.1.2.1.	SYNTEZA KWASÓW AMINOARALKILOFOSFONOWYCH WG	204
	METODY TIOUREIDOALKANO-FOSFONIANOWEJ	
4.1.2.1.1.	SYNTEZA N-FENYLOTIOMOCZNIKA	206
4.1.2.2.	SYNTEZA KWASÓW AMINOALKILOFOSFONOWYCH METODĄ	209
	PIKLA-OLEKSYSZYNA	
4.1.2.2.1.	SYNTEZA KWASU 1-AMINOMETYLOFOSFONOWEGO	209

4.1.2.2.1.1.	SYNTEZA N-(HYDROKSYMETYLO)BENZAMIDU	210
4.1.2.2.2.	SYNTEZA KWASU 1-AMINO-1-METYLOETANOFOSFONOWEGO	210
4.1.2.3.	SYNTEZA KWASÓW 1-(N-ALKILOAMINO)ALKILOFOSFONOWYCH	212
	(R-AA ^P)	
4.1.2.4.	SYNTEZA KWASÓW 1-(<i>N,N</i> -DIMETYLOAMINO)ALKILOFOSFONOWYCH	214
	(Me ₂ -AA ^P)	
4.1.3.	SYNTEZA POCHODNYCH	215
	N-ACYLOWYCH KWASÓW 1-AMINOALKILOFOSFONOWYCH	
4.1.3.1.	ACYLOWANIE KWASÓW	215
	1-AMINOALKILOFOSFONOWYCH BEZWODNIKAMI KWASOWYMI	
4.1.3.2.	SYNTEZA KWASÓW	217
	1-(<i>N</i> -CHLOROACETYLOAMINO)ALKILOFOSFONOWYCH (MCA-AA ^P)	
	ORAZ 1-N-(GLICYLOAMINO)ALKILOFOSFONOWYCH	
	(Gly-AA ^P , MeGly-AA ^P I Me ₂ Gly-AA ^P)	
4.1.3.2.1.	SYNTEZA KWASÓW	217
	1-(<i>N</i> -CHLOROACETYLOAMINO)ALKILOFOSFONOWYCH (MCA-AA ^P)	
4.1.3.2.2.	SYNTEZA KWASÓW	218
	1- <i>N</i> -(GLICYLOAMINO)ALKILOFOSFONOWYCH (GIy-AA ^P)	
4.1.3.2.3.	SYNTEZA KWASÓW	218
	1- <i>N</i> -(METYLOGLICYLOAMINO)ALKILOFOSFONOWYCH (MeGly-AA ^P)	
4.1.3.2.4.	SYNTEZA KWASÓW	219
	1- <i>N</i> -(METYLOGLICYLOAMINO)ALKILOFOSFONOWYCH (MeGly-AA ^P)	
4.2.	FIZYCZNE WŁAŚCIWOŚCI AMINOKWASÓW FOSFONOWYCH	220
4.2.1.	WYZNACZANIE ROZPUSZCZALNOŚCI AMINOKWASÓW	220
4.2.1.1.	METODA MIARECZKOWANIA pH-METRYCZNEGO	221
4.2.1.2.	METODA ³¹ P-NMR-OWA	222
4.2.1.2.1.	BADANIA NAD KORELACJĄ POWIERZCHNI SYGNAŁÓW	222
	³¹ P-NMR PAR STANDARD-AA ^P	
4.2.1.2.1.1.	BADANIA NAD KORELACJĄ POWIERZCHNI SYGNAŁÓW	222
	³¹ P-NMR PAR MPA-AA ^P	

4.2.1.2.1.2.	BADANIA NAD KORELACJĄ POWIERZCHNI SYGNAŁÓW	224
	³¹ P-NMR PAR K _N H _{3-N} PO ₄ -AA ^P	
4.2.1.2.2.	WYZNACZANIE WSPÓŁCZYNNIKÓW KORELACYJNYCH	225
	³¹ P-NMR PAR MPA-AA ^P	
4.2.1.2.3.	WYZNACZANIE WSPÓŁCZYNNIKÓW KORELACYJNYCH	231
	³¹ P-NMR PAR K _N H _{3-N} PO ₄ -AA ^P	
4.2.1.3.	BADANIA NAD WYZNACZANIEM ROZPUSZCZALNOŚCI	235
	AMINOKWASÓW FOSFONOWYCH	
4.2.1.3.1.	METODA KRYSTALIZACJI	235
4.2.1.3.1.1.	BADANIA OPTYMALIZACYJNE	235
4.2.1.3.1.2.	WYZNACZANIE ROZPUSZCZALNOŚCI AA ^P METODĄ KRYSTALIZACYJNĄ	237
4.2.1.3.1.3.	WYZNACZANIE ROZPUSZCZALNOŚCI II- I III-RZĘDOWYCH	238
	AMINOKWASÓW FOSFONOWYCH	
4.2.1.3.2.	METODA SONIKACYJNA	239
4.2.1.3.2.1.	BADANIA OPTYMALIZACYJNE	239
4.2.1.3.2.1.1.	WPŁYW CZASU SONIKACJI SUSPENSJI NA ROZPUSZCZALNOŚĆ AA ^P	239
4.2.1.3.2.1.2.	WPŁYW ETAPU MIESZANIA SUSPENSJI PO SONIKACJI NA	239
	ROZPUSZCZALNOŚĆ AMINOKWASÓW FOSFONOWYCH	
4.2.1.3.2.2.	WYZNACZANIE ROZPUSZCZALNOŚCI AMINOKWASÓW METODĄ	240
	SONIKACYJNĄ	
4.2.1.4.	WYZNACZANIE ROZPUSZCZALNOŚCI AMINOKWASÓW AA ^P	242
	W UKŁADACH AA ^P -H ₂ O-ROH	
4.2.1.5.	OZNACZANIE STĘŻEŃ KWASÓW 1-AMINOALKILOFOSFONOWYCH	243
	W UKŁADACH AA ^P -H ₂ O-iPrOH	
4.2.2.	WIDMA ABSORPCYJNE KWASÓW AMINOALKILOFOSFONOWYCH	246
4.2.2.1.	SPEKTROSKOPIA UV I IR	246
4.2.2.1.1.	ANALIZA W UV	246
4.2.2.1.2.	ANALIZA W PODCZERWIENI	247
4.2.2.2.	SPEKTROSKOPIA NMR	249
4.2.2.2.1.	SPEKTROSKOPIA ³¹ P-NMR	249
4.2.2.2.2.	SPEKTROSKOPIA ¹ H-NMR I ¹³ C-NMR	250

4.2.3.	BADANIA TERMOGRAWIMETRYCZNE KWASÓW	252
	AMINOALKILOFOSFONOWYCH	
4.2.4.	BADANIA NAD PIROLIZĄ KWASÓW AMINOALKILOFOSFONOWYCH	254
4.2.4.1.	METODA BADAŃ	254
4.2.4.2.	BADANIA NAD PIROLIZĄ KWASÓW AMINOALKILOFOSFONOWYCH	259
4.2.4.3.	BADANIA NAD PIROLIZĄ KWASÓW AMINOARALKILOFOSFONOWYCH	269
4.2.4.4.	BADANIA NAD PIROLIZĄ INNYCH KWASÓW FOSFONOWYCH	283
4.3.	CHEMICZNE WŁAŚCIWOŚCI AMINOKWASÓW FOSFONOWYCH	284
4.3.1.	BADANIA STABILNOŚCI KWASÓW AMINOALKILOFOSFONOWYCH W	284
	ROZTWORACH ZASAD I KWASÓW	
4.3.1.1.	BADANIA STABILNOŚCI KWASÓW 1-AMINOALKILOFOSFONOWYCH	285
	(AA ^P)W ROZTWORACH ZASAD I KWASÓW	
4.3.1.1.1	BADANIA STABILNOŚCI KWASÓW 1-AMINOALKILOFOSFONOWYCH	286
	(AA ^P) W ROZTWORACH ZASAD	
4.3.1.1.2.	BADANIA STABILNOŚCI KWASÓW 1-AMINOALKILOFOSFONOWYCH	287
	(AA ^P) W ROZTWORACH KWASÓW	
4.3.1.3.	BADANIA STABILNOŚCI KWASÓW	288
	1-(<i>N</i> -ALKILOAMINO)ALKILOFOSFONOWYCH (R-AA ^P , R ₂ -AA ^P)	
	W ROZTWORACH KWASÓW I ZASAD	
4.3.2.	REAKCJE KWASÓW AMINOALKILOFOSFONOWYCH Z H ₂ O ₂	290
4.3.2.1.	STABILNOŚĆ H ₂ O ₂ W WARUNKACH POMIARU	291
4.4.	BADANIA BIOLOGICZNE AMINOKWASÓW FOSFONOWYCH	292
4.4.1.	METODA DYFUZYJNO-KRĄŻKOWA (KIRBY-BAUERA)	292
4.4.2.	METODA ROZCIEŃCZENIOWA W POŻYWCE PŁYNNEJ - METODA	294
	NEFELOMETRYCZNA	
5.	PODSUMOWANIE	298
6.	LITERATURA	300
6.1.	LITERATURA NUMERYCZNIE	300
6.2.	LITERATURA ALFABETYCZNIE	319

1. WPROWADZENIE

Kwasy aminofosfonowe należą do obszernej klasy związków fosforoorganicznych posiadających grupę aminową oraz fosfonową. Często termin *kwasy aminofosfonowe* jest rozszerzany na związki z grupami fosfinowymi i/lub zawierającymi azotowe analogi funkcji aminowej (np. hydrazyny, hydroksyloaminy, etc.) [Kuhkar&Hudson, 2000] ^[1].

Główne typy związków spełniające kryterium nazwy *kwasy aminofosfonowe* i ich pochodnych zestawiono w Tabeli 1-1.

Gwałtowny wzrost zainteresowania związkami klasy P-C-N (szczególnie w ostatnich dekadach) jest odzwierciedlony przez ponad 5000 prac do roku 1987 [Soroka, 1987^[2]; Ryglewski&Kafarski, 1996^[3]], i ponad 6000 prac dotyczących amino-fosfonianów do roku 2001 [Kafarski&Lejczak, 2001]^[4], a także liczbą monografii i prac przeglądowych [Kabachnik i

w-cy, 1968 ^[5]; 1974^[6]; Petrov i w-cy, 1974^[7]; Praier&Rachoń, 1975^[8]; Redmore, 1976^[9]; Kukhar&Solodenko, 1987^[10]; Engel, 1988^[11]; Kudzin 1996, 2005¹; Kudzin i w-cy 2011¹, 2011² ^[12-15]; Uziel&Genet, 1997^[16]; Kukhar&Hudson, 2000^[1]]. Waga biologicznej aktywności aminofosfonianów znalazła swoje odbicie w opublikowaniu szeregu monografii [Kukhar&Hudson, 2000^[1]; Hildenbrand i w-cy, 1983^[17]; Collinsova&Jiracek, 2000^[18]; Romanenko&Kukhar, 2006^[19]; Wardle i w-cy, 2007^[20]; Orsini i w-cy, 2010^[21]], włączając serię przeglądów Wrocławskiej Szkoły Aminokwasów i Peptydów [Kafarski& Mastalerz, 1984^[22]; Kafarski&Lejczak, 1991, 2001, 2009^[4, 23, 24]].

2. CZĘŚĆ TEORETYCZNA

2.1. KWASY AMINOFOSFONOWE

Chronologicznie pierwszy kwas aminofosfonowy - kwas 4-dimetyloaminofenylofosfonowy $(4-Me_2-AP^P)$ – został opisany przez Michaelis'a i Schenk'a w $1890^{[25]}$ a pierwszy kwas aminofosfonowy z pierwszorzędową grupą aminową – kwas aminofenylofosfonowy (3-AP^P) przez Nijk'a w 1922 ^[26]. Szereg *N*,*N*-dialkilowych i arylowych pochodnych ^[27-30], a także kwas 4-aminofenylofosfonowy (kwas fosfanilowy, 4-AP^P) ^[31] otrzymano w kolejnych 2 dekadach (Tab. 2-1.).

Tabela 2-1. Pierwsze kwasy aminofosfonowe - kwasy aminoarylofosfonowe			
Me ₂ N-P(OH) ₂	H ₂ N	Me ₂ N P(OH) ₂	H ₂ N-P(OH) ₂
4-Me ₂ -AP ^P [Michaelis&Schenk, 890] ^[25]	3-AP ^P [Nijk, 1922] ^[26]	2-Me ₂ -AP ^{5-P} [Płażek&Sasyk,1934] ^[29]	4-AP ^P [Bauer, 1941] ^[31]

Chemia kwasów 1-aminoalkilofosfonowych (1- AA^P) – analogów aminokwasów białkowych (1- AA^C) miała swój początek wraz z opracowaniem przez Pikl'a w roku 1943 ^[32] syntezy najniższego homologu tej klasy - kwasu aminometylofosfonowego (Gly^P) (Tab. 2-2.). Bardziej intensywne badania nad tą klasą związków podjęto w okresie powojennym, włączając badania Chavane opublikowane w 1947 r. nad właściwościami fizyko-chemicznymi kwasów ω -aminoalkilfosfonowych (ω - AA^P ; n=1-10) ^[33-36].

Tabela 2-2. Reprezentatywne kwasy aminoalkilofosfonowe			
$H_2 N - C - P(OH)_2$	$(HO)_2 P \xrightarrow{V} - C \xrightarrow{H} C \xrightarrow{H} C \xrightarrow{H} C - OH$		
Gly [₽]	ω-AA ^P	Glu ^{γ-P}	

Interesujące właściwości chelatujące pierwszego fosfonowego kompleksonu - NMPDA ^[37], oraz EDTMP – fosfonowego analogu EDTA^[38] stały się impulsem do dalszych badań nad syntezą nowych aminofosfonianowych kompleksonów (Tab. 2-3.).

Tabela 2-3. Reprezentatywne kompleksony i ich aminofosfonowe analogi [Kabachnik i w-cy, 1968] ^[6]				
	[Struktura / Symbol]			
СН ₂ СО ₂ Н N—СН ₂ СО ₂ Н СН ₂ СО ₂ Н NTA	CH_2CO_2H NCH_2CO_2H $CH_2P(O)(OH)_2$ NMPDA	$\begin{array}{c} CH_2CO_2H\\ N-CH_2P(O)(OH)_2\\ CH_2P(O)(OH)_2\\ NDMPA \end{array}$		
$\begin{array}{c} CH_{2}P(O)(OH)_{2}\\ N-CH_{2}P(O)(OH)_{2}\\ CH_{2}P(O)(OH)_{2}\\ NTMP\end{array}$	$CH_{2}CO_{2}H$ $N - CH_{2}CO_{2}H$ $CH_{2}CH_{2}P(O)(OH)_{2}$ $NEPDA$	$CH_2CH_2CO_2H$ $N-CH_2CO_2H$ $CH_2P(O)(OH)_2$ $NMPAPr$		
H CH ₂ CO ₂ H N CH ₂ CO ₂ H H EDDA	EDMP			
$CH_{2}P(O)(OH)_{2}$ $^{N}CH_{2}CO_{2}H$ $^{C}H_{2}CO_{2}H$ $^{C}H_{2}P(O)(OH)_{2}$ EDDMPDA	$CH_{2}P(O)(OH)_{2}$ $(CH_{2}CO_{2}H)$ $(CH_{2}P(O)(OH)_{2})$ $(CH_{2}P(O)(OH)_{2})$ $(CH_{2}P(O)(OH)_{2})$ $EDTMPA$	$CH_{2}P(O)(OH)_{2}$ $(CH_{2}P(O)(OH)_{2})$ $(CH_{2}P(O)(OH)_{2})$ $(CH_{2}P(O)(OH)_{2})$ $(CH_{2}P(O)(OH)_{2})$ $EDTMP$		
$CH_2P(O)(OH)_2$ $N^CH_2P(O)(OH)_2$ $N^CH_2P(O)(OH)_2$ $CH_2P(O)(OH)_2$ $CHDATP$	PDADIP [X=CH ₂]; OPDADIP [X=CH ₂]; SPDADIP [X=S]	$\begin{array}{c} & H - CMe_2P(O)(OH)_2 \\ & X \\ & \\ & M - CMe_2P(O)(OH)_2 \\ & \\ & DETADIP [R=H]; \\ & DETAPTMP [R=CH_2P(O)(OH)_2] \end{array}$		

2.2. WŁAŚCIWOŚCI BIOLOGICZNE KWASÓW AMINOALKILOFOSFONOWYCH

Analogia strukturalna aminokwasów białkowych (1-AA^C) i analogów fosfonowych (1-AA^P) sugeruje potencjalną biologiczną aktywność kwasów aminoalkilofosfonowych i uzasadnia ich występowanie w materii biologicznej.

Badania biochemiczne nad kwasami aminoalkilofosfonowymi zostały zainicjowane przez dwa doniosłe odkrycia: syntezę i badania enzymatyczne fosfonowego analogu kwasu glutaminowego (Glu^{γ-P})^[39] oraz izolację z materiału biologicznego kwasu 2aminoetylofosfonowego (β-Ala^P)^[40] (Tab. 2-2.). Odkrycia te stymulowały kolejne programy naukowe skierowane na eksploracje w dziedzinie biologicznie aktywnych fosfonianów i wykazały na szerokie rozpowszechnienie kwasów aminofosfonowych w układach biologicznych (bakterie, pierwotniaki, bezkręgowce) [Hildenbrand i w-cy, 1983^[17]; Kafarski&Mastalerz, 1984^[22]] (Tab. 2-4.).

Tabela 2-4. Występujące w naturze kwasy aminofosfonowe				
[Hildenbrand i w-cy, 1983		^{17]} ; Kafarski&Mastalerz, 1984 ^[22]]		
AA ^P		Pierwsza izolacja		
Struktura	Symbol	Organizm	Literatura	
0		Ciliated protozoa (Orzęski)	Horiguchi&Kandatsu, 1959, 1962 ^[40, 41]	
H ₂ N P(OH) ₂	β-Ala ^P	Organizmy morskie	Kittredge i w-cy, 1962 ^[42] ; Kittredge&Hughes, 1964 ^[43]	
		Tkanki ludzkie	Shimizu i w-cy, 1965 ^[44] ; Alhadeff i w-cy, 1970 ^[45] , 1971 ^[46] ; Tan&Tan, 1989 ^[47]	
	β-MeAla ^P	Morskie bezkręgowce	Quin&Quin, 2001 ^{[48}]	
Me _n H _(3-n) N P(OH) ₂	β -MeAla ^P β-Me ₂ Ala ^P β-Me ₃ Ala ^P	Anthopleura xantogrammica (ukwiał)	Kittredge i w-cy, 1967 ^[49]	
0	Asp ^{β-P} (R-OH)	Zoanthus sociatus (koralowiec)	Kittredge&Hughes, 1964 ^[43]	
но РОН	(N=OH)	Tkanki ludzkie	Tan&Tan, 1989 ^[47]	
NH ₂ R	Asp ^{β-} ^{P(H)} (R=H)	Streptomycis hygroscopicus (bakt. G+)	Seto i w-cy, 1983 ^[50]	
0 0 	Glu ^{-γ-P(Me)}	Streptomycis viridochromegenes	Bayer i w-cy, 1972 ^[51]	
HO \uparrow R HO \uparrow R	Glu ^{-γ-P(H)}	Streptomycis hygroscopicus	Seto i w-cy, 1983 ^[50, 52]	
$H_2N \xrightarrow{P(OH)_2} OH$	lser ^P	Acanthamoeba castellani (ameba)	Korn i w-cy, 1973 ^[53]	
HO-O H ₂ N H ₂ N H ₂ N	Tyr ^P	Actinomycetes strain; Actinomedura spiculosospora nov. (bakt.G+)	Kasa i w-cy, 1982 ^[54]	
	FR-900098, (R=Me)	Streptomyces rubelloinurinus sp. nov.	Okuhara i w-cy, 1980 ^{1[55]}	
	FR-31564 (R=H)	Streptomyces lavendulae		
R N PO ₃ H ₂	FR-32863 (R=H),	Streptomyces lavendulae	Okuhara i w-cy, 1980 ^{2[56]}	
R N PO ₃ H ₂ OH OH	FR-33289 (Me)	Streptomyces rubellomurinus subsp. indigoferus.	Okuhara i w-cy, 1980 ^{2 [56]}	
$ \begin{vmatrix} H & O \\ H_2 N - C - C = C - C - P \\ I & H & H_2 \\ CO_2 H & OH \end{vmatrix} $	L-APP	Rhizokticyny (A, B, D)	Fredenhagen i w-cy, 1995 ^[57]	

Eksperymenty biochemiczne wykazały, że kwasy aminofosfonowe są zdolne do tworzenia stabilnych zasad Schiff'a z pirydoksalem i co za tym idzie do uczestniczenia w warunkach fizjologicznych w reakcjach transaminacji ^[1,23,58]. Analogia strukturalna aminokwasów fosfonowych i białkowych implikuje również mimetyczne zachowanie AA^P wyrażane np. przez inhibicję szeregu enzymatycznych reakcji, charakterystycznych dla naturalnych aminokwasów ^[22].

Wg. Lejczak, już w połowie lat 80-tych literatura dot. biologicznej aktywności aminofosfonianów przekraczała 1000 pozycji. W badaniach wykazano między innymi, inhibicyjne działanie kwasów aminofosfonowych i ich pochodnych dla ponad 60 enzymów, wszystkich głównych klas enzymatycznych ^[59].

Reprezentatywne przykłady 1-aminoalkilofosfonianowych inhibitorów enzymatycznych zestawiono w Tabeli 2-5.

Tabela 2-5. Kwasy 1-aminoalkilofosfonowe – inhibitory enzymów			
Inhibitor	Enzym	Autorzy/Literatura	
Gly ^P	Serine transhydroksymetylotransferaza (EC 2.1.2.1.)	Kafarski&Mastalerz, 1984 ^[22]	
	Alkaline phosphataza (EC 3.1.3.1)	Landt i w-cy, 1978 ^[60]	
	L-Alaniny racemaza (EC 5.1.1.1)	Neuzil&Cassaigne, 1980 ^[61]	
	D-Ala-D-Ala syntetaza (EC 6.3.2.4)	Kafarski&Mastalerz, 1984 ^[22]	
Ala ^P	Alaniny dehydrogenaza (EC 1.4.1.1)	Kafarski&Mastalerz, 1984 ^[22]	
	D-Aminokwasowa transferaza (EC 2.6.1.21)	Soper&Manning, 1981 ^[62]	
	L-Alaniny racemaza (EC 5.1.1.1)	Neuzil&Cassaigne, 1980 ^[61] ; Neuzil i w-cy, 1975 ^[63] ; Lambert&Neuhaus, 1972 ^[64] ; Adams i w-cy, 1974 ^[65] ; Allen i w-cy, 1978 ^[66] ; Atherton i w-cy, 1979 ^[67] ; Badet&Walsch, 1985 ^[68] ;	
D-Ala ^P	D-Ala-D-Ala syntetaza (EC 6.3.2.4)	Neuzil i w-cy, 1988	
		Atherton i w-cy, 1979 ^[67]	
L-Ala ^P	D-Ala-D-Ala syntetaza (EC 6.3.2.4)	Neuzil i w-cy, 1975 ^[63]	
TFA-Ala ^P	Alkaliczna fosfataza (EC 3.1.3.1)	Liljia i w-cy, 1975 ^[70]	
		1741	
Val ^P	Valyl-t-RNA syntetaza (EC 6.1.1.9)	Neale, 1970 ^[/1] ; Anderson&Fowden, 1970 ^[72]	
Leu ^P	Leucyl-t-RNA syntetaza (EC 6.1.1.4)	Neale, 1970 ^[71]	
Ileu ^P	Leucyl-t-RNA syntetaza (EC 6.1.1.4)	Neale, 1970 ^[71] :	
		Strater&Lipscomb, 1995 ^[73]	
A cm ^{β-P}	Asperaciau suptatora (FC 6 2.1.1)	Koforski? Mostolorz 1084 ^[22]	
Asp	Asparaginy syntetaza (EC 6.3.1.1)		
a-P	Aspartaza (EC 4.3.1.1)	Kafarski&Mastalerz, 1984	
Asp ^{u-r}	Asparaginy syntetaza (EC 6.3.1.1)	Kafarski&Mastalerz, 1984	
Glu ^{γ-P}	Glutaminy syntetaza (EC 6.3.1.2)	Kafarski&Mastalerz, 1984 ^[22]	
	γ-Glutamylcysteiny syntetaza (EC 6.3.2.2)	Sekura&Meister, 1977 ^[74]	
Clu ^{α-P(Me)}	(Lutaminu suntataza (EC 6 2 1 2))	Logush in ov. 1086 ^[75]	
Giù			
Ara ^P	Arginaza (EC 2 5 2 1)	Kafarchi&Mastalorz 1084 ^[22]	
	Arginiaza (EC 3.5.3.1) Arginiaza (EC 3.5.3.6)	12000000000000000000000000000000000000	
Pro ^P	Angiotensin-converting enzyme [ACE]	Petrillo&Spitzmiller 1979 ^[77]	
P P			
Phe	Pirogronianowa kinaza (EC 2.7.1.40)	IZDICKA-DIMITRIJEVIC I W-CY, 1981	
	Fenylalanyl-t-RNA syntetaza (EC 6.1.1.2)	Anderson&Fowden, 1970	
	Fenylalaniny ammonialyaza (EC 4.1.3.5)	Janas i w-cy, 1985 **;	
P		[01]	
Tyr'	Tyrozynaza (EC 1.10.3.1)	Cassaigne i w-cy, 1967 ^[01] ;	
		Lejczak i w-cy, 1987	
	Tyrozyny aminotransferaza (EC 2.6.1.5)	Iron i w-cy, 1981	
	I yrosyl-t-RNA syntetaza (EC 6.1.1.1)	Iron I w-cy, 1981 ¹⁰⁰ ;	
cu.α-P(Me) = c		Anderson&Fowden, 1970	
Glu ^x (^{we}) – Fosfinotricyna (<i>"Phosphinotricin"</i>).			

Potencjalne biochemiczne właściwości AA^P stanowiły silny bodziec dla programów badawczych ukierunkowanych na metabolizm fosfonowych pochodnych, zwłaszcza związków klasy P-C-N ^[11,84]. Wynikiem powyższych badań były dwa spektakularne wydarzenia: odkrycie silnej aktywności antybakteryjnej mieszanych fosfonopeptydów (np. Ala-Ala^P) ^[66,67], oraz odkrycie herbicydalnych aminofosfonianów, w tym herbicydu fosfonometylenoglicyny; PMG ^[85].

Odkrycia z zakresu biochemii spowodowały szybki rozwój na polu syntezy fosfonopeptydów ^[26, 86-89] i herbicydów aminofosfonowych^[23, 89] (Tab. 2-5.). Obecnie liczba opisanych fosfonopeptydów przekracza 200.

Reprezentatywne herbicydy aminofosfonowe są przedstawione w Tabeli 2-6.

Tabela 2-6. Reprezentatywne aminofosfonianowe herbicydy [Sikorski&Logush, 1988] [84]				
[Struktura / Symbol]				
$\begin{array}{c} H_2 & H_2 \\ O_{C} & C_{N} & C_{H} \\ O_{C} & P(OH)_2 \\ OH & H \end{array}$	$\begin{array}{c} H_2 & H_2 \\ O_{C} & C & V \\ C & V & P(OH)_2 \\ OH & NH_2 \end{array}$	$\begin{array}{c} H_2 \\ O \\ C \\ C \\ H \\ H \\ OH \end{array} \begin{array}{c} H_2 \\ C \\ C \\ P \\ OH \end{array} \begin{array}{c} H_2 \\ C \\ P \\ OH \end{array} \begin{array}{c} O \\ P \\ OH \end{array} \begin{array}{c} O \\ O \\ P \\ OH \end{array} \begin{array}{c} O \\ O \\ P \\ OH \end{array} \begin{array}{c} O \\ O $		
PMG	APMG	HPMG		
$\begin{array}{c} H_{2} & H_{2} & O \\ O_{C} & C & N \\ I \\ OH & H_{2} & O \\ H_{2} & O \\ C & P(OH)_{2} \\ C & P(OH)_{2} \\ H_{2} & O \end{array}$	$\begin{array}{c} O\\ II\\ EtO-C \ H \\ C \\ C \\ C \\ C \\ H \\ C \\ P(OH)_2 \\ H \\ O \\ H \end{array}$	$H_2N \xrightarrow{R} H \xrightarrow{H} P(OH)_2$		
NDMPA	EMAMP	AC-AA ^P		
H_2N P H O-H	$\begin{array}{cccc} O & H_2 & O \\ Me & H_2 & H_2 & H_2 \\ P & H_2 & C_2 & C_2 \\ H & C_2 & C_2 & H_2 \\ H & H_2 & H_2 \end{array}$	$\begin{array}{ccccc} Me & H_2 & H_2 \\ P & H_2 & C \\ P & C & C \\ P & C & C \\ H_2 & H_2 \end{array} \\ H_2 & NH_2 \end{array} \\ Ala-Ala$		
	BASTA	BIALAPHOS		
O P(OBu) ₂ N-Bu H	R = N H H H H H H H H H H H H H H H H H H	$ \begin{array}{c} $		
TRAKEPHON	MAP	PrAMDP		

Najważniejsze wydarzenia związane z badaniami nad kwasami aminofosfonowymi:

- odkrycie pierwszego aminofosfonianowego inhibitora enzymu syntetazy glutaminy [Mastalerz, 1959]^[39];
- odkrycie naturalnego aminokwasu β-Ala^P (pierwotniaki żwacza owiec) [Horiguchi & Kandatsu, 1959]^[40];

- odkrycie herbicydu glifosatu [Franz i w-cy 1974]^[85];
- odkrycie przeciwbakteryjnej fosmidomyciny [Okuhara i w-cy, 1980]^[55,56] i alafosfaliny [Allen i w-cy, 1978]^[66];
- odkrycie przeciwnadciśnieniowego fozynoprylu [Karanewsky i w-cy,1988]^[90];
- odkrycie neuroaktywnych aminofosfonianów [Tinge-Moreaud, 1978]^[91];
- bisfosfoniany o aktywności antiosteoporetycznej [Russell, 2006]^[92];
- odkrycie przeciwwirusowych fosfonianowych nukleozydów acyklicznych (ACPNs) [de Clercq i w-cy, 1986;. de Clercq, 2011]^[93, 94].

Główne odkrycia w zakresie badań biologicznych nad właściwościami aminofosfonianów, które były grupą związków niemal nieznaną do roku 1959 [Kafarski&Lejczak, 2009]^[24], prezentuje Tabela 2-7.

Tabela 2-7. Główne wydarzenia w biochemii aminofosfonianów				
$H_2N+C+H_2PO_3H_2$	$H_2O_3P + C_{H_2} + C_2 + C_2H_{NH_2}$	$\begin{array}{c} HO_2C-\!$	$ \begin{array}{ c c c c c } & O & O & \\ H_2 N - C & & H & -C & -PO_3 H_2 \\ & H & & H & -H & -H & -H \\ & Me & & Me & \\ \end{array} $	
β-Ala ^P pierwszy odkryty AA ^P wyst. w nature [Horiguchi&Kandatsu, 1959]	Glu ^{yP} <i>inhibicja enzymów</i> [Mastalerz, 1959]	Glyphosate pierwszy globalny herbicyd klasy PCN [Franz, 1974]	Alafosfalina antybiotyk [Allen i w-cy, 1978]	
$H_{2}O_{3}P - \left[C - CO_{2}H \right]_{n} = C - CO_{2}H$ $H_{2}O_{3}P - \left[C - CO_{2}H \right]_{n} = C - CO_{2}H$ NH_{2} $Neuroaktywne AA^{P}$	$\begin{array}{c} & PO_{3}H_{2} \\ H_{2}N \begin{pmatrix} -C \\ H_{2} \end{pmatrix} \stackrel{1}{n} \stackrel{-}{C} \stackrel{-}{-} OH \\ H_{2} PO_{3}H_{2} \\ BNPs \\ Antyosteoporetyczne \\ [Russell , 2006] \end{array}$	$R = C = N = \left[\begin{array}{c} O \\ H \\ - C \\ OH \end{array} \right]^{3} PO_{3}H_{2}$ $Fosmidomycyna$ $[Okuhara i w-cy, 1980]^{[55,56]}$	O C C C C C C C H C N C C H C C C C C C C C C C C C C	
$H_2O_3P \longrightarrow O \longrightarrow HO$	H ₂ O ₃ P O HO	H ₂ O ₃ P O	Ade	
[(S)-HPMPA	HPMPC; Cidofovir	PMPA; Tenofovir	PA; Tenofovir Adefovir; PMEA	
<i>pierwszy antywirusowy</i> <i>lek typu ACPN</i> [De Clercq i w-cy, 1986]	Handlowe leki antywirusowe			

Znaczenie związków klasy PCN obrazuje wielokierunkowość prowadzonych nad nimi badań dotyczących: metod syntezy kwasów aminofosfinowych (AA^{PH})^[95] i aminofosfonowych (AA^P)^[1,12-15,96-100], aktywności optycznej AA^P i ich syntezy asymetrycznej^[10,16,101-103], właściwości fizycznych^[104-108], analizy^[109-117], badań strukturalnych^[118], właściwości kompleksujących ^[5,110,119-127], występowania w materii ożywionej^[17,22,109,128-130], właściwości biologicznych ^[4,11,22,59,89,131-145], farmakologicznych^[4,146,7]; agro-chemicznych ^[13,148-156], aplikacji przemysłowych ^[5,7,157-159], katalizatorów w syntezie organicznej ^[160, 161].

2.3. BADANIA NAD SYNTEZĄ KWASÓW 1-AMINOALKILOFOSFONOWYCH

Właściwości kwasów aminofosfonowych i ich pochodnych oraz potencjalne perspektywy ich wykorzystania w wielu dziedzinach wywołały rosnące zapotrzebowanie na wydajne metody syntezy tej klasy związków ^[1,5-15,96,162-163].

Liczne metody syntezy kwasów aminoalkilofosfonowych można klasyfikować wg prezentowanego poniżej systemu (Sch. 2-1.).

R, R¹ = H, alkil, aralkil, aryl; R², R³ = H, H; H, alkil; H, aralkil; H, aryl; cykloalkil; alkil, aryl; R⁴ = alkil (Me, Et, iPr), aryl (Ph), aralkil (Bn) i H; X = O, S; X¹ = Cl, HO, RO, ArO; X² = Cl, Br, RO; Y = BnO, PhNH; Y¹ = R, NH₂, RNH, R₂N, HO; Y² = Cl, HO (**3.2.**); Me, Ph, RO-C(O)-(**3.3.**); N^{*} = N₃, NO₂, H₂N-NH

Schemat 2-1. Klasyfikacja metod syntezy kwasów 1-aminoalkilofosfonowych

Metody syntezy kwasów 1-aminofosfonowych można podzielić na następujące kategorie:

- 1. Metody przebiegające z równoczesnym tworzeniem systemu wiązań P-C-N:
- 1.1. Metoda Kabachnika-Fieldsa;
- 1.2. Amidoalkilowanie estrów kwasu fosforowego(III);
- 1.3. Amidoalkilowanie chlorków kwasu fosforowego(III);
- 2. Metody addycji do wiązań wielokrotnych związków z funkcją P-H [P-H \rightarrow P-C-N]

(hydrofosfonylowanie i/lub hydrofosfinylowanie imin, triazyn, hydrazynów, azyn, oksymów, nitronów i nitryli).

- 3. Metody polegające na α -C aminowaniu fosfonianów [P + N \rightarrow P-C-N]:
- 3.1. Aminowanie redukcyjne 1-ketofosfonianów;

3.2. Nukleofilowe aminowanie alkilofosfonianów;

3.3. Elektrofilowe aminowanie alkilofosfonianów.

4. Metody oparte na nukleofilowym podstawieniu udziałem nukleofila fosforoorganicznego

 $[P + X-C-N \rightarrow P-C-N + X]$ (reakcja Arbuzowa, metody pochodne).

5. Metody wykorzystujące modyfikacje szkieletu węglowego aminofosfonianów

 $[P-C(R)-N \rightarrow P-C(R^*)-N]$:

5.1. Nukleofilowe lub elektrofilowe alkilowanie pochodnych fosfonoglicyny;

5.2. Modyfikacje łańcucha bocznego aminoalkilofosfonianu.

6. Metody wykorzystujące modyfikacje funkcji fosforogennej związków typu P-C-N

 $[P-C-N \rightarrow P *-C-N]$

(utlenianie kwasów 1-aminoalkilofosfinowych do analogów 1-aminoalkilo-fosfonowych).

7. Metody wykorzystujące modyfikacje funkcji azotogennej związków typu P-C-N

[PCN \rightarrow PCN*] (redukcja 1-azydoalkilofosfonnianów i 1-nitroalkilofosfonnianów, redukcja oksymów, hydrazonów i azyn 1-ketofosfonianów, itp.).

8. Inne metody.

Główne wydarzenia w chemii fosfonowych analogów aminokwasów białkowych (kwasów 1aminoalkilofosfonowych z pierwszorzędową grupą aminową: R²=R³=H; Sch. 2-2.) miały miejsce na przełomie lat 1970/1980 i związane były z adaptacją dwóch reakcji - reakcji amidoalkilowania Engelmana-Pikla ^[32] oraz reakcji kondensacji Biruma ^[164].

Przełomowym osiągnięciem w opisywanej dziedzinie była kondensacja Biruma^[164], która otwiera łatwy dostęp do związków fosfonowych klasy N-C-P - synteza ureidoalkanofosfonianów [CmAA^P(OR)₂] i urylenebisalkanofosfonianów ([Cm[AA^P(OR)₂]₂).

Zakres pochodnych syntetyzowanych wg. procedury Biruma został rozszerzony do innych amidowych komponentów, w tym sulfonamidów i karbaminianów^[165-170].

Produkty kondensacji Birum'a zawierają charakterystyczny dla 1-AA^P układ wiązań P-C-N. Próby degradacji, przeprowadzone przez Biruma dla związków Cm-AA^P(OPh)₂ i/lub *Cm*-[AA^P(OPh)₂]₂, wykazały stabilność ugrupowania amidowego w zastosowanych warunkach degradacji (Sch. 2-3.).

Schemat 2-3. Degradacje produktów kondensacji Biruma

Modyfikacje reakcji Biruma w których jako substraty amidowe wykorzystano zamiast mocznika (tiomocznika) *N*-fenylotiomocznik (A: metoda PTC aminofosfonianowa), *N*-fenylomocznik (B: metoda PC aminofosfonianowa) i/lub *O*-benzylokarbaminiany (C: Z-aminofosfonianowa metoda Birum'a-Oleksyszyn'a) (Sch. 2-4.). Modyfikacja reakcji amidoalkilowania Engelmana-Pikla przez Oleksyszyna doprowadziły do procedur syntezy, przewyższających metody wcześniej opisane, zarówno pod względem prostoty jak i wydajności ^[2, 12-15, 172-176].

R = alkyl, aryl, aralkyl; R¹ = Et, Ph; X = O, S; Y = Ph-NH, BnO

Schemat 2-4. Metody syntezy kwasów 1-aminoalkilofosfonowych wykorzystujące kondensacje typu Biruma

W rezultacie badań nad syntezą lista fosfonowych analogów aminokwasów białkowych szybko została wypełniona (Tab. 2-8.), wpływając na przyspieszenie badań dotyczących biochemicznej i biologicznej aktywności AA^{P[1]}.

Tabela 2-8. Fosfonowe analogi białkowych aminokwasów					
Kwas Aminofosfonowy	Pierwsza i/lub	Kwas Aminofosfonowy	Pierwsza i/lub reprezentatywna praca		
Struktura /(AA ^P)	reprezentatywna praca	Struktura / (AA ^P)			
$H_2N-C-P(O)(OH)_2$ H_2 (Gly ^P)	Pikl, 1943 ^[32] ; Chavane, 1947 ^[33] ; Oleksyszyn &Subotkowska, 1982 ^[177]	(Trp^{P})	Subotkowski i w-cy, 1981 ^[193] ; Chen i w-cy, 1983 ^{[194];} Rogers&Stern, 1992 ^[195]		
$H_2N - C - P(O)(OH)_2$ Me (Ala ^P)	Chalmers&Kosolapoff, 1953 ^[178] ; Oleksyszyn & Tyka, 1977 ^[172] ; Kudzin & Stec, 1978 ^[171]	$\mathbb{A}_{H} = \mathbb{A}_{H} $	Merrett i w-cy, 1988 ^{(196]} ; McCleary&Tuck, 1989 ^{(197]} ; Khomutov, 1990 ^{(198]}		
$H_2N - C - P(O)(OH)_2$ $CHMe_2$ (Val ^P)	Chambers&Isbell, 1964 ^[179] ; Oleksyszyn&Tyka, 1977 ^[172] ; Kudzin&Stec, 1978 ^[171]	$H_2N - C - P(O)(OH)_2$ $H_2N - (CH_2)_4$ (Lys^{P})	Baylis i w-cy, 1984 ^[189] ; Hamilton i w-cy, 1993 ^[199]		
$H_2N - C - P(O)(OH)_2$ CH_2CHMe_2 (Leu ^P)	Berlin i w-cy, 1968 ^[180] ; Oleksyszyn&Tyka, 1977 ^[172] ; Kudzin&Stec, 1978 ^[171]	$H_{2}N - \overset{H}{\subset} - P(O)(OH)_{2}$ $H_{2}N - \underset{NH}{\overset{H}{\amalg}} N - (\overset{H}{C}H_{2})_{3}$ (Arg ^P)	Lacoste i w-cy, 1972 ^[200]		
$\begin{array}{c} H_2 N - \begin{matrix} H \\ - P(O)(OH)_2 \\ I \\ CH(Me)Et \end{matrix} (IIe^{P}) \end{array}$	Berlin ea, 1968 ^[180] ; Łukszo&Tyka, 1977 ^[181] ; Kudzin&Stec ,1978 ^[171]	$\begin{array}{c} H_{2}N-\overset{H}{C}-C(O)OH\\ \overset{I}{C}H_{2}-P(O)(OH)_{2}\\ (Asp^{\beta-P})\end{array}$	Chambers&Isbell, 1964 ^[179] ; Smith i w-cy, 1990 ^[201]		
$\begin{array}{c} H_2N - \begin{matrix} H \\ C \\ I \\ CH_2Ph \end{matrix} (Phe^{P}) \end{array}$	Chambers&Isbell, 1964 ^[179] ; Oleksyszyn&Tyka, 1977 ^[172] ; Kudzin&Stec, 1978 ^[171]	$H_{2}N - C - P(O)(OH)_{2}$ $CH_{2} - C(O)OH$ $(Asp^{\alpha \cdot P})$	Soroka&Mastalerz, 1976 ¹ , 1976 ² ^[202, 203] , Campbell i w-cy, 1982 ^[204]		
N H P(O)(OH) ₂ (Pro [°])	Petrillo&Spitzmiller, 1979 ^[77] ; Subotkowski i w-cy, 1980 ^[182] ; 1983 ^[183]	$\begin{array}{c} H_{2}N-\overset{H}{\underset{C}{C}}-P(O)(OH)_{2}\\ CH_{2}-P(O)(OH)_{2}\\ (Asp^{P,P})\end{array}$	Issleib i w-cy, 1983 ^[205] ; Kudzin i w-cy, 1994 ^[112]		
$H_2N-C-P(O)(OH)_2$ H_2-OH (Ser ^P)	Zygmunt&Mastalerz, 1978 ^[184] , 1981 ^[185] ; Lejczak i w-cy, 1984 ^[186]	$H_2N - C - P(O)(OH)_2$ $CH_2 - C(O)NH_2$ $(AsnP)$	Soroka&Mastalerz, 1976 ¹ , 1976 ² ^[202, 203] ,		
$\begin{array}{c} H_2 N - \overset{H}{\underset{C}{C}} - P(O)(OH)_2 \\ \overset{I}{\underset{C}{CH_2}} CH_2 SMe \end{array} (Met^{^{P}}) \end{array}$	Kudzin&Stec, 1980 ^[187]	$\begin{array}{c} H \\ H_{2}N-\overset{H}{\underset{C}{C}-C(O)OH} \\ \overset{I}{\underset{C}{H_{2}}CH_{2}}\text{-}P(O)(OH)_{2}} \\ & \qquad \qquad$	Mastalerz, 1957 ^[206] ; Mastalerz, 1959 ^{2 [207]} ; Chambers&Isbell, 1964 ^[179]		
$\begin{array}{c} H_2 N - \begin{matrix} H \\ C \\ I \\ C \\ H_2 - S H \\ (Cys^{P}) \end{matrix}$	Kudzin &Stec, 1983 ^[188]	$\begin{array}{c} H_{2}N - \begin{matrix} H \\ C - P(O)(OH)_{2} \\ I \\ CH_{2}CH_{2} - C(O)OH \\ (Glu^{\alpha \cdot P}) \end{matrix}$	Oleksyszyn i w-cy, 1982 ^[208] ; Antczak&Szewczyk, 1985 ^[209]		
$H_2N - C - P(O)(OH)_2$ $H_2N - C - P(O)(OH)_2$ H(Me) - OH (ThrP)	Baylis i w-cy, 1984 ^[189] ; Bongini i w-cy, 1994 ^[190]	$H_2N - C - P(O)(OH)_2$ I $CH_2CH_2 - P(O)(OH)_2$ (Glu ^{P,P})	Issleib i w-cy, 1983 ^[205] ; Kudzin i w-cy, 1994 ^[112]		
$H_{2}N - C - P(O)(OH)_{2}$ $CH_{2}Ph - OH$ (Tyr^{P})	Lejczak i w-cy, 1987 ^[82] ; Krzyżanowska& Pilichowska, 1988 ^[191] ; Drescher i w-cy, 1995 ^[192]	$\begin{bmatrix} -S - C - C - P(O)(OH)_2 \\ H_2 & H_2 \\ NH_2 \end{bmatrix}_2 ([Cys^P]_2)$	Kudzin, 1981 ^[210]		

2.4. WŁAŚCIWOŚCI FIZYCZNE KWASÓW AMINOALKILOFOSFONOWYCH

W fazie stałej oraz w silnie polarnych rozpuszczalnikach aminokwasy występują w niskoenergetycznej, bipolarnej strukturze jonu obojnaczego. Sieć jonowa krystalicznych form jest przyczyną wysokiej temperatury rozkładu aminokwasów, a także słabej rozpuszczalności w rozpuszczalnikach niepolarnych.

Istotnym dowodem na występowanie jonowej, dipolarnej struktury aminokwasów jest brak typowych pasm absorpcji grupy NH_2/N^+H_3 i $P(O)(OH)_2/P(O)(O^-)(OH)$ w widmach IR oraz struktury krystalograficzne. Przeglądu danych rentgenowskiej analizy strukturalnej aminokwasów dokonali Choi i McPartlin^[118].

2.4.1. TEMPERATURY TOPNIENIA KWASÓW AMINOALKILOFOSFONOWYCH

Badania krystalograficzne AA^P wykazały na występowanie tych związków w stanie stałym w formie jonów obojnaczych [Choi&McPartlin, 2000]^[118]. Skutkiem występowania aminokwasów fosfonowych w formie jonu obojnaczego (*zwitterion*) są ich wysokie temperatury topnienia czy rozkładu.

W Tabeli 2-9. przedstawiono wartości temperatur topnienia (rozkładu) fosfonowych analogów aminokwasów białkowych z reprezentatywnych prac.

Tabela 2-9. Porównanie temperatur topnienia/rozkładu aminokwasów białkowych (AA ^C)				
	i ich fosfonowych	analogów (AA	²)	
AA ^c	Temp. topn./ dekomp. ^[194] [°C]	AA ^P	Temp. topn./dekomp. ^[Literatura] [°C]	
			285 ^{[Moedritzer, 1972][212]} ;	
	202		286,5 ^[Chambers&Issbell, 1964] [179];	
Gly	292	Gly	>300 ^[Chalmers&Kosolapoff, 1953] [178]	
			338-344 ^{[Soroka, 1989][213]}	
			271-273 ^{[Oleksyszyn i w-cy, 1978][173]} ;	
			275-276 ^{[Kudzin&Stec, 1978][171]} ;	
Ala	290	Ala ^P	278 ^{[Berlin i w-cy, 1968][180]} ;	
			283-285 ^{[Chambers&Issbell, 1964][179]} ;	
			340 ^[Chalmers&Kosolapoff, 1953] [178]	
			261-262 ^{[Kudzin&Stec, 1978][171]} ;	
			271 ^{[Chambers&Isbell, 1964][179]} ;	
Val	215	Val ^P	274 ^{[Berlin i w-cy, 1968][180]} ;	
vai	315	var	276-278 ^{[Asano i w-cy, 1973][214]} ;	
			279-283 ^{[Soroka, 1990][175]} ;	
			280-281 ^{[Berry i w-cy, 1972][215]}	
			271-272 ^{[Asano i w-cy, 1973][214]} ;	
Leu	337	Leu ^P	279 ^{[Berlin i w-cy, 1968][180]} ;	
			293-294 ^{[Baylis i w-cy, 1984][189]}	
			256-258 [d] ^{[Hammerschmidt&Wuggenig, 1999][216]} ;	
lle	284	lle [₽]	274 ^{[Berlin i w-cy, 1968][180]} ;	
			276-277 ^{[Asano i w-cy, 1973][214]}	
			266-267 ^{[Subotkowski i w-cy, 1980][182]} ;	
Pro	222	Pro ^P	275 ^{[Issleib i w-cy, 1982][217]} ;	
			275-280 ^{[Petrillo&Spitzmiller, 1979][77]}	
			225-227 ^{[Chalmers&Kosolapoff, 1953][178]} ;	
Dho	201		267-269 ^{[Kudzin&Stec, 1978][171]} ;	
Plie	204	Plie	276-277 ^{[Asano i w-cy, 1973][214]} ;	
			281 ^{[Chambers&Isbell, 1964][179]}	
			80 ^{[Zygmunt&Mastalerz, 1978][184]} ;	
			186-188 [d] ^{[Lejczak i w-cy, 1984][186]} ;	
Ser	228	Ser ^P	95-110 ^{[Hammerschmidt&Wuggenig, 1999][216]} ;	
			214 ^{[Baylis i w-cy, 1984][189]} ;	
			210-212 ^{[Huber i w-cy, 1985][218]}	
			234-236 ^{[Renaud&Seebach, 1986][219]}	
Thr	255	The	212-215 ^{[Baylis i w-cy, 1984][189]} ;	
1111	200	1 1 1 1	217-219, 218-220, 228-230, 230-233	
			[Bongini i w-cy, 1996][220]	
Ture	244	T ^P	258-260 ^{[Maier, 1990][151]} ;	
ryr	344	i yr	277 ^{[Belankin i w-cy, 1997][221]}	
Met	283	Met ^P	270-272 ^{[Kudzin&Stec, 1980][187]}	
Cure	220	Cure ^P	228-234 ^{[Zygmunt&Mastalerz, 1981][222]} ;	
Cys	220	Cys	251,5-252,5 ^{[Kudzin&Stec, 1983][188]}	
[Cys] ₂	260	[Cys ^P]₂	257-259 ^{[Kudzin, 1981][210]}	
Arg	238	Arg ^P	168-169[Arg ^{P(H)}] ^{[Cowart i w-cy, 1996][223]}	
		C	275-277 ^{[Jeżowska-Bojczuk i w-cy, 1994][224]}	
Lys	224	Lys	>300 ^{[Baylis i w-cy, 1984][189]}	
His	277	His ^P	255-256 ^{[Merrett i w-cy, 1988][196]}	

Trp	282	Trp ^P	260-261 ^{[Subotkowski i w-cy, 1981][193]} ;	
			280-281 ^{[Cheff W-Cy, 1983][194]}	
		Asp ^{α-P}	234-238 ^{[Soroka&Mastalerz, 1976][202]} ;	
			221, 226 [d] ^{[Khomutov i w-cy, 1996][225]}	
		Asp ^{β-P}	228 ^{[Chambers&Issbell, 1964][179]} ;	
	270		228-232 ^{[Soroka&Mastalerz, 1976][202]} ;	
Asp	270		225-230 Varlet i w-cy, 1979][226]	
		Asp ^{P,P}	233-235 ^{[Issleib i w-cy, 1983][205]} ;	
			234-236 ^{[Kudzin&Majchrzak, 1989][227]} ;	
			234-236 ^{[Kudzin i w-cy, 1994][112]}	
		α	247-252 ^{[Soroka&Mastalerz, 1976][203]} ;	
Asn	236	Asn	268-273 ^{[Vasella&Voeffray, 1982][228]}	
Glu 249	Glu ^{α-P}	167-169 ^{[Oleksyszyn i w-cy, 1982][208]}		
	249	Glu ^{β-P}	247-252 ^{[Soroka&Mastalerz, 1976][202]} ;	
			227-232 [d] ^{[Soloshonok i w-cy, 1992][229]}	
		Glu ^{P,P}	236-238 ^{[Issleib i w-cy, 1983][205]} ;	
			237-239 ^{[Kudzin i w-cy, 1994][112]}	
(AA ^C) Jakubke&Jeschkeit [211];[d] – dekompozycja (rozkład)				

Analiza danych Tabeli 2-9. wskazuje na znaczne różnice w wartościach literaturowych temperatur topnienia. Tylko w nielicznych pracach Autorzy sugerowali termiczny rozkład analizowanych aminokwasów (Ser^{P[186]}; Asp^{α -P[225]}; Asn^{P[228]}, Glu^{β -P[229]}).

W Tabeli 2-10. przedstawiono temperatury topnienia szeregu reprezentatywnych kwasów ω -aminoalkilofosfonowych^[154].

Tabela 2-10. Temperatury topnienia reprezentatywnych kwasów						
	ω-aminoalkilo-fosfonowych ^[154]					
$H_2 N - \begin{bmatrix} C \\ H_2 \end{bmatrix}_n^H P(OH)_2$						
n	n=1	n=2	n=3	n=4	n=6	n=8
Temp. topn. [°C]	328	272,5±0,5	278	275	274	254,5±0,5

2.4.1.1. TERMOGRAWIMETRIA KWASÓW AMINOALKILOFOSFONOWYCH

Prekursorem i autorem jedynej pracy włączającej metody termoanalityczne do chemii aminofosfonianów był Kurt Moedritzer^[212] (Rys. 2-1.). O przyczynie sprawczej własnych badań termograwimetrycznych Autor pisze w sposób nastepujący: *The discrepancy in the reported melting points for the aminomethylphosphonic acid and our own findings (melting at 285°, subsequent resolidification and melting with decomposition at 333°) prompted us to explore this phenomenon in detail by thermoanalytical methods*.

Termogram DTA kwasu aminometylofosfonowego (Rys. 2-1.1.) prezentuje łagodną endotermę z początkiem w 219°C (ekstrapolacja) i pikiem w 244°C. Pik silnej endotermy pojawiający się w 290°C prezentuje pierwszy punkt topnienia, z ekstrapolowanym początkiem dekompozycji w 317°C i gwałtowny rozkład z maksimum przy około 329°C. Termogram TGA (Rys. 2-1.2.) wskazuje na niewielki spadek masy próbki do 290°C (ok. 4%) i szybki spadek masy powyżej tej temperatury (prawdopodobnie odszczepienie cząsteczki wody).

2.4.2. ROZPUSZCZALNOŚĆ KWASÓW AMINOALKILOFOSFONOWYCH

Dostępna literatura naukowa nie zawiera ilościowych danych dotyczących rozpuszczalności aminokwasów fosfonowych. Występujące opisy, formułowane były na analogii do aminokwasów karboksylowych ^[7, 10], a więc:

- dobra rozpuszczalność niskich homologów z tendencją zmniejszenia wraz ze wzrostem masy cząsteczki;
- minimum rozpuszczalności w punkcie izoelektrycznym, ze wzrostem w roztworach alkalicznych i kwasowych (Sch. 2-5.);
- niska rozpuszczalność w rozpuszczalnikach organicznych;
- wzrost rozpuszczalności wraz ze wzrostem rzędowości grupy aminowej.

Schemat 2-5. Wzrost rozpuszczalności AA^P w zasadowych i kwasowych roztworach poprzez wychodzenie z formy jonu obojnaczego

Bardzo niska rozpuszczalność aminokwasów fosfonowych w rozpuszczalnikach organicznych wykorzystywana jest podczas oczyszczania tych związków na drodze krystalizacji: do gorącego roztworu aminokwasu w wodzie dodaje się alkoholu do *zmętnienia* roztworu i odstawia do ostygnięcia.

Rozpuszczalność chlorowodorków kwasów 1-aminoalkilofosfonowych w alkoholach przy bardzo niskiej rozpuszczalności wolnych aminokwasów w tych rozpuszczalnikach wykorzystywano do preparatywnej izolacji AA^P z mieszanin hydrolitycznych. Hydrolizaty aminofosfonianowe (przedostatni etap większości metod syntezy AA^P) po zatężeniu do formy chlorowodorku $AA^P \times$ HCl i rozpuszczeniu w etanolu strącano na drodze usunięcia chlorowodoru (Sch. 2-6.).

Schemat 2-6. Obniżenie rozpuszczalności AA^P w hydrolizatach kwasowych na drodze neutralizacji chlorowodorku (wprowadzenie w formę jonu obojnaczego)

Do wyprowadzania aminokwasów fosfofonowych z ich halogenowodorowych soli stosuje się najczęściej tlenek propylenu, wprowadzony przez Chambersa i Isbella^[179] (Sch. 2-6.).

Schemat 2-7. Metoda Chambersa i Isbella izolacji AA^P z roztworów chlowodorków (HCl×AA^P)

Kwasy 1-aminoalkilofosfonowe wykazują również rozpuszczalność w rozpuszczalnikach kwasowych. Wykazano np. dobrą rozpuszczalność AA^P w TFA (Tab. 2-13.) i kwasie octowym^[105].

2.4.3. WIDMA ABSORPCYJNE AMINOALKILOFOSFONOWYCH

2.4.3.1. WIDMA UV KWASÓW AMINOFOSFONOWYCH

Widma UV kwasów aminoalkilofosfonowych są podobne do widm aminokwasów karboksylowych. Alifatyczne AA^P są praktycznie transparentne w zakresie powyżej 220 nm, podczas gdy aminokwasy z aromatycznymi podstawnikami (np. Pgly^P, Phe^P) wykazują niską absorbancję. Widma UV reprezentatywnych kwasów 1-aminoalkilo-fosfonowych oraz 1-aminoaralkilofosfonowych przedstawiono na Rysunkach 2.2. (2-2.1., 2-2.2., 2-2.3.).

Podczas gdy w zakresie widzialnym światła reprezentatywne AA^P są transparentne, to w zakresie UV występuje dosyć duża absorpcja aminokwasów aromatycznych.

2.4.3.2. WIDMA IR KWASÓW AMINOFOSFONOWYCH

Na rysunkach Rys. 2-3. przedstawiono dla ilustracji widma IR reprezentatywnych kwasów aminofosfonowych, w tym widma:

- serii ω-aminoalkilofosfonowych (Rys. 2-3.1., 2-3.2.);
- kwasów 1-aminoetylofosfonowego (Ala^P) i 1-amino-1-metyloetylo-1-fosfonowego (Mala^P) (Rys. 2-3.3.);
- kwasów 1-aminometylofenylofosfonowego (Pgly^P) i 1-amino-1-metylo(4-metylofenylo)-1fosfonowego (*p*-MePgly^P) (Rys. 2-3.4.);
- kwasów 1-aminometylonaftylofosfonowego (1-Nphgly^P) oraz 2-aminometylonaftylofosfonowego (2-Nphgly^P) (Rys. 2-3.5.).

Widma IR mino znaczących różnic w budowie chemicznej badanych kwasów aminoalkilofosfonowych są bardzo podobne i przypominają widma aminokwasów karboksylowych ^[211]. Prezentowane widma są bardzo złożone i większość pasm absorpcji nie może być przypisana w sposób jednoznaczny drganiom określonych grup. Wszystkie widma mają szerokie, trudne do interpretacji pasmo absorpcji w granicach od 1700 cm⁻¹ do 3650 cm^{-1 [230]}.

Podsumowania badań nad spektrometrią strukturalną IR aminokwasów fosfonowych dokonali Kukhar i Solodenko ^[10] (Tab. 2-11.).

Tabela 2-11. Charakterystyka IR kwasów aminofosfonowych i ich pochodnych [Kukhar & Solodenko, 1987] ^[10]				
	Charakterystyczne pa	Literatura		
	Grupa	Region [cm ⁻¹]	Literatura	
AA ^P	P=O	1150-1250	[Belov i w-cy, 1977] ^[231] [Baylis i w-cy, 1984] ^[189]	
AA ^P	P-O ⁻	1000-1100	[Belov i w-cy, 1977] ^[231] [Baylis i w-cy, 1984] ^[189]	
AA ^P	${\sf NH_3}^+$	2000-3200 i 1560-1600	[Richtarski i w-cy, 1975] ^[232] [Oleksyszyn i w-cy, 1978] ^[173]	
AA ^P	N ⁺ H ₃ , C-H, O-H	3000	[Richtarski i w-cy, 1975] ^[232] [Oleksyszyn i w-cy, 1978] ^[173]	
AA ^P (OR) ₂	NH ₂	3280-3380 i 1500-1620	[Oleksyszyn i w-cy, 1979] ^[233]	
AA ^{P(H)}	P-H	2300-2400	[Baylis i w-cy, 1984] ^[189]	

2.4.3.3. SPEKTROSKOPIA NMR KWASÓW AMINOALKILOFOSFONOWYCH

Spektroskopia NMR, w odróżnieniu od metod omawianych wcześniej (UV, IR), pozwala na pełną charakteryzację grupową i strukturalną kwasów aminoalkilofosfonowych. Podobnie jak do charakteryzacji aminokwasów karboksylowych, do aminokwasów fosfonowych stosuje się spektroskopię ¹H-NMR i ¹³C-NMR. Obecność fosforu w cząsteczce aminokwasu pozwala na wykorzystanie techniki ³¹P-NMR i szybką klasyfikację grupową związków P-C, a w wielu przypadkach także na indywidualną identyfikację aminokwasu fosfonowego.

2.4.3.3.1. SPEKTROSKOPIA ³¹P-NMR

Spektroskopia ³¹P-NMR jest techniką analityczną, należącą ze względu na łatwą interpretację widm *fosforowych* do rutynowych technik NMR. Przesunięcia chemiczne związków fosforowych mierzy się względem 85% wodnego roztworu kwasu fosforowego (V) $\delta(^{31}P)=0$ ppm, jako zewnętrznego wzorca. Sygnały leżące przy niższym natężeniu pola /wyższych częstotliwości mają dodatnie wartości δ .

Wartości przesunięć chemicznych dla reprezentatywnych klas pochodnych oxy-kwasów fosforu przedstawiono w Tabelach: 2-12., 2.13.

Tabela 2-12. Przesunięcia chemiczne ³¹ P NMR reprezentatywnych klas oxy-pochodnych								
fosforu [Crut	fosforu [Crutchfield i w-cy, 1968] ^[234]							
(RO) ₃ P=O		2,1 (Me)	1,01 (Et)	-0,7 (Pr)	-3,3 (iPr)			
(RO)₃P		139,7 (Me)	137,6 (Et)	138, (tBu)	138,1 (Ph)			
R-P(O)(OR) ₂		32,3 (Me)	30,0 (Et)	27,4 (Pr)				
R ₃ P	-240 (H)	-62 (Me)	-20,1 (Et)	61,9 (tBu)	-17,3 (Ph)			
R ₃ P=O		36,2 (Me)	48,3 (Et)	66,5 (tBu)	28 (Ph)			
(RO) ₂ P(O)H		10,8 (Me)	7,6 (Et)					
RO-P(O)(OH) ₂		-1,2 (Me)	2,3 (Et)	-2,4 (iPr)				
(RO) ₂ P(O)OH		-4,8 (Me)	0,93 (Et)	-4,8 (iPr)				

Widma ³¹P NMR najczęściej są rejestrowane w postaci tzw. widm z odsprzęganiem ("decoupling"). Widma ³¹P NMR dla równomolowej mieszaniny: kwasu metylofosfonowego (MPA), Gly^P i Na₃PO₄ w 2,0 M KOH z odsprzęganiem i bez odsprzęgania zamieszczono na Rysunkach 2-4.

Z powodu na niejednoznaczność jądrowego efektu Overhauser'a dla jąder ³¹P, integracja widm *fosforowych* może być stosowana jedynie w sposób przybliżony, w obrębie tej klasy związków.

Dla wolnych kwasów fosfonowych obserwuje się silną zależność przesunięcia $\delta(^{31}P)$ od stopnia jonizacji ^[112-114, 236, 237].

Zależność przesunięcia $\delta(^{31}P)$ od stopnia jonizacji zilustrowana jest na Rysunkach 2-5.

Obserwowany jest także silny wpływ struktury na widmo: podstawnika R, rzędowości grupy aminowej , odległości grupy aminowej od fosfonowej (Tab. 2-13.).

Wpływ odległości grupy aminowej od fosfonowej na przesunięcia chemiczne aminokwasów przedstawiono na Rysunku 2-6.

Załączone wyniki wskazują na analityczne znaczenie przesunięć chemicznych $\delta(P)$ kwasów fosfonowych, pod warunkiem utrzymania stałych warunków pH roztworów.

W Tabeli 2-13. przedstawiono przesunięcia chemiczne $\delta(P)$ uzyskane dla szeregu reprezentatywnych kwasów fosfonowych. Biorąc pod uwagę przebieg funkcji $\delta(P)=f(pH)$ wybrano 4 punkty pomiarowe, w których obserwowano płaski charakter krzywej, tzn.: 2 M KOH, bufory (przy 4,5 i 7 pH), oraz 2 M HCl.

2.4.3.3.2. SPEKTROSKOPIA ¹H-NMR

Badania spektroskopowe protonowego magnetycznego rezonansu jądrowego aminokwasów wykazały, że przesunięcie chemiczne protonów aminokwasów, a także stałe sprzężenia proton-proton zależą od stopnia dysocjacji cząsteczki. Na wykresie zależność przesunięcia chemicznego od wartości pH ma postać krzywej charakterystycznej dla krzywej miareczkowania. W pomiarach NMR aminokwasów, peptydów i białek używa sie zazwyczaj H₂O lub D₂O, a jako standardów wewnętrznych m. in.: tetrametylosilanu (TMS), heksametylodisiloksanu (HMDS) i soli sodowej kwasu 4,4-dimetylo-4-silapentano-sulfonowego (DSS).

Widma ¹H NMR wolnych kwasów aminofosfonowych, ze względu na bardzo niską rozpuszczalność w rozpuszczalnikach organicznych, mogą być rejestrowane jedynie w roztworach wodnych, bądź w roztworach kwasu trifluoroctowego (TFA).

Schemat 2-8. Reakcje zachodzące w roztworach AA^P w D_2O (1.1.), TFA-D (1.2.) i TFA-H (1.3.) W wodnych roztworach kwasów aminofosfonowych w D_2O lub CF_3CO_2D zachodzi szybka

wymiana protonów grup fosfonowych i amoniowej na deuteron, w wyniku czego nie są obserwowane na widmie ¹H NMR (Sch. 2-8.).

Widma kwasów aminofosfonowych w kwasach trifluorooctowym (TFA) lub trifluorometylosulfonowym (TFMSA) przedstawiają niższą rozdzielczość, jednakże zawierają protony grup amoniowych i amidowych, a także inne protony występujące w zakresie między 0 a 11 ppm. Przykłady wykorzystania TFA jako rozpuszczalnika do ¹H NMR dostarczają widma zamieszczone na Rysunkach: 2-7., 2-8. oraz Tabeli 2-14.

Tabela 2	Tabela 2-14. Wykorzystanie TFA jako rozpuszczalnika do ¹ H NMR							
Nr	Rozpuszczalnik	AA ^P	Literatura					
		ArGly [₽] [Ar=Ph]	Berlin&Gaudy, 1968 ^[239]					
		$RCys^{P}[R=C_{n}H_{2n+1}; n=1-4]$	Kudzin, 1981 ^[210]					
1		Cys ^P ; HCys ^P ; [Cys ^P] ₂ ; [HCys ^P] ₂	Kudzin&Stec, 1983 ^[171]					
1	CF ₃ CO ₂ H	$RHcys^{P}$ [R: C ₆ H ₁₃ -C ₁₆ H ₃₃]	Kudzin i w-cy, 1989 ^[105]					
		1-AA ^P ; Ala(F) ^P ; Asp ^{P,P}	Kudzin&Majchrzak, 1989 ^[227]					
		1-AA ^P	Oshikawa&Yamashita, 1989 ^[240]					
2	CF ₃ SO ₃ H [zewn. <i>lock</i> na CDCl ₃]	Asp ^{P,P} ; Glu ^{P,P} ; Hglu ^{P,P}	Kudzin i w-cy, 1994 ^[112]					
3	CF ₃ SO ₃ H/CD ₃ NO ₂ (10:1)	Cys(SO ₃ H) ^P ; Hcys(SO ₃ H) ^P	Kudzin i w-cy, 2005 ^[241]					
		(AC)-AA ^P : (AC): Ac, Prp; Btr, Piv, Bz; AA ^P : Gly ^P ; Ala ^P ; Val ^P ; Pgly ^P , Phe ^P	Kudzin i w-cy, 2005 ^[242]					
	CF ₃ CO ₂ H-CDCl ₃	TFA-AA ^P [AA ^P : Gly ^P ; Ala ^P ; Val ^P ; Pgly ^P , Phe ^P]	Kudzin i w-cy, 2007 ^[243]					
4	(3:4)	mca-AA ^P ; Gly-AA ^P ; MeGly-AA ^P ; Me ₂ Gly-AA ^P ; H ₂ N-Gly ^P -AA ^P [AA ^P : Gly ^P ; Ala ^P ; Val ^P ; Pgly ^P , Phe ^P]	Kudzin i w-cy, 2008 ^[244]					
		MPA; Gly ^P ; 2-Ala ^P ; 3-Hala ^P ; 4-Nval ^P	Kudzin i w-cy, 2012 ^[238]					

2.4.3.3.3. SPEKTROSKOPIA ¹³C-NMR

Spektroskopia ¹³C NMR stosowana była do charakterystyki analitycznej kwasów aminofosfonowych i pochodnych (Tab. 2-15.).

Tabe	Tabela 2-15. Spektroskopia ¹³ C-NMR i ¹⁵ N-NMR kwasów aminofosfonowych						
Nr	AA ^P	NMR	Rozp.	Literatura			
1	Gly ^P	¹³ C NMR	D ₂ O	Cameron i w-cy, 1993 ^[154] ; Berte-Verrando i w-cy, 1995 ^[245]			
		¹⁵ N NMR	solid	Harris i w-cy, 1989 ^[246]			
2	Ala ^P	¹³ C NMR	D ₂ O	Huber i w-cy, 1985 ^[218] ; Głowacki&Topolski, 1989 ^[247] ;			
		10		Hanessian&Bennani, 1994 ⁽²⁴⁰⁾ ; Cameron i w-cy, 1993 ⁽²⁰⁴⁾			
3	Val ^P	¹³ C NMR	D_2O	Huber i w-cy, 1985 ^[218] ; Huber&Vasella,1987 ^[249] ; Głowacki			
				&Topolski, 1989 ^[247]			
4	LeuP	¹³ C NMR	D ₂ O	Głowacki&Topolski, 1989 ^[247] ; Seebach i w-cy, 1989 ^[250]			
5	lleu ^P	¹³ C NMR	D ₂ O	Hammerschmidt&Wuggenig, 1999 ^[216]			
6	Pro ^P	¹³ C NMR	D ₂ O	Petrillo&Spitzmiller, 1979 ^[77] ; Kaname i w-cy, 2001 ^[251]			
7	Phe ^P	¹³ C NMR	D ₂ O	Green i w-cy, 1996 ^[252]			
8	Met ^P	¹³ C NMR	D ₂ O	Huber&Vasella, 1987 ^[249]			
9	3-Hala ^P	¹³ C NMR	D ₂ O	Głowacki&Topolski, 1989 ^[247]			
10	Ser ^P	¹³ C NMR	D ₂ O	Hammerschmidt i w-cy, 2000 ^[253]			
11	Thr ^P	¹³ C NMR	D ₂ O	Bongini i w-cy, 1996 ^[220] ; Matczak-Jon i w-cy, 1998 ^[254]			
			H ₂ O	Simov i w-cy, 2002 ^[255]			
12	Asp ^{βP}	¹³ C NMR	D ₂ O	Smith i w-cy, 1990 ^[201] ; Yokamatsu i w-cy, 1996 ^[256]			
13	Asn ^P	¹³ C NMR	D ₂ O	Vasella&Voeffray, 1982 ^[228]			
14	Glu ^{γΡ}	¹³ C NMR	D ₂ O	Yokamatsu i w-cy, 1996 ^[256]			
15	Arg ^P	¹³ C NMR	D ₂ O	Cowart, 1996 ^[223]			

Dla aminokwasów karboksylowych sygnały rezonansowe (standardem jest TMS) znajdują sie w następujących obszarach: dla węgli C α 40-65 ppm; dla węgli C β 17-70 ppm; dla węgli C γ i C δ 17-50 ppm. Sygnały aromatycznych i heteroaromatycznych atomów węgla występują w zakresie 110-140 ppm [Jakubke&Jeschkeit, 1989]^[211].

Widma ¹³C NMR dla reprezentatywnych aminokwasów fosfonowych przedstawione są na Rysunkach 2-9.

2.4.4. SPEKTROMETRIA MAS W CHARAKTERYZACJI KWASÓW AMINOALKILOFOSFONOWYCH

Charakter wewnętrznych soli kwasów aminofosfonowych ograniczał zastosowanie standardowych technik MS do ich analizy. Niska lotność kwasów aminofosfonowych uniemożliwiała bezpośrednią analizę na drodze GC-MS czy EI-MS. Nielotne AA^P przeprowadzano w lotne pochodne, z zablokowanymi funkcjami fosfonową i aminową, zwykle diestry amino- lub *N*-acylaminoalkanofosfonianowe [Kudzin&Sochacki, 2000]^[108] (Sch. 2-9).

Schemat 2-9. Derywatyzacja nielotnych kwasów aminofosfonowych do lotnych pochodnych

Rozwój spektrometrii mas w ostatnich dekadach, w tym opracowanie nowych technik analizy, jak FAB-MS czy ES-EI-MS umożliwił również analizę wolnych aminokwasów fosfonowych i innych funkcjonalizowanych kwasów fosfonowych (Tab. 2-16.).

Tabela 2-16. Główne jony widma MS-FAB reprezentatywnych kwasów aminofosfonowych [Cameron i w-cy. 1988: 1993]								
AA ^P		m/z vs względna intensywność [%]						
	M + H	M + H-17	M + H-80	M+G	2 M+1			
Gly ^P	112 (100)	95 (18)	30 (27)	204 (48)	223 (2)			
Ala ^P	126 (100)	109 (1)	44 (63)	218 (89)	251 (7)			
Hala ^P	140 (70)	-	58 (100)	232 (36)	279 (16)			
2-Ala ^P	126 (100)	-	-	218 (35)	251 (5)			
3-Hala [₽]	140 (100)							
4-Nvala ^P	156 (100)		72 (2)					
6-Nhleu [₽]	183 (100)		100 (15)					
VG Micromass ZAB-1F instrument [matryca glicerynowa, wiązka Xe (8 kV)] [MH-82] ⁺ = [MH- H ₃ PO ₃] ⁺								

2.4.5. STEREOCHEMIA KWASÓW 1-AMINOALKILOFOSFONOWYCH

Porównanie budowy: kwasów 1-aminoalkilofosfonowych i aminokwasów białkowych (L-AA^C, konfiguracja R) przedstawiono w Tabeli 2-17.

Zestawienie skręcalności optycznej ($[M]_D$ I/lub $[\alpha]_D$) aminokwasów białkowych (AA^C) i fosfonowych (AA^P) przedstawiono w Tabeli 2-18.

Tabela 2-17. Porównanie budowy aminokwasów białkowych i kwasów 1-aminoalkilo-fosfonowych						
СО ₂ Н Н ₂ N-С-Н К		PO ₃ H ₂ H ₂ N-C-H R	$PO_{3}H_{2}$ $H^{I}C-NH_{2}$ R			
L-AA ^C	S-AA ^C [wyj. Cys]	L-AA ^P	R-AA ^P [wyj. Cys]			

Tabela 2-1	.8. Skręcalności op	otyczne aminokw	asów białk	owych (AA ^C) i fosf	onowych (AA ^P)	
AA ^C	Skręcalnoś	ci optyczne	AA ^P	Skręcalności optyczne		
	[Jakubke&Jesc	hkeit, 1989] ^[211]		[Dhavan&Red	dmore,1987]	
	H_2O^a	5 M HCl _{aq} ^{/a}		R	S	
Ala	1,6 (1,8)	13,0 (14,6)	Ala ^P	-17,0 ^(1M NaOH)	17,0 ^(1M NaOH)	
Val	6,6 (5,6)	33,1 ()	Val ^P	+0,6 ^(1M NaOH)	-0,6 ^(1M NaOH)	
Leu	-14,4 (-11,0)	21,0 (16,0)	Leu ^P	-28,0 ^(1M NaOH)	27,0 ^(1M NaOH)	
lle	16,3 (12,4)	51,8 (39,5)	lle ^P	-8,5 [Hammerschmids	(1M NaOH) &Wuggenig, 1999][216]	
Pro	-99,2 (-86,2)	-69,5 (-60,4)	Pro ^P	64,0 ^(1M NaOH)	-60,0 ^(1M NaOH)	
Phe	-57,0 (-34,5)	-7,4 (-4,5)	Phe ^P	-49,0 ^(1M NaOH)	52,0 ^(1M NaOH)	
Ser	-7,9 (-7,5)	15,9 (15,1)	Ser ^P	-30,0 ^(1M NaOH)	35,0 ^(1M NaOH)	
Thr	-33,9 (-28,5)	-17,9 (-15,0)	Thr ^P	-10,2 ^(H2O) [Simov i w-cy, 2002][255]		
Tyr		-18,1 (-10,0)	Tyr ^P	-53,	0 ^(1M HCI)	
Met	-14,9 (-9,8)	34,6 (23,2)	Met [₽]	-40,4 ^(1M NaOH)	38,1 ^(1M NaOH)	
Cys	-20,0 (-16,5)	7,9 (6,5)	Cys [₽]			
Arg	21,8 (12,5)	48,1 (27,6)	Arg ^P			
Lys	19,7 (13,5)	37,9 (25,9)	Lys ^P			
His	-59,8 (-38,5)	18,3 (11,8)	His ^P			
Trp	-68,8 (-33,7)	-5,7 (-2,8)	Trp ^P			
Asp	6,7 (5,0)	33,8 (25,4)	Asp ^{β-P}	-32,6 ^(H2O)		
Asn	-7,4 (5,6)	-7,4 (-5,6)	Asn ^{β-P}	-33,0 ^(H2O)		
Glu	17,7 (12,6)	46,8 (31,8)	Glu ^{γ-P}	-20,0 ^(1M NaOH)	21,0 ^(1M NaOH)	
$[M]_{D}$ lub ($[\alpha]$	d)			·		

2.5. WŁAŚCIWOŚCI CHEMICZNE AMINOKWASÓW FOSFONOWYCH

Właściwości chemiczne aminokwasów fosfonowych są określone przez obecność w cząsteczce grupy fosfonowej i grupy aminowej, a w mniejszym stopniu: rzędowości grupy aminowej, oddalenia grup aminowych-kwasowych i rodzaju łańcucha bocznego. Główne typy opisanych reakcji chemicznych AA^P przedstawiono na Schemacie 2-10.

Schemat 2-10. Reprezentatywne reakcje kwasów ω-aminoalkilofosfonowych [Kudzin i w-cy, 2012]:

1.1. *N*-Metylowanie aminoestru Me₂-Ala^P(OEt)₂ z następczą hydrolizą [Myers&Jibril, 1957] ^[257]; 1.2. R= 2-Ala^P, R¹=Ph [Isbell i w-cy, 1972]^[258]; 2-Ala^P, 3-Hala^P R¹=Bn [Yamauchi i w-cy, 1986]^[259]; 1.3. R = [CH₂]₁₁NHCH₂CH₂: (AA^P/H₂NCN /NaOH_{aq} = 1:8:3; temp. wrz., 20h) [Cameron i w-cy, 1988]^[153]; 1.4. R = [CH₂]_nNHCH₂CH₂(n=): AA^P/S-Metyloizotiomocznik/NaOHaq = 1:2:4; 60-90°C, 4h [Cameron i w-cy, 1988]^[153]; w-cy, 1988]^[153]; [AA^P: n=1-3];

2. (n=1-3); Gluf/TFA-AA^P(OMe)₂ [Kudzin i w-cy, 1994]^[115]

Podobne reakcje zachodzą dla aminokwasów fosfonowych serii α -AA^P. Reaktywność pochodnych kwasów aminofosfonowych jest przedmiotem przeglądów Pietrowa [Pietrow, 1975]^[7], Kuhkara [Kuhkar&Sosholonok, 1987]^[10] i Kafarskiego [Kafarski, 1985]^[86].

2.5.1. WŁAŚCIWOŚCI KWASOWO-ZASADOWE AMINOKWASÓW FOSFONOWYCH

Ze względu na charakter dwubiegunowy aminokwasów ich właściwości kwasowo-zasadowe zależą w dużym stopniu od pH środowiska. Równowagi dysocjacji protolitycznej dla szeregu kwasów ω-aminoalkilofosfonowych przedstawia Schemat 2-11.

Schemat 2-11. Równowagi dysocjacji protolitycznej dla szeregu kwasów ω-aminoalkilo-fosfonowych

Stałe dysocjacji (pK) dla szeregu kwasów ω -aminoalkilofosfonowych przedstawia Tabela 2-19.

Tabela 2-19. Kologarytmy stałych dysocjacji (pK) AA ⁺ [Kudzin i w-cy, 2012] ¹²⁰⁰							
рК	Gly [₽]	α-Ala ^P	β-Ala ^P	γ-Hala [₽]	δ-Nval ^P		
рКı	<1; 1< ^{/a}	<1; 1< ^{/a}	2,74±0,05	2,80±0,05	2,85±0,05		
рК ₂	5,32±0,02; 5,43 ^{/a}	5,75±0,02; 5,49 ^{/a}	6,52±0,03	7,12±0,03	7,57±0,02		
рК ₃	10,04±0,04; 10,45 ^{/a}	10,44±0,04; 10,67 ^{/a}	11,17±0,05	11,18±0,05	11,23±0,05		
рК _і	3,16	3,38	4,62	4,96	5,71		
^{a/} Kudzin i w-cy, 2005 ^[242]							
Stałe wyznaczone przez dr P. Urbaniaka, Uł							

3. BADANIA WŁASNE

Rozdział dotyczy badań nad wybranymi właściwościami fizyko-chemicznymi oraz biologicznymi kwasów aminofosfonowych podjętych w celu unifikacji charakterystyki tych związków:

- w obszarze niepublikowanych danych w dostępnej literaturze naukowej;
- w obszarze fragmentarycznych danych literaturowych;
- literaturowych stwierdzeń o dużym stopniu ogólności.

Wykonane badania stanowią również bazę graficzną przeglądu nt. kwasów aminofosfonowych, w przygotowaniu.

3.1. SYNTEZA/RESYNTEZA WYBRANYCH REPREZENTATYWNYCH KWASÓW 1-AMINOALKILOFOSFONOWYCH I POCHODNYCH

Do badań nad charakterystyką fizyko-chemiczną kwasów 1-aminoalkilofosfonowych oraz biologiczną kwasów 1-(*N*-acyloamino)alkilofosfonowych wytypowano modelowe związki, otrzymywane wg. procedur zilustrowanych na Schematach: 3-1. (AA^P), 3-2. [(AC)-AA^P].

Schemat 3-1. Synteza kwasów 1-aminoalkilofosfonowych

3.1.1. METODA PTC-AMINOFOSFONIANOWA

Kwasy 1-aminoaralkilofosfonowe otrzymano wg. metody Ptc-aminofosfonianowej, polegającej na trójskładnikowej kondensacji aldehydu, *N*-fenylotiomocznika i fosforynu trifenylowego do fenylotiokarbamoiloaminofosfonianów Ptc-AA^P(OPh)₂, dalej degradowanych do odpowiednich aminokwasów (Sch. 3-1.1.) [Kudzin&Stec, 1978]^[171].

Schemat 3-1.1. Synteza kwasów 1-aminoaralkilofosfonowych wg. metody Ptc-amino-fosfonianowej

Tabela 3-1.1. Otrzymane kwasy1-aminoaralkilofosfonowe						
	CH ₃	H ₃ C	H ₃ C-	H ₃ C - CH ₃ CH ₃	HO2C	
Pgly ^P	o-MePgly [₽]	<i>m</i> -MePgly ^P	<i>p</i> -MePgly [₽]	2,4,6-Me ₃ - Pgly ^P	4-HO ₂ C-Pgly ^P	Phe ^P
0 ₂ N-	O ₂ N		Br			$\langle \rangle$
<i>о</i> - NO ₂ Pgly ^P	<i>m</i> - NO₂Pgly ^P	p-NO ₂ Pgly ^P	<i>p</i> -BrPgly ^P	o-CIPgly ^P	1-Nphgly ^P	2-Nphgly ^P
Związki nowe						

3.1.2. HYDROFOSFONYLOWANIE IMIN

Kwasy 1-(*N*-alkiloamino)alkilofosfonowe otrzymywano na drodze hydrofosfonylowania odpowiednich imin i następczą hydrolityczną degradację produktów pośrednich 1-(*N*-alkiloamino)alkilofosfononianów [R-AA^P(OEt)₂].

Zapis reakcji oraz aminokwasy otrzymane tą metodą przedstawiono w Tabeli 3-1.2.

3.1.3. REAKCJA AMIDOALKILOWANIA PCl₃

Kwasy: Gly^P, Mala^P, 1-AcH^P otrzymano wg procedury Pikla-Oleksyszyna [Oleksyszyn, 1986]^[174] i Soroki [Soroka, 1987]^[2], wychodząc ze związku karbonylowego, amidu i trichlorku fosforu. Zapis reakcji oraz aminokwasy otrzymane tą metodą przedstawiono w Tabeli 1.3.

Tabela 3-1.3. Synteza kwasów [Oleksyszyn, 1986 ^{[1}	1-aminoalkilofosfonowych wg. ^{74]} ; Soroka, 1987 ^[2]]	procedury Oleksyszyna/Soroki
$\begin{array}{c} R & AcNH_2 \\ \searrow = O + & - \\ R & AcCl \end{array}$	R_OAc [1] PCl₃/AcOH; [2] 5M HCl; rfl. R NHAc	
$H_2N-C-P(OH)_2$	$\begin{array}{c} H_{3}C \\ H_{2}N - C - P(OH)_{2} \\ CH_{3} \end{array}$	
Gly [₽]	Mala ^P	1-AcH ^P

3.1.4. SYNTEZA KWASÓW 1-(N-ACYLOAMINO)ALKILOFOSFONOWYCH

Kwasy 1-aminoalkilofosfonowe poddawane *N*-acylowaniu działaniem bezwodnika octowego bądź chlorooctowego, ulegały konwersji do pochodnych 1-(*N*-acyloamino)alkilofosfonowych (Sch. 3-2).

chemat 3-2. Schemat konwersji kwasów 1-aminoalkilofosfonowych do pochodnych 1-(*N*-acyloamino)alkilofosfonowych [Kudzin i w-cy, 2005]^[242] i konwersji kwasów 1-(*N*-chloroacetyloamino)-alkilofosfonowych [Mca-AA^P] do odpowiadających fosfonopeptydów [Gly-AA^P, MeGly-AA^P i Me₂Gly-AA^P] [Kudzin i w-cy, 2008]^[244]

Otrzymane kwasy 1-(*N*-acetyloamino)alkilofosfonowe przedstawiono w Tabeli 3-2.1. Otrzymane fosfonopeptydy [Gly- AA^P , MeGly- AA^P , Me₂Gly- AA^P] przedstawiono w Tabeli 3-2.2.

Tabela 3-2.1. Konwersja AA ^P do kwasów 1-(<i>N</i> -acyloamino)alkilo-fosfonowych							
Ac–Gly ^P	Ac–Ala ^P	Ac–Hal [₽]	Ac–Nva ^P	Ac–Val ^P	Ac–Met ^P	Ac–Pgly ^P	Ac–Phe ^P

Tabela 3-2.2. Konwersja AA ^P do fosfonopeptydów						
Gly-Gly ^P	Gly-Ala [₽]	Gly-Pgly ^P	Me-Gly-Gly ^P	Me ₂ -Gly-Gly ^P	Me-Gly-Ala ^P	H_2N -Gly-Val ^P
Związki nowe						

Procedurę syntezy fosfonopeptydów opublikowano w pracy:

Kudzin, Z.H.; Depczyński, R.; Kudzin, M.H.; Drabowicz, J. *1-(N-Chloroacetylamino)alkylphosphonic acids - synthetic precursors of glycylo-phosphonopeptides and related compounds*. Amino Acids, 2008, *34*, 163-168; (w-atorstwo, doktorat D. R.).^[244]

3.2. WŁAŚCIWOŚCI FIZYCZNE AMINOKWASÓW FOSFONOWYCH

3.2.1. BADANIA NAD ROZPUSZCZALNOŚCIĄ AMINOKWASÓW

Rozpuszczalność kwasów aminofosfonowych stanowi jedną z właściwości fizycznych wpływających na potencjalne aplikacje tych związków w chemii materiałowej.

Oprócz ogólnych stwierdzeń na temat wyższej rozpuszczalności kwasów aminofosfonowych (AA^P) w roztworach zasadowych i/lub kwasowych [Petrov i w-cy, 1974, Kukhar&Solodenko, 1987]^[6,7,10], szersze badania podstawowe w tej dziedzinie nigdy nie zostały podjęte oraz opublikowane. Metody opisane w literaturze dotyczące wyznaczania rozpuszczalności aminokwasów karboksylowych potraktowałem jako podstawę do badań własnych nad rozpuszczalnością kwasów aminoalkilofosfonowych.

Wartości rozpuszczalności aminokwasów w wodzie zostały wyznaczone w latach 1930tych przez Daltona i Schmidta [Dalton&Schmidt, 1933; 1935]^[260,261] oraz Dunna i w-ków [Dunn i w-cy, 1933]^[262,263]. W latach 1990-tych podjęto badania nad termodynamicznym opisem tej właściwości [Chen i w-cy, 1989; Liu i w-cy, 1998]^[264,265].

Przeprowadzono także badania nad rozpuszczalnością aminokwasów w różnych wodno-alkoholowych rozpuszczalnikach, w tym w układach: woda - metanol [Gekko, 1981],²⁶⁶ woda - etanol [Cohn i w-cy, 1934; Nozaki&Tanford, 1971]^[267,268], woda - 1-propanol i woda - 2-propanol [Orella&Kirwan, 1989; 1991; Fereira i w-cy, 2004]^[269-272], woda - 1-butanol [Gude i w-cy, 1996]^[272] i woda - 1-PEG [Yang i w-cy, 2008]^[273].

Deya i Lahirib [Deya& Lahirib, 2010]^[274] przeprowadzili badania nad wpływem pK i pH nad rozpuszczalnością aminokwasów w wodzie i w roztworach mocznika.

Ostatnio opublikowane badania nad termodynamiką rozpuszczania kwasów 1-aminoalkilofosfonowych, w układach AA^P – mocznik - woda ^[275,276] skłoniły nas do opublikowania wyników dotyczących rozpuszczalności kwasów 1-aminoalkilofosfonowych w wodzie w temperaturze 25°C ^[277].

65

3.2.1.1. BADANIA NAD ROZPUSZCZALNOŚCIĄ AMINOKWASÓW FOSFONOWYCH

Do badań wykorzystano reprezentatywne aminokwasy fosfonowe szeregów: 1-aminoalkilofosfonowych, ω -aminoalkilofosfonowych, 1-(*N*-alkiloamino)alkilofosfonowych i 1-(*N*,*N*dialkilo-amino)alkilofosfonowych. Do serii dla celów porównawczych, wprowadzono kwas 1hydroksypropylofosfonowy.

Struktury aminokwasów wykorzystanych do badań nad rozpuszczalnością zestawiono w Tabeli 3-3.

Tabela 3-3. Strukt	Tabela 3-3. Struktury i symbole ^[15] użytych kwasów aminofosfonowych							
$ \begin{array}{c} & O \\ H_2 N - C - P(OH)_2 \\ H_2 \end{array} $	$H_{2}^{H} N - H_{2}^{H} - P(OH)_{2}$	$H_{2}^{H} N - H_{2}^{H} - P(OH)_{2}$	$\begin{array}{c} & O \\ H_{2}N - C - P(OH)_{2} \\ H_{2}N - I_{1} \\ iPr \end{array}$	$H_2N - C - P(OH)_2$				
Gly [₽]	Ala ^P	Hala [₽]	Val [₽]	Nval ^P				
$\begin{array}{c} & & \\ & & \\ H_2 N - \begin{array}{c} H & \\ - \\ H_2 N - \begin{array}{c} H \\ - \\ H \\ H_2 \end{array} \\ H_2 N - \begin{array}{c} H \\ - \\ H \\ H_2 \end{array} \\ H_2 N - \begin{array}{c} H \\ - \\ H \\ H_2 \end{array} \\ H_2 N - \begin{array}{c} H \\ - \\ H \\ H_2 \end{array} \\ H_2 N - \begin{array}{c} H \\ - \\ H \\ H_2 \end{array} \\ H_2 N - \begin{array}{c} H \\ - \\ H \\ H_2 \end{array} \\ H_2 N - \begin{array}{c} H \\ - \\ H \\ H_2 \end{array} \\ H_2 N - \begin{array}{c} H \\ - \\ H \\ H_2 \end{array} \\ H_2 N - \begin{array}{c} H \\ - \\ H \\ H_2 \end{array} \\ H_2 N - \begin{array}{c} H \\ - \\ H \\ H_2 \end{array} \\ H_2 N - \begin{array}{c} H \\ - \\ H \\ H_2 \end{array} \\ H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2$	H_2^{H} $H_2^$	$H_2 N - C - P(OH)_2$ $H_2 N - C - P(OH)_2$ $H_2 N - C - P(OH)_2$	$\begin{array}{c} & O\\ H_2 N - \begin{array}{c} - P\\ - P\\ H_2 N - \begin{array}{c} O\\ - P\\ H_2 N - \begin{array}{c} 0\\ - P\\ O\\ H_2 N - \end{array}{C} N - \begin{array}{c} $	$\begin{array}{c} H_{2}N-\overset{O}{C}-\overset{H}{P}(OH)_{2}\\ [\overset{I}{C}\frac{1}{J_{2}}S\cdotMe\end{array}$				
Leu ^P	lleu [₽]	Tleu ^P	Nleu ^P	Met ^P				
0 H_1 H_2N-C-P(OH) ₂ Ph	$\begin{array}{c} & \\ H_{2}N-C-P(OH)_{2} \\ & C-Ph \\ H_{2} \end{array}$	$\begin{array}{c} & O \\ Me-N-C-P(OH)_2 \\ H & I \\ Et \end{array}$	$\begin{array}{ccc} Me & O \\ & H & H \\ & N - C - P(OH)_2 \\ Me & Et \end{array}$	$H_2 N = C + C + C + C + C + C + C + C + C + C$				
Pgly ^P	Phe ^P	Me-Hala ^P	Me₂-Hala ^P	Mala ^P				
Et-N-C-P(OH) ₂ Me	$H_2N+C_{H_2}+C_{H_2}+D_{H_2}$							
Et-Mala ^P	3-Hala ^P							

Dla wyznaczenia rozpuszczalności AA^P w wodzie, reprezentatywne aminokwasy rozpuszczano do nasycenia a następnie oznaczano stężenie kwasu w nasyconym roztworze.

Do otrzymania nasyconych roztworów AA^P w wodzie zastosowano dwie metody:

- metodę krystalizacji polegającą na rozpuszczeniu AA^P w temperaturze ok. 80°C
 i następczą krystalizację w gradiencie temperatury (80°C do 25°C);
- metodę sonikacyjną wykorzystującą sonikację AA^P w temperaturze 25°C.

Do oznaczania stężenia AA^P w badanych roztworach stosowano:

- metodę pH-metrycznego miareczkowania AA^P;
- metodę wykorzystującą ilościowe oznaczenia z użyciem techniki ³¹P-NMR.

3.2.1.1.1. OZNACZANIE AMINOKWASÓW FOSFONOWYCH W WODZIE

Najbardziej popularnymi metodami stasowanymi w badaniach nad rozpuszczalnością aminokwasów naturalnych są metody grawimetryczne (odparowanie nasyconego roztworu aminokwasu do stałej masy)^[245-258]. Ponieważ aminokwasy fosfonowe łatwo tworzą rożnego typu hydraty - procedura grawimetryczna nie jest w tym przypadku dogodna do zastosowania.

Do oznaczania stężeń aminokwasów w roztworach wodnych zaproponowano dwie metody:

- metodę pH-metrycznego miareczkowania kwasów aminofosfonowych (fosfonowych);
- metodę NMR-ową wykorzystującą oznaczenia ³¹P NMR pożądanego kwasu aminofosfonowego w obecności fosforoorganicznego wewnętrznego wzorca.

3.2.1.1.1.1. METODA MIARECZKOWANIA pH-METRYCZNEGO

Kwasy aminofosfonowe (np. Gly^P) są kwasami di-protonowymi, mocniejszymi od amino karboksylowych, miareczkowanie pH-metryczne jest wygodną metodą oznaczenia tych związków w zakresie stężeń od 10⁻⁵ M do 1 M. Dodatkowym argumentem przemawiającym za stosowaniem opisywanej metody do określania stężenia AA^P jest możliwość oznaczenia w oparciu o pierwszy, drugi lub obydwa punkty inflekcji krzywej miareczkowania (Sch. 3-3., Rys. 3-1.).

Rysunek 3-1. Krzywe miareczkowania Gly i Gly^P roztworem KOH

Schemat 3-3. Równowagi tworzące się podczas miareczkowania roztworów Gly i Gly^P roztworami zasady

3.2.1.1.1.2. METODA NMR-OWA

3.2.1.1.1.2.1. KORELACJA POWIERZCHNI SYGNAŁU ³¹P DLA AA^P I WZORCA

Podstawę *metody P-NMR-owej* oznaczania AA^P przedstawiono na Rysunkach: 3-2., 3-3. Rysunki przedstawiają widma ³¹P NMR dla mieszaniny: MPA (0,01 mmola), Gly^P (0,02 mmola), Ala^P (0,01 mmola), Hala^P (0,01 mmola), Val^P (0,01 mmola), Mala^P (0,004 mmola) w 2,0 M KOH (Rys. 3-2.) i roztworze buforowym (Rys. 3-3.).

MPA i $Na_nH_{3-n}PO_4$ stanowią tzw. wewnętrzne wzorce, gdyż na podstawie stosunków integracji AA^P/MPA lub $AA^P/Na_nH_{3-n}PO_4$ i znajomości stężenia/ilości wzorców w badanym roztworze można wyznaczyć/oszacować ilości AA^P .

Z Rysunku 3-3. wynika brak równości powierzchni AA^{P} i MPA mimo równomolowości badanej mieszaniny [MPA : Gly^P : Ala^P : Hala^P : Val^P : Mala^P = 1 : 2 : 1 : 1 : 1 : 0,08*] (*0,08 M dotyczy stężenia nasyconego roztworu Mala^P). Dlatego do użycia metody ³¹P-NMR do oznaczania stężeń AA^{P} potrzebna jest kalibracja, tj. ustalenie stosunku powierzchni sygnałów AA^{P} /wzorzec (np. Gly^P/MPA) zarejestrowanych dla roztworów zawierających jednostkowe stężenia tych związków.

Porównanie widm wykonanych dla serii: MPA, Gly^P, Ala^P, Hala^P, Val^P, Mala^P w 2 M KOH (Rys. 3-2.) oraz w 2 M AcOK-AcOH (Rys. 3-3.) wskazuje na znacznie węższe sygnały dla roztworu w zasadzie. Również dla roztworu AA^P w 2 M KOH bardziej zdefiniowany jest stopień jonizacji poszczególnych aminokwasów (di-aniony) (Sch. 3-4.).

pH~0

pH~4

Schemat 3-4. Dystrybucja form AA^P w funkcji pH roztworu (pH~0 - 2 M HCl; pH~4 - 2 M AcOK; pH~14 - 2 M KOH)

Znacznie dokładniejsze wyniki można otrzymać dla mieszanin dwuskładnikowych: wzorzec - AA^P.

Reprezentatywne widma ³¹P NMR dla mieszanin: MPA-AA^P (2 M KOH) oraz K_3PO_4 -AA^P (2 M KOH) przedstawiono na Rysunkach: 3-4., 3-5.

Widma ³¹P NMR dla mieszanin: $K_nH_{3-n}PO_4$ (5,20 ppm) oraz Nval^P (21,81 ppm) w 2 M AcOK-AcOH przedstawiono na Rysunku 3-6.

Współczynniki korelacyjne dla AA^P względem wzorca określające stosunek powierzchni sygnału AA^P do powierzchni sygnału wzorca można wyznaczyć wykonując rejestrację widm ³¹P NMR roztworów, dla zmiennego stosunku molowego wzorca i AA^P . Serię taką ilustrują widma na Rysunkach: 3-4. (MPA : Ala^P), 3-5. (K_3PO_4 : $Nval^P$), 3-6. ($K_nH_{3-n}PO_4$: $Nval^P$). Wyznaczone na podstawie widm ³¹P NMR współczynniki korelacyjne przedstawiono w

Wyznaczone na podstawie widm ³¹P NMR współczynniki korelacyjne przedstawiono w Tabelach: 3-4. (MPA vs. AA^{P}), 3-5. (K₃PO₄ vs. AA^{P}).

Tabola 2.4. Wenółczynniki korolacyjno nowiorzebni sygnału AA ^P w stocunku												
do MDA w 2M KOH												
		AA										
AA ^P		Gly^{P}			Ala ^P			Hal^{P}			Val ^P	
	G1	G2	G3	A1	A2	A3	H1	H2	H3	V1	V2	V3
[MPA]:	1.1	1.2	1.2	1.1	1.2	1.2	1:	1.1	1.2	1:	1.1	1.2
$[AA^{P}]$	1:1	1:2	1:3	1:1	1:2	1:3	0,5	1:1	1:2	0,5	1:1	1:2
³¹ P _{MPA/AAP}	1,30	1,30	1,21	1,42	1,19	1,31	1,05	1,08	1.05	0,95	0,95	0,93
Σ ³¹ Ρ/3	1,	27 ± 0,0)5	1,	.31 ± 0,2	12	1,	06 ± 0,0	2	0,9	94 ± 0,0)1
[MPA]:[AA ^P] -	- stosun	ek stęże	ń [MPA]	i [AA ^P] r	ówny oc	lpowied	nio: 1:1, 1	:2 i 1:3;				
³¹ P _{MPA/AAP} - stosunek powierzchni sygnału MPA do powierzchni sygnału AA ^P przypadających na równomolarne												
stężenia zwią:	zków;											
∑ ³¹ P/3 – średı	nia z trze	ech ozna	czeń									

				-				
Tabela 3-5. V	Tabela 3-5. Współczynniki korelacyjne powierzchni svgnału AA ^P w stosunku do							
K-DO-W 2 M KOH								
AA ^r -K ₃ PO ₄		Nval ^r -K₃PO₄			Mala ^r -K ₃ PO ₄			
D								
[AA ^P]:	N1	N2	N3	M1	M2	M3		
	0,5:1	1:1	2:1	1:4.8	1:2.48	1:1,27		
³¹ P _{MPA/AAP}	0,82	0,85	0,84	1,19	1,16	1,24		
,								
Σ ³¹ P/3		0,84 ± 0,02			1,20 ± 0,04			
$[K_3PO_4]:[AA^P] -$	stosunek stężeń	[K ₃ PO ₄] i [AA ^P] ro	ówny odpowied	nio: 1:0,5, 1:1 i 1	.:2;			
³¹ P _{MPA/AAP} - stosunek powierzchni sygnału MPA do powierzchni sygnału AA ^P przypadajacych na równomolarne								
steżenia zwiazk	ów:	70	•	10	,, ,, ,,			
		,						
> P/3 – srednia	a z trzech oznacz	en						

Tabela 3-6. Współczynniki korelacyjne powierzchni sygnału AA ^P w stosunku do K _n H _{3-n} PO ₄													
i MPA w 2 M AcOK-AcOH													
	MPA-AA ^P						K _n H _{3-n} PO ₄ -AA ^P						
AA ^P		Hal^{P}			Val ^P			Mala ^P			Nval ^P		
	H1	H2	H3	V1	V2	V3	M1	M2	M3	N1	N2	N3	
[STD]:	1:	1.1	1.2	1:	1.1	1.2	1:	1.1	1.7	1:	1.1	1.7	
[AA ^P]	0,5	1.1	1.2	0,5	1.1	1.2	0,5	1.1	1.2	0,5	1.1	1.2	
³¹ P _{STD/AAP}	1,21	1,21	1,22	1,06	1,03	1,06	1,35	1,31	1,39	1,02	1,04	1,00	
Σ ³¹ Ρ/3	1,	21 ± 0,0)1	1,	1,05 ± 0,02			1,35 ± 0,04			1,02 ± 0,03		
[STD]:[AA ^P] – stosunek stężeń [STANDARD] i [AA ^P] równy odpowiednio: 1:0,5; 1:2 i 1:2;													
³¹ P _{STD/AAP} - sto	sunek p	owierzc	nni sygn	ału stano	dardu (N	1PA lub l	$(_{3}PO_{4})$ do	powierz	chni syg	nału AA'			
przypadający	ch na róv	vno-mo	arne ste	żenia zw	viazków:								

 Σ^{31} P/3 – średnia z trzech oznaczeń

W Tabeli 3-6. przedstawiono współczynniki korelacyjne dla reprezentatywnych par: MPA-AA^P i AA^P-K_nH_{3-n}PO₄ wyznaczone w roztworze buforowym. Wyznaczone współczynniki są o około 10% wyższe od odpowiednich wyznaczonych dla roztworów 2 M KOH, co stanowi potwierdzenie tezy o wpływie stanu jonizacji na względną powierzchnię sygnału ³¹P kwasu fosfonowego (Sch. 3-4.).

3.2.1.1.1.2.2. WYLICZENIA STĘŻENIA AMINOKWASU NA PODSTAWIE WIDMA ³¹P NMR MIESZANINY POWIERZCHNI SYGNAŁU AA^P I WZORCA

Metodę wyliczenia stężenia aminokwasu na podstawie widma ³¹P NMR mieszaniny i stosunku powierzchni: sygnału AA^P do wzorca przedstawiono w Tabeli 3-7.

Tabela 3-7. Wyprowadzenie wzoru do wyliczania stężenia AA ^P z pomiarów ³¹ P-NMR-owych							
C _{ST} — RA _{ST}	C _{ST} — RA _{ST}						
(1)	(2)						
C _{AAP} — RA _{AAP}	C _{AAP} — k x RA _{AAP}						
RA _{ST}	C _{ST} x k x RA _{AAP}						
k = (3)	$C_{AAP} =$						
RA _{AAP}	RA _{ST}						
C _{ST} - stężenie standardu (MPA, K ₃ PO ₄);							
CA _{AP} - stężenie standardu AA ^P ;							
RA_{ST} - powierzchnia względna sygnału ³¹ P standardu (MPA, K ₃ PO ₄);							
RA _{AAP} - powierzchnia względna sygnału ³¹ P aminokwasu (AA ^P);							
k – stosunek: powierzchni względnej sygnału ³¹ P standardu do powierzchni względnej sygnału ³¹ P							
aminokwasu dla równomolowych steżeń s	standardu i aminokwasu w próbce						

3.2.1.1.2. BADANIA NAD WYZNACZANIEM ROZPUSZCZALNOŚCI AMINOKWASÓW FOSFONOWYCH

3.2.1.1.2.1. METODA KRYSTALIZACJI

W metodzie suspensję AA^P poddawano rozpuszczeniu w temperaturze około 80°C (ok. 0,5 h), następnie homogenny roztwór poddawano powolnemu ochłodzeniu do temperatury 30°C (20-24 h). Otrzymany przesycony roztwór AA^P termostatowano w temperaturze $25^{\circ}C \pm 0,1^{\circ}C$ przez minimum 48 h.

3.2.1.1.2.1.1. BADANIA OPTYMALIZACYJNE

Dla określenia dynamiki przebiegu krystalizacji AA^P w czasie wykorzystywano cztery aminokwasy o znacznych rozpuszczalnościach: Gly^P, Ala^P, Mala^P, Val^P.

Dla ilustracji postępu krystalizacji (spadku stężenia roztworu aminokwasu) wykorzystano spektroskopie NMR. W tym celu, w odpowiednim czasie pobierano starannie odmierzone próbki roztworów: Gly^P, Ala^P, Mala^P, Val^P, następnie dodawano wzorzec MPA i rejestrowano widmo ³¹P NMR.

Wyniki eksperymentu przestawiono w Tabeli 3-8. oraz zilustrowano na Rysunkach: 3-7. (widma ³¹P NMR), 3-8. (wykres).

Tabela 3-8. Wpływ czasu krystalizacji na stężenie nasyconego roztworu AA ^P								
AA ^P	Gly ^P	Ala ^P	Val ^P	Mala ^P				
ppm	10,8 ppm	13,8 ppm	12,30 ppm	16,4 ppm				
Czas		Stężenie [M] ^{/a}						
0h ^{b/}	0,90	1,50	0,45	0,12				
24 h	0,59	0,90	0,26	0,084				
48 h	0,56	0,87	0,25	0,083				
72 h	0,57	0,86	0,24	0,082				
120 h	0,56	0,87	0,25	0,082				
^a /AA ^P oznaczono za pomocą metody miareczkowania potencjometrycznego;								
Początkowe stężenie	e aminokwasu (1,25 × r	ozpuszczainość w 25 C						

Wyniki badań (Tab. 3-8., Rys. 3-8.) wskazują na stabilizację nasycenia roztworów AA^P (Gly^P, Ala^P, Val^P, Mala^P) po 24 h termostatowania. Ze względów praktycznych okres termostatowania roztworów nasyconych badanych AA^P przedłużono do ok. 48 h.

3.2.1.1.2.2. METODA SONIKACYJNA

3.2.1.1.2.2.1. BADANIA OPTYMALIZACYJNE

W tytułowej metodzie suspensję AA^{P} poddawano sonikacji w temperaturze 25°C, po czym suspensję mieszano przez 1 h, następnie poddawano odwirowaniu, i na koniec całość termostatowano w temperaturze 25 °C ± 0,1 °C przez okres ok. 48 h.

Do badań optymalizacyjnych wybrano Nleu^P – aminokwas o masie molowej 167 i rozpuszczalności w wodzie ok. 0,15 M.

Badania nad wpływem czasu sonikacji na rozpuszczalność AA^P obejmowały:

- badanie wpływu czasu sonikacji na uzyskanie nasycenia Nleu^P;
- badanie wpływu czasu mieszania suspensji po sonikacji.

Wpływ czasu sonikacji na uzyskanie nasycenia Nleu^P przedstawiono w Tabeli 3-9. oraz na Rysunku 3-9.

Badania wykazały, iż optymalnym czasem sonikacji jest 0,5 h.

Tabela 3-9	Tabela 3-9. Wpływ czasu sonikacji suspensji Nleu ^P -H ₂ O na rozpuszczalność							
Czas	0,1 h		0,5 h		1 h		2 h	
SONKACJI		ſ		1				1
Próbki ^{/a}	N 11	N 12	N 21	N 22	N 31	N 32	N 41	N 42
Stężenie AA ^{P/b}	0,127	0,123	0,130	0,128	0,137	0,123	0,135	0,130
Średnie stężenie	0,125	±0,02	0,129±0,01 0,130±0,07				0,132±0,03	
^a [/] Użyto próbki o masach ok. 25 mg Nleu [°] , wynikające z wstępnie wykonanego oznaczenia Nleu [°] w nasyconym roztworze wodnym; ^{b/} Steżenie molarne AA [°] ustalone na drodze miareczkowania pH-metrycznego								

Wyniki badań nad wpływem czasu mieszania suspensji uzyskanej w wyniku 0,5 h sonikacji próbek Nleu^P w wodzie przedstawiono w Tabeli 3-10. i na Rysunku 3-10.

Tabela 3-10. Wpływ czasu mieszania suspensji Nleu ^P - H ₂ O na rozpuszczalność Nleu ^P									
Czas sonikacji	0,3	0,1 h		0,5 h		1 h		2 h	
Próbki ^{/a}	N 11	N 12	N 21	N 22	N 31	N 32	N 41	N 42	
Stężenie AA ^{P/b}	0,149	0,155	0,150	0,160	0,160	0,152	0,150	0,152	
Średnie stężenie	0,152 :	± 0,003	0,155 ± 0,005 0,156 ± 0,004			0,151 ± 0,001			
^{a/} Użyto prób roztworze wo ^{b/} Oznaczenie	^{a/} Użyto próbki o masach ok. 25 mg Nleu ^P , wynikające z wstępnie wykonanego oznaczenia Nleu ^P w nasyconym roztworze wodnym; ^{b/} Oznaczenie molarne AA ^P na drodze miareczkowania pH-metrycznego								

Z przedstawionych danych wynika, że optymalne warunki do uzyskania nasycenia AA^P w wodzie polegają na:

- sonikacji mieszaniny AA^P w wodzie przez okres 0,5 h;
- dodatkowe mieszanie uzyskanej suspensji przez okres 1 h.

3.2.1.1.3. WYNIKI BADAŃ ROZPUSZCZALNOŚCI KWASÓW AMINOALKILOFOSFONOWYCH W WODZIE I MIESZANYCH WODNO-ALKOHOLOWYCH UKŁADACH AA^P- iPrOH - H₂O

W poprzednich rozdziałach opisano metody otrzymywania nasyconych roztworów kwasów 1-aminoalkilofosfonowych w wodzie oraz wyniki metod oznaczania ich stężenia w roztworach. Skłonność do tworzenia hydratów przez AA^P ogranicza możliwość zastosowania metody grawimetrycznej, tradycyjnie stosowanej w fizyko-chemii roztworów aminokwasów karboksylowych. Istotnym problemem w praktycznej chemii kwasów 1aminoalkilofosfonowych jest ich rozpuszczalność w mieszanych wodno-alkoholowych roztworach. Wynika to z faktu, iż najbardziej popularną metodą wydzielania/oczyszczania tych związków jest krystalizacja z roztworów wodnych po wprowadzeniu/rozcieńczeniu alkoholem. Znajomość rozpuszczalności końcowej AA^P w filtracie pozwoli na zadecydowanie o prowadzeniu krystalizacji II rzutu. Równorzędnym asumptem do badań nad rozpuszczalnością kwasów 1-aminoalkilofosfonowych w układach mieszanych jest fizykochemia roztworów tych związków, do niedawna problem praktycznie nie badany ^[275,276].

3.2.1.1.3.1. WYNIKI BADAŃ ROZPUSZCZALNOŚCI KWASÓW AMINOALKILOFOSFONOWYCH W WODZIE

Wyznaczone wyniki badań nad rozpuszczalnością reprezentatywnych kwasów aminoalkilofosfonowych w wodzie podano w Tabeli 3-11.

81

Tabela 3-11. Rozpuszczalność kwasów aminoalkilofosfonowych w wodzie w 25°C									
Kwas Fosfo	nowy	R	ozpuszczalność A	۹ ^P w wodzie w 25	°C				
			Stężenie						
Symbol	Masa Molowa		Molowe [M] ^{/a}		Procent. [%] ^c				
		Metoda A	Metoda B	Średnia ^{/b}	Metoda B ^{/d}				
Gly ^P	111,0	0,49±0,06	0,56±0,06	0,53±0,04	6,2±0,04				
Ala ^P	125,1	0,77±0,01	0,87±0,02	0,82±0,05	10,4±0,6				
Hala [₽]	139,1	0,92±0,05	1,01±0,05	0,97±0,04	13,3±0,6				
Mala ^P	139,1	0,081±0,005	0,083±0,005	0,082±0,01	1,1±0,01				
Et-Mala ^P	167,1		0,70±0,05	0,70±0,05	11,7±0,8				
Me-Hala ^P	153,1				22 ^d				
Me ₂ -Hala ^P	167,1				49 ^d				
3-Hala ^P	139,1		2,18±0,05	2,18±0,05	30,3 ^d ±0,7				
Val ^P	153,1	0,21±0,02	0,25±0,02	0,23±0,02	3,52±0,3				
Nval ^P	153,1	0,78±0,04		0,78±0,04	11,9±0,6				
Leu ^P	167,1	0,11±0,01	0,08±0,005	0,095±0,015	1,59±0,3				
lleu [₽]	167,1		0,13±0,005	0,13±0,005	2,17±0,08				
Nleu ^P	167,1	0,15±0,005	0,21±0,005	0,18±0,03	3,01±0,5				
Tleu ^P	167,1		0,05±0,002	0,05±0,002	0,83±0,03				
Met [₽]	185,2	0,105±0,01	0,085±0,005	0,095±0,01	1,76±0,02				
Pgly ^P	187,1		0,08±0,005	0,08±0,005	1,50±0,09				
Phe ^P	201,1	0,12±0,01	0,08±0,005	0,10±0,02	2,00±0,4				
1-HPP	140,1				46 ^d				
^{a/} Metoda A – sonik	acja w 25°C;								

Metoda B – krystalizacja AA^{P} w gradiencie temperatury 80-25°C;

^{b/}Średnia z oznaczeń Metodami A i B;

^{c/}Wyliczone na podstawie danych ze średniej oznaczeń metod A i B;

^{d/}Oznaczone stosując Metodę B

3.2.1.1.3.2. WYNIKI BADAŃ ROZPUSZCZALNOŚCI KWASÓW AMINOALKILOFOSFONOWYCH W MIESZANYCH WODNO-ALKOHOLOWYCH UKŁADACH AA^P- iPrOH-H₂O

Do badań wpływu zawartości alkoholu na rozpuszczalność AA^P w mieszanych wodnoalkoholowych układach: AA^P - ROH - H₂O wybrano aminokwasy niskocząsteczkowe (Gly^P, Ala^P, Hala^P, Val^P) oraz alkohol izopropylowy.

Widma 31 P NMR mieszaniny MPA-AA P w układach iPrOH-H₂O przedstawiono na Rysunku 3-11.

Wyznaczone rozpuszczalności AA^P dla układów ROH-H₂O przedstawiono w Tabeli 3-12.

Tabel	Tabela 3-12. Rozpuszczalność AA ^P w układzie H ₂ O-iPrOH								
		Stężenie molowe [M] AA^P w układzie: AA^P - ROH - $H_2O^{/a}$							
Nr. AA ^P			iPr	ОН					
		H_2O'	10 %	25 %	50 %	75 %			
1	Gly [₽]	0,56	0,19	0,14	0,06	0,005			
2	Ala ^P	0,83	0,47	0,20	0,11	0,012			
3	Hala [₽]	0,99	0,48	0,21	0,12	0,022			
4	Val ^P	0,24	0,082	0,051	0,013	0,003			
^{a/} Wyznaczone za pomocą ³¹ P-NMR;									
^{b/} Wyz	naczone za pom	iocą miareczkow	ania pH-metryc	znego					

Wpływ zawartości alkoholu w układach: AA^P - H₂O - iPrOH na rozpuszczalność kwasu 1aminoalkilofosfonowego przedstawiono na Rysunku 3-12.

3.2.1.1.4. DYSKUSJA WYNIKÓW I WNIOSKI

Porównanie rozpuszczalności reprezentatywnych difunkcyjnych aminokwasów naturalnych i ich fosfonowych analogów przedstawiono w Tabeli 3-13.

Tabela 3-1	.3. Porówna karboksy	nie rozpuszcz lowych ^[211, 21]	zalności repi ^{1a]} i ich fosfo	rezentatywr nowych ana	nych aminok alogów w wo	wasów odzie w 25°C	2		
	A A	A ^C		AA ^P					
	N / N /	Rozpusz	czalność	ΔΔ ^P	ММ	Rozpusz	czalność		
AA	IVIIVI	М	%		101101	M ^{/a}	%		
Gly	75,1	3,33	25,0	Gly ^P	111,0	0,54	6,2		
Ala	89,1	1,85	16,5	Ala ^P	125,1	0,83	10,4		
Hala	103,1	2,30 ^[211a]	23,7 ^[211a]	Hala ^P	139,1	0,99	13,8		
Mala	103,1	1,33 ^[211a]	13,7 ^[211a]	Mala ^P	139,1	0,081			
Val	117,2	0,76	8,9	Val ^P	153,1	0,22	3,2		
Nval	117,2	0,42 ^[211a]	4,9 ^[211a]	Nval ^P	153,1	0,19	2,91		
Leu	131,2	0,19	2,4	Leu ^P	167,1	0,09	1,7		
lleu	131,2	0,31	4,1	lleu ^P	167,1	0,13	2,2		
Nleu	131,2	0,087 ^[211a]	1,2 ^[211a]	Nleu ^P	167,1	0,13	2,2		
Tleu	131,2	0,48 ^[211b]	6,3 ^[211b]	Tleu ^P	167,1				
Met	149,2	0,23	3,5	Met [₽]	185,2	0,09	1,7		
Phe	165,2	0,18	2,96	Phe ^P	201,1	0,12	0,6		
^{a/} Średnie wa	ntości uzyskan	e z Metod A i B							

Uzyskane wyniki wskazują na około 2-krotnie niższą rozpuszczalność kwasów aminofosfonowych w porównaniu z aminokwasami karboksylowymi (Gly^P – 6 krotny spadek), co sugeruje silniejsze oddziaływania AA^P w ciele stałym [Hudson&Kukhar, 2000]^[1].

Ogólny trend zależności: rozpuszczalność - struktura jest podobny do wykazywanego dla aminokwasów karboksylowych (wyjątek Gly^P) (Rys. 3-13.).

Dane wskazują na znaczący wpływ struktury AA^P na ich rozpuszczalność. I tak:

- obecność większych (Nval^P, Nleu^P) lub bardziej objętościowo rozbudowanych podstawników (Val^P vs. Nval^P, Hal^P vs. Mala^P, seria fosfonoleucyn) obniża rozpuszczalność;
- w przypadku Mala^P aminokwasu z grupą aminową przy trzeciorzędowym atomie węgla obserwowano znaczące zmniejszenie rozpuszczalności;
- szczególnie słabo rozpuszczalne są aminokwasy aromatyczne (Pgly^P, Phe^P).

Tabela 3-14. Porównanie rozpuszczalności reprezentatywnych aminokwasów karboksylowych ^[211, 211a] i ich fosfonowych analogów w wodzie w 25°C									
	A	A ^C			A	Α ^P	-		
AA ^C	ММ	Rozpuszcz	alność ^[211a]	AA ^P	ММ	Rozpuszc	zalność ^{/b, c}		
,		М	%			$M^{/b}$	% ^{/c}		
2-Ala	89,1	8,13	72,4	2-Ala ^P	125,1				
Hala	103,1	2,30	23,7	Hala [₽]	139,1	0,97	13,3		
3-Hala	103,1	9,4	97,1	3-Hala ^P	139,1	2,18	30,3 ^b		
Me-Hala	131,1	0,28 ^[211b]	3,7 ^[211b]	Me-Hala [₽]	167,1		22 ^b		
Me ₂ -Hala	131,1	1,74 ^[211b]	22,8 ^[211b]	Me ₂ -Hala ^P	167,1		49 ^{(-)b}		
Mala	103,1	1,33	13,7	Mala [₽]	139,1	0,082	1,1		
Et-Mala	131,1	0,84 ^[211b]	11,0 ^[211b]	Et-Mala [₽]	167,1	0,70	11,7		
HBU	104,1	3,45 ^[211b]	35,9 ^[211b]	HPP ^{/a}	140,1		46,		
a/UDD building	بامم بيبيم أبيبه								

^{a/}HPP - hydroksylowy analog Hala^P;

^{b/}Rozpuszczalność kwasu oznaczano metodą potencjometrycznego miareczkowania (średnia z wyników A&B); ^{c/}Rozpuszczalność szacowano na podstawie metody sukcesywnego dosypywania kwasu fosfonowego do uzyskania przesycenia * Na uwagę zasługuje znaczący wzrost rozpuszczalności aminokwasu towarzyszący zmianie rzędowości grupy aminowej (Hala^P, Me-Hala^P, Me₂-Hala^P) jak i oddaleniu grupy aminowej i fosfonowej (Hala^P vs. 3-Hala^P) (Tab. 3-14.) spowodowanych wzrostem zasadowości grup aminowych (Tab. 3-15.).

Trójwęglowy kwas 1-hydroksypropylofosfonowy (HPP) wykazuje bardzo wysoką rozpuszczalność (46%) porównywalną do aminowego homologu Me₂N-Hala^P (>50%). Obydwa związki wykazują również bardzo dużą gęstość/lepkość.

Spadek rozpuszczalności kwasów aminoalkilofosfonowych w układach: $AA^{P} - ROH - H_{2}O$ wraz ze wzrostem udziału alkoholu w mieszaninie uzasadnia procedurę izolacji AA^{P} na drodze krystalizacji w układach mieszanych woda-alkohol.

Tabela 3-15. Stałe dysocjacji (pk) /protonowania (pK) wybranych kwasów amino-fosfonowych (AA ^P)								
AA ^P	pk ₁ [pK ₃] [-PO ₃ H ₂ / PO ₃ H]	pk ₂ [pK ₂] [-PO ₃ H ⁻ /PO ₃ ²⁻]	pk ₃ [pK ₁] [NR ² H ⁺ /NR ² H ⁺]					
Gly [₽]	0,44 ^[32] <1 ^[33]	5,39 ^[32] 5,32±0,02 ^[33]	10,5 ^[32] 10,04±0,04 ^[33]					
Me-Gly ^P	0,64 ^[32]	5,31 ^[32]	10,91 [32]					
Me ₂ Gly ^P	0,45 ^[32]	5,18 ^[32]	11,06 [32]					
2-Ala ^P	2,74±0,05 ^[33]	6,52±0,03 ^[33]	11,17±0,05 ^[33]					
3-Hala ^P	2,80±0,05 ^[33]	7,12±0,03 ^[33]	11,18±0,05 ^[33]					
4-Nval ^P	2,85±0,05 ^[33]	7,57±0,02 ^[33]	11,23±0,05 ^[33]					

Wyniki tej części pracy były prezentowane na konferencji:

Kudzin, M.H; Kudzin, Z.H.; Urbaniak, P.; Drabowicz, J.: *Investigations on the solubility of aminoalkylphosphonic acids*. 16th International Symposium Advances in the Chemistry of *Heteroorganic Compounds*, P-085, CBMM PAN, Łódź, 2013.11.15.^[262]

3.2.2. WIDMA ABSORPCYJNE AMINOKWASÓW

3.2.2.1. SPEKTROSKOPIA UV I IR

Zamieszczone w części teoretycznej widma UV i IR reprezentatywnych aminokwasów fosfonowych zostały wykonane przeze mnie i stanowią bazę graficzną przeglądu nt. aminofosfonianów, w przygotowaniu.

Celem sporządzenia widm było zobrazowanie i potwierdzenie obiegowych opinii formułowanych na podstawie analogii do aminokwasów karboksylowych, w tym:

- transparentności w UV roztworów kwasów aminoalkilofosfonowych pozbawionych dodatkowych grup chromoforowych;
- znaczącej absorbancji kwasów aminoaralkilofosfonowych;
- skomplikowanym charakterze widm IR kwasów aminoalkilofosfonowych uniemożliwiających ich identyfikację grupową.

3.2.2.2. SPEKTROSKOPIA NMR

Zamieszczone w części teoretycznej widma ¹H NMR oraz ¹³C NMR reprezentatywnych aminokwasów fosfonowych stanowią bazę graficzną przeglądu nt. aminofosfonianów, w przygotowaniu.

3.2.2.1. SPEKTROSKOPIA ³¹P-NMR

Silna zależność przesunięcia chemicznego kwasów fosfonowych, w tym zwłaszcza kwasów aminofosfonowych od stopnia jonizacji jest przyczyną niejednoznaczności charakteryzacji tych związków za pomocą $\delta(^{31}P)$ (Rys.: 2-5.1., 2-5.2., 3-14.).

W dostępnych zestawieniach literaturowych przesunięć chemicznych związków fosforu (np. Kukhar&Hudson^[1], Kukhar&Solodenko^[10]) brakuje danych dotyczących kwasów amino-fosfonowych. W podjętych badaniach wyznaczyłem przesunięcia chemiczne dla ponad 40 kwasów fosfonowych (Tab. 3-16.), w tym:

• prostych i funkcjonalizowanych (np. grupy HO, CO₂H) kwasów alkilofosfonowych;

- serii ω-aminoalkilofosfonowych;
- serii 1-aminoalkilofosfonowych;
- serii 1-aminoaralkilofosfonowych;
- serii 1-(*N*-alkiloamino)alkilofosfonowych i 1-(*N*,*N*-dialkilo)alkilofosfonowych;
- serii alkilo-1,1-bisfosfonowych.

Analiza przebiegu zależności: $\delta(^{31}P) = f(pH) dla szeregu AA^{P}$ (Rys. 3-13) wykazuje względną stałość $\delta(^{31}P)$ w obszarach:

- 3 < pH < 9;
- 0 < pH < 2;
- 11 < pH < 14.

W obszarach tych występuję odpowiednio (Sch. 3-5.):

- 4 <pH<6 forma jonu obojnaczego;
- pH~0 forma maksymalnie uprotonowana;
- pH~14 –forma w pełni zdeprotonowana.

Schemat 3-5. Wpływ pH roztworu na stopień uprotonowania kwasu 1aminoalkilofosfonowego

Biorąc pod uwagę przebieg funkcji: $\delta(P)=f(pH)$ wybrano 3 punkty pomiarowe, w których obserwowano płaski charakter krzywej, tzn.: 2 M HCl (pH=0), bufor (pH~4,5), 2 M KOH (pH=14).

Tabela 3-16.1	L. Przesunięci kwasów fos	a chemiczne dla sfonowych	kwasów fosfonow	vych i funkcjonali	zowanych			
Kwas fosfonowy		³¹ P NMR; δ (ppm)						
R/n	Kwas fosfonowy	2 M HCl ^a	Bufor AcOH/AcONa	H_2O^a	2 M NaOH ^a			
$\begin{array}{c} O\\ H\\ R-P(OH)_2\end{array}$								
Me	MPA	30,7	24,4	27	20,5			
HO ₂ C-CH ₂	P-AcOH	17,4	14,70		15,9			
$HO_2C-(CH_2)_2$	HO ₂ C-(CH ₂) ₂ P-PrpOH		8,6		14,2			
$H_2 N - \begin{bmatrix} C \\ H_2 \end{bmatrix}_n P(OH)_2$								
n=1	Gly [₽]	13,9 ⁽²⁾	10,6 ⁽²⁾	11,0 ⁽²⁾	19,3 ⁽²⁾			
n=2	2-Ala ^P	23,55	18,8	18,8	19,60			
n=3	3-Hal ^P	29,25	23,7	23,7	20,7			
n=4	4-Nval ^P	30,2	24,20	25,9	22,4			
				• 				
$H_3PO_4/Na_nH_mPO_4$ (m+n=3)		-0,47 ± 0,01	+0,1	0,12 ± 0,03	5,39 ± 0,02			
$H_3PO_3/Na_nH_mPO_3$ (m+n=3; n=0-2)		5,15			3,17			

Tabela 3-16.2. Przesunięcia chemiczne dla kwasów 1-aminoalkilo fosfonowych								
Kwas fosfonowy		³¹ Ρ NMR; δ (ppm)						
R/n	Kwas fosfonowy	2 M HCl ^a	Bufor AcOH/AcONa	H_2O^a	2 M NaOH ^a			
$H_2 N - \frac{H_1}{E} - P(OH)_2$								
	AL P	16 8 ⁽⁴⁾	13.0	1/1 3 (4)	22 3 ⁽⁴⁾			
Me	Ala'	10,8	13,9	14,5	22,5			
Et	Hala [₽]	16,3	13,3	13,7	22,0			
Pr	Nval [₽]	16,4	13,5	13,9	22,0			
iPr	Val ^P	15,7 ⁽²⁾	12,7	13,0 ⁽²⁾	21,2 ⁽²⁾			
Bu	Nleu ^P	16,45 ⁽²⁾	13,5	13,95 ⁽²⁾	21,7			
iBu	Leu [₽]	16,2 ⁽²⁾	13,0	13,4 ⁽²⁾	21,2 ⁽²⁾			
s-Bu	lleu [₽]	15,0	11,6	12,0	20,6			
t-Bu	^t Leu ^P	15,3	12,7	13,0	20,8			
MeS-CH ₂ CH ₂	Met ^P	16,0	12,6	13,0	20,3			
EtS-CH ₂ CH ₂	Eth [₽]	16,2	12,6	13,0	20,1			
MeS-CH ₂	Mcys ^P	14.0			18,1			
EtS-CH ₂	Ecys ^P	14,2			18,1			
Bn	Phe ^P	14,8	12,1 ⁽²⁾	12,5	20,4			
BnCH ₂	Hphe ^P	15,8	12,8	13,2	21,3			

Tabela 3-16.3. Przesunięcia chemiczne dla kwasów 1-aminoalkiloarylofosfonowych								
Kwas fosfonowy		³¹ Ρ NMR; δ (ppm)						
R/n	Kwas	2 M HCl ^a	Bufor	H_2O^a	2 M NaOH ^a			
	fosfonowy		AcOH/AcONa					
		H ₂ N-	-Ç-P(OH) ₂					
			År					
R	Kwas	2 M HCl ^a	Bufor	H_2O^a	2 M NaOH ^a			
	fosfonowy		AcOH/AcONa					
Ph	Pgly ^P	12,5 ⁽²⁾	10,2	10,5 ⁽²⁾	18,0 ⁽²⁾			
<i>o</i> -Tol	<i>o</i> -TolGly [₽]	13,4			19,5			
<i>m</i> -Tol	<i>m</i> -TolGly [₽]	13,2			18,8			
<i>p</i> -Tol	<i>p</i> -TolGly ^P	13,3			19,0			
Me Me	2,4,6-Me₃ Pgly ^P				19,6			
<i>o</i> -Cl-Ph	o-Cl-Pgly ^P	11,8			18,3			
<i>p</i> -Br-Ph	<i>p</i> -Br-Pgly ^P				16,8			
<i>o</i> −NO₂−Ph	o-NO ₂ - Pgly ^P	10,8			17,2			
<i>m</i> -NO ₂ -Ph	m-NO ₂ - Pgly ^P	11,2			17,1			
<i>p</i> -NO₂-Ph	p-NO ₂ - Pgly ^P	10,9			17,1			
<i>p</i> -HO₂C-Ph	p-HO ₂ C- Pgly ^P				18,2			
	1-Nphgly ^P	13,0			19,0			
	2-Nphgly ^P	12,9			18,6			

Tabela 3-16.4. Przesunięcia chemiczne dla kwasów 1-(N-alkiloamino)alkilofosfonowych,								
1-(N,N-dialkiloamino)alkilofosfonowych i 1-amino-1-alkiloalkilofosfonowych								
Kwas fosfonowy			³¹ Ρ NMR; δ (ppm)					
R/n	Kwas fosfonowy	2 M HCl ^a	Bufor AcOH/AcONa	H_2O^a	2 M NaOH ^a			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
R=H; R ¹ =H; R ² =tBu	^t BuGly ^P	12,5			17,8			
R=Me; R ¹ =H; R ² =tBu	^t BuAla ^P	15,9			21,8			
R=Et; R ¹ =H; R ² =Me	MeHala [₽]	14,3			20,1			
R=Et; R ¹ =H; R ² =Et	EtHala [₽]	14,5	11,8		20,4			
R=Et; R ¹ =R ² =Me	Me₂Hala ^P	12,8	10,2		19,1			
$R^{1}-N-C^{-}-P(OH)_{2}$								
R=Me; R ¹ =H	Mala ^P	19,2	16,6		24,9			
R=-[CH ₂] ₆ -; R ¹ =H	1-ACH-1-P	18,8	16,3					
R=Me; R ¹ =Et	Et-Mala ^P	17,6			23,0			

Tabela 3-16.5. Przesunięcia chemiczne dla kwasów alkilo-1,1-difosfonowych							
i 1-aminoalkilo-1,1-difosfonowych							
Kwas fos	fonowy	³¹ P NMR; δ (ppm)					
R/n	Kwas fosfonowy	2 M HCl ^a Bufor AcOH/AcONa		H_2O^a	2 M NaOH ^a		
$\begin{array}{c} O \\ R \\ C \\ X \\ P(OH)_2 \\ O \end{array}$							
R=X=H	MDP	12,94	13,04		15,84*		
X=NH ₂ ; R=C ₂ H ₅	Hal ^{P,P}	13,21	13,51		17,18*		
X=NH ₂ ; R=C ₃ H ₇	X=NH ₂ ; R=C ₃ H ₇ Nval ^{P,P} 17,35 16,37 18,16*						
X=OH; R=H ₂ N(CH ₂) ₂	Pam 17,94 17,30 20,88						
X=OH; R=H ₂ N(CH ₂) ₃	Aln 18,35 18,03 21,43*						

Racjonalna podstawa charakteryzacji kwasów fosfonowych za pomocą przesunięć chemicznych $\delta(P)$ stanowi nowość w literaturze naukowej.

Porównanie przesunięć chemicznych dla różnych AA^P w danych warunkach pH pozwala znaleźć warunki w których związki te są rozróżnialne w mieszaninie wieloskładnikowej.

Na Rysunkach 3-15. przedstawiono widma mieszanin wieloskładnikowych zawierających bisfosfoniany, w tym: $CH_2[P^*]_2$, Hal^{PP} , $Nval^{P,P}$, Pam, Aln.

3.2.2.2. SPEKTROSKOPIA ¹H-NMR

Na Rysunkach 3-16. przedstawiono widma ¹H NMR dla 0,4 M roztworów AA^{P} (Gly^P, 1-Ala^P, 2-Ala^P) wykonane w roztworze H₂O - D₂O (90:10). Na widmach widoczne są szerokie sygnały (7,30 - 8,30 ppm) pochodzące od grupy aminowej (integracja i dominujący sygnał pochodzący od wody). Sygnał wody można elektronicznie zniwelować (lub silnie ograniczyć).

Widma po supresji wody (niepełna) nie zawierają jednak protonów grupy aminowej ani fosfonowej. **Wykorzystanie tej techniki do rejestracji kwasów aminofosfonowych stanowi nowość w chemii związków klasy P-C-N**, jednak wymaga dopracowania, w tym ustalenia czy proton grupy fosfonowej ulega poszerzeniu i dlatego jest niewidoczny, czy wraz z protonami H₂O jest elektronicznie niwelowany.

3.2.2.3. SPEKTROSKOPIA ¹³C-NMR

Widma ¹³C NMR serii kwasów ω -aminoalkilofosfonowych (D₂O) przedstawiono w części teoretycznej (Rys. 2-15.) i stanowią bazę graficzną przeglądu nt. aminofosfonianów, w przygotowaniu.

Opis numeryczny widm przedstawiono w Tabeli 3-17.

Tabela 3-17. Charakterystyka ¹³ C NMR serii kwasów ω-aminoalkilofosfonowych									
Gly ^P	ppm	36,66	35,72						
	Hz								
	Integr.	0,99	1,00						
	ppm	45,28	44,32	13,65					
1-Ala ^P	Hz								
	Integr.	0,39	0,38	1,00					
	ppm	35,56	26,58	25,71					
2-Ala ^P	Hz								
	Integr.	1,95	0,95	1,00					
	ppm	40,28	40,16	25,41	24,52	21,53			
2₋Həl ^P	Hz								
5-1101	Intogr	1,	13	0.41	0.44	1.00			
	integi.	1	1	0,41	+1 0,44	1,00			
	ppm	39,46	27,93	27,82	27,68	26,79	20,25	20,27	
	Hz								
4-INVAI	lintogra	1,47				0.5	1,0	00	
	megi.	0,91	0,49	0,49	0,49	0,5			
Widma ¹³ C NMR były rejestrowane na spektrometrze Bruker Avance III 600 przy przy częstotliwości: 150,95 MHz									

3.2.3. BADANIA TERMOGRAWIMETRYCZNE KWASÓW AMINOFOSFONOWYCH

Analiza termograwimetryczna (TGA lub TG: ang. *Thermogravimetric Analysis, Thermogravimetry*) – technika pozwalająca opisać przemiany termiczne próbki analizowanej [Gallacher, 1998]^[260]. Wynikiem pomiarów termograwimetrycznych jest krzywa termograwimetryczna (krzywa TGA), będąca ilustracją zależności zmiany masy próbki od czasu i/lub temperatury (Rys. 3-17.)^[279].

Straty masy obserwowane na termogramach mogą być powodowane przez:

- przemiany fazowe (parowanie, sublimacja);
- przemiany pirolityczne.

Prekursorem i autorem jedynej pracy włączającej metody termoanalityczne do chemii aminofosfonianów był Kurt Moedritzer [Moedritzer, 1972]^[212] (Rys. 3-18.). O przyczynie sprawczej własnych badań termograwimetrycznych Autor pisze w sposób nastepujący: "*The discrepancy in the reported melting points for the aminomethylphosphonic acid and our own findings (melting at 285°, subsequent resolidification and melting with decomposition at 333°) prompted us to explore this phenomenon in detail by thermoanalytical methods".*

Termogram TGA (Rys. 3-18.1.) wykazuje łagodną endotermę z początkiem w 219°C (ekstrapolacja) z pikiem w 244°C. Pik silnej endotermy pojawiający się w 290°C prezentuje pierwszy punkt topnienia, z ekstrapolowanym początkiem dekompozycji w 317°C, i gwałtowną rozkład z maksimum przy około 329°C. Termogram (Rys. 3-18.2.) wskazuje na niewielki spadek masy próbki do 290°C (ok. 4%) i szybki spadek masy powyżej tej temperatury (prawdopodobnie odszczepienie cząsteczki wody).

Termicznego rozkładu kwasów 1-aminofosfonowych (Sch. 3-6.) może polegać na:

- eliminacji kwasu fosforowego (III) rozpad wiązania C-P;
- eliminacji amoniaku (aminy) rozpad wiązania C-N;
- eliminacji wody;
- eliminacji łańcucha bocznego rozpad wiązania C_α-C_β;
- reakcji wtórnych utworzonych fragmentów.

Schemat 3-6. Hipotetyczne drogi termicznego rozkładu kwasów amino fosfonowych

Termograwimetrogramy TGA reprezentatywnych AA^{P} przedstawiono na Rysunkach 3-19., w tym: Gly^P (Rys. 3-19.1.); Sar^P (Rys. 3-19.2.); Ala^P (Rys. 3-19.3.); 2-Ala^P (Rys. 3-19.4.); Mala^P (Rys. 3-19.5.); Pgly^P (Rys. 3-19.6.); Phe^P (Rys. 3-19.7.).

Tabela	3-18. Analiza termo	grawime	etrogra	nów TGA	reprezenta	atywnych	AA ^P	
	Aminokwas			Ten	nperatura [[°]	°C] ^{/b}	Ubytek	Res. ms. ^{/c}
ΔA ^P	Struktura	N 43 4 /	F a-a ^a	–	· -	- -	masy	w 960°C
,	otraktara		Faza	Ι _ο	li	I _k	[%]	[%]
			1	280	293,13	311	8 <i>,</i> 068	-
Gly ^P		111 1	2	311	326,95	377	12,85	6.022
Giy	$H_2 H_2 H_2$	111,1	3	377	526,76	738	63,24	0,022
	_		4	738	847,68	955	9,816	
			1	277	288,04	356	27,18	
Sar ^P	H_{H_2}	125,1	2	356	499,20	702	55,83	6,086
	2		3	702	820,31	960	10,91	
			1	254	273,27	333	23,85	
Ala ^P	$H_2N-C-PO_3H_2$	125,1	2	333	441,94	609	54,10	6,447
	Me		3	689	847,13	960	15,60	
			1	236	292,51		12.25	
	H ₂ N-C-C-PO ₃ H ₂		2		351,34	396	42,25	
2-Ala ^P	$-H_2H_2$	125,1	3	396	455,60		41.00	1,440
			4		474,99	560	41,00	
				560	835,83	960	15,25	
	Me		1	118	124,54	142	11,49	
Mala ^P		120.1	2	143	235,18	302	27,41	4 800
Iviala		139,1	3	302	449,06	595	45,61	4,899
	Me		4	595	854,21	960	10,58	
	Н		1	142	163,41	196	1,91	
Mat ^P	$H_2 N - C - PO_3 H_2$	105.2	2	222	275,22	333	35,71	C 475
wet	Me-S+CH ₂	185,2	3	333	458,94	595	42,43	6,475
	L J2		4	595	824,03	960	13,46	
	Н		1	267	282,10	338	42,55	
Pgly ^P	$H_2N - C - PO_3H_2$	187,1	2	338	375,80	591	23,95	4,339
0,	Ρ́h	,	3	627	789,23	960	29,16	
	н		1	251	261,01	324	32,64	
pt. P	H ₂ N-C-PO ₃ H ₂	201.6	2	324	373,66	409	27,92	0.000
Phe	H,Ċ	201,1	3	409	420,79	631	13,75	9,922
	- Ph		4	631	825,49	960	16,32	1
^{a/} Faza te	rmolizy:	•	•					

^{b/} Temperatura: T_o - początku rozkładu AA^P; T_i - temperatura odpowiadająca punktowi inflekcji krzywej; T_k- temperatura odpowiadająca końcowi fazy termolizy;

^{c/} *Res. ms.* - Masa "rezydualna" próbki – pozostałość po ekspozycji w temp. 960°C

 AA^{P} Zestawienie względnych spadków masy dla serii objętych badaniami termograwimetrycznymi odpowiadającym hipotetycznym reakcjom termicznej eliminacji: cząsteczki wody, amoniaku, kwasu fosforowego (III) i węglowodoru łańcucha bocznego przedstawiono na Schemacie 3-6., dane eksperymentalne przedstawiono w Tabelach: 3-18., 3-19.

Tabela	3-19. Wyliczone spadki zachodzacych wg	masy ba	danych A	A ^P towarz	zyszące te	ermicznej	degrada	cji
	Aminokwas	. Jenema	Wzglę	dny spade termi	k masy AA czną elimi	[₽] spowodc nacją	owany	Znal.ª: %
				,	Wyliczone			ubytku
AA ^P	Struktura	MW	0,5H₂O (M-9)	H ₂ O (M-18)	NH ₃ (M-17)	H ₃ PO ₃ (M-82)	RH	vs faza
Gly ^P	$H_2 N - C - PO_3 H_2 H_2$	111,1	8,1	16,2	15,3	73,9	-	8,07 ^{/1}
Sar [₽]	$\substack{Me=N=C=PO_3H_2\\H=H_2}$	125,1	7,2	14,4	13,6 ^b	65,6	-	27,2 ^{/1}
Ala ^P	$H_2N - C - PO_3H_2$ Me	125,1	7,2	14,4	13,6	65,6	12,8	23,9 ^{/1}
2-Ala ^P	$\begin{array}{c} H_2N-C-C-PO_3H_2\\ H_2 \ H_2\end{array}$	125,1	7,2	14,4	13,6	65,6	-	42,3 ^{/1}
Mala ^P	$H_2 N - C - PO_3 H_2$ Me	139,1	6,47	12,9	12,2	59,0	11,5	11,5 ^{/1}
Met ^P	$\begin{array}{c} H_2 N - \begin{matrix} H \\ C - PO_3 H_2 \end{matrix}$ $Me - S \left\{ \begin{matrix} I \\ C H_2 \end{matrix} \right\}_2 \end{array}$	185,2	4,86	9,73	9,19	44,3	30,3; 25,9 [°]	1,9 ^{/d} 35,7 ^{/1}
Pgly ^P	$H_2 N - C - PO_3 H_2$ Ph	187,1	4,81	9,63	9,09	43,9	41,7	42,6 ^{/1}
Phe ^P	$H_2N - C - PO_3H_2$ $H_2C - Ph$	201,1	4,48	8,96	8,46	40,8	45,8	32,6 ^{/1}
Znalezion ^{b/} MeNH ₂	no ^{/a} : % ubytku masy wyjścio ; ^{c/} MeSH; ^{d/} Rozkład zanieczy	wej próbk /szczenia w	i AA ^P towar vyjściowej N	zyszący elir ⁄Iet ^P	ninacji frag	mentu cząs	teczki ^(/n) ;	

3.2.4. PIROLIZA KWASÓW AMINOFOSFONOWYCH

Stabilność termiczna kwasów aminofosfonowych należy do jednej z ważnych cech potencjalnej użyteczności tej klasy związków w chemii materiałowej. Termoliza kwasów fosfonowych, w tym w szczególności kwasów aminofosfonowych przedstawia mało poznaną dziedzinę badań zarówno w obszarze chemii związków klasy C-P, jak i fizyko-chemii procesów termolitycznych. Badania nad termiczną stabilnością aminofosfonianów ograniczają się jedynie do dwóch prac: wspomnianej pracy Kurta Moedritzer dotyczącej badań w trybach TGA & DSC dla Gly^P [Moedritzer, 1972]^[212] i pracy zespołu Hoffmann'a dotyczącej badań nad termolizą kwasu amino tri(metylenofosfonowego) (ATMP) [Hoffmann i w-cy, 2012]^{[282].}

Do badań przebiegu pirolizy wykorzystano pirolizer połączony z chromatografem gazowym wyposażonym w detektor masowy [Py-GC-MS-EI] (Rys. 3-20.).

Rysunek 3-20. Schemat ideowy układu Py-GC-MS-EI: 1- pirolizer; 2- łącznik (interfejs); 3 – chromatograf gazowy; 4 – detektor MS-EI

Lotne produkty pirolizy wymywane są z komory pirolizera w sposób ciągły i po schłodzeniu na łączniku (*interfejsie*) kierowane są na kolumnę chromatograficzną. Ulegają absorpcji na *czole kolumny* oraz sukcesywnemu zagęszczaniu. Skierowanie mieszaniny produktów na kolumnę następuje podczas programowanego wzrostu temperatury. Wychodzące, rozdzielone chromatograficznie produkty pirolizy poddawane są analizie MS-EI w detektorze masowym.

Reprezentatywne chromatogramy GC i widma MS-EI głównych, oznaczonych produktów pirolizy przedstawiono na Rysunkach: 3-21. (Me-Pgly^P), 3-22. (Me₃Pgly^P), 3-23. (4-Nval^P). Względne udziały poszczególnych składników chromatogramu wyliczano jako udział prądu jonowego analizowanego składnika do sumy prądów jonowych składników mieszaniny.

Interesujący przypadek stanowi piroliza kwasu 4-aminobutano-1-fosfonowego (4-Nval^P). Naważka Nval^P podczas badań termograwimetrycznych ulegała charakterystycznemu "puchnięciu", podczas którego pęcherzyki związku stykały się z termoparą uniemożliwiając dokładny pomiar. Odbiciem takiego zachowania w warunkach TGA jest specyficzny chromatogram produktów pirolizy przedstawiony na Rysunku 3-23.

Identyczność widm MS poszczególnych składników mieszaniny produktów pirolizy 4-Nval^P i podobieństwo do widm wzorcowych MS serii węglowodorów o wzorze sumarycznym C₄H₈ (M=56) znalezionych w bibliotece MS aparatu uzasadnia postawioną tezę (tworzenie pęcherzyków i ich pękanie/uwalnianie zawartości w czasie).

3.2.4.1. BADANIA NAD PIROLIZĄ KWASÓW AMINOFOSFONOWYCH

Badania nad pirolizą dotyczyły dwóch głównych klas aminofosfonianów:

- kwasów aminoalkilofosfonowych;
- kwasów aminoaralkilofosfonowych.

Badania nad pirolizą obejmowały:

- 1.1. Badania nad wpływem warunków temperaturowych na przebieg pirolizy;
- 1.2. Badania nad pirolizą kwasów aminoalkilofosfonowych;
- 1.2.1. Wpływ oddalenia grupy aminowej i fosfonowej;
- 1.2.2. Wpływ R;
- 1.2.3. Wpływ rzędowości grupy aminowej;
- 1.2.4. Wpływ rzędowości węgla Cα;
- 1.3. Badania nad pirolizą kwasów aminoaralkilofosfonowych obejmowały:
- 1.3.1. Pochodne arylowe Gly^P;
- 1.3.1.1. Pochodne Pgly^P;
- 1.3.1.2. Pochodne Nphgly^P;
- 1.3.2. Phe^P;
- 1.4. Badania nad pirolizą innych kwasów fosfonowych.

3.2.4.1.1. BADANIA NAD WPŁYWEM WARUNKÓW TEMPERATUROWYCH NA PRZEBIEG PIROLIZY

3.2.4.1.1.1. WYNIKI BADAŃ NAD WPŁYWEM TEMPERATURY NA PRZEBIEG TERMICZNEJ DEKOMPOZYCJI p-MePgly^P

Wyniki badań nad wpływem temperatury (350°C, 400°C, 500°C) na przebieg termicznej dekompozycji kwasu 1-amino-(4-metylofenylo)metylofosfonowego (*p*-MePgly^P) przedstawiono w Tabeli 3-20.

Tab	ela 3-2	0. Poró	wnani	e wpłyv	wu te	mpera	tury na	przebi	ieg terr	niczr	nej dek	ompoz	ycji	
		p-Me	e-Pgly ^P											
	35	50°C; 2	min			4(00°C; 2	min			ļ	500°C; 2	2 min	
Nr	RT	RA	m/z v	′s. [%]	Nr	RT	RA	m/z v	′s. [%]	Nr	RT	RA	m/z	vs. [%]
1	1 96	4.0	m/z	43	1	1 05	1 5	m/z	45	1	1 05	6.2	m/z	43
1	1,00	4,5	%	24	L L	1,65	1,5	%	6,5	L.	1,05	0,5	%	3
2			m/z		2			m/z		2	2 24	10.0	m/z	92
2	۷,۷	-	%		2	۷,۷	_	%		2	2,24	10,9	%	76
2	2 5 7	2.0	m/z	106	2	2 5 6	1 Г	m/z	106	2	2 5 5	10.0	m/z	106
3	2,57	3,9	%	33	3	2,50	1,5	%	46	3	2,55	10,9	%	33
л	2 70		m/z		4	2 70		m/z		4	2 72		m/z	
4	2,70	_	%		4	2,70	_	%		4	2,72	_	%	
-	4 21	22.0	m/z	120	Ŀ	4.22	10	m/z	120	F	1 1		m/z	
Б	4,21	33,0	%	47	Э	4,23	12	%	36	Э	4,1	_	%	
c	4 5 4	22 6	m/z	117	c	4 5 2	10	m/z	117	c	4 47	Г 7 7	m/z	117
D	4,54	32,0	%	62	0	4,52	12	%	80	0	4,47	57,7	%	62
7	24 5	10	m/z	44	7	24 5	70	m/z	105	7	24 5	6.0	m/z	44
· /	24,5	10	%	100	'	24,5	70	%	100	'	24,5	0,8	%	86

3.2.4.1.2. BADANIA NAD WPŁYWEM CZASU PIROLIZY NA PRZEBIEG ROZKŁADU

Wyniki badań nad wpływem czasy ekspozycji na temperaturę 400°C na przebieg termicznej dekompozycji kwasu 1-amino-(4-metylofenylo)metylofosfonowego (*p*-MePgly^P) przedstawiono w Tabeli 3-21.

Tab	ela 3-2	1. Poró	wnanie	e wpłyv	wu cz	asu pir	olizy na	a przeb	ieg ter	micz	nej del	compo:	zycji	
		p-Me	e-Pgly ^P											
	40	00°C; 15	sec			4(00°C; 2	min				400°C; 3	37 min	
Nr	RT	RA	m/z v	s. [%]	Nr	RT	RA	m/z v	s. [%]	Nr	RT	RA	m/z	vs. [%]
1	1 70	27	m/z	44	1	1 05	1 5	m/z	45	1	1 01	11	m/z	75
T	1,79	5,7	%	24	Ţ	1,65	1,5	%	6,5	Ţ	1,01	14	%	3
2	2 20	17	m/z	92	2	2.2		m/z		2	2 1 7	2.2	m/z	92
2	2,29	4,7	%	76	2	2,2	-	%		2	2,17	5,5	%	76
2	2 11	10	m/z	106	2	2 56	1 5	m/z	106	2	2 /1	2.1	m/z	106
5	2,44	4,9	%	33	5	2,30	1,5	%	46	5	2,41	5,1	%	33
4	2 70		m/z		4	2 70		m/z		4	2 72	2.6	m/z	101
4	2,70	-	%		4	2,70	-	%		4	2,72	3,0	%	22
E	1 1	26	m/z	120	E	1 72	17	m/z	120	E	4 1	26	m/z	120
5	4,1	20	%	47	5	4,25	12	%	36	5	4,1	50	%	51
c		26	m/z	117	c	4 5 2	10	m/z	117	c		26	m/z	117
0	4,4	30	%	62	0	4,52	12	%	80	0	4,4	20	%	62
7	24 F	10	m/z	51	7	24 5	70	m/z	105	7	24 E	55	m/z	65
/	24,3	10	%	60	/	24,5	70	%	100	/	24,5	5,5	%	51

3.2.4.1.3. BADANIA NAD ODTWARZALNOŚCIĄ TERMOLIZY

Pomiary termolizy powtarzane były dwukrotnie, w przypadkach kontrowersyjnych trzykrotnie.

3.2.4.2. BADANIA NAD PIROLIZĄ KWASÓW AMINOALKILOFOSFONOWYCH

3.2.4.2.1. WPŁYW ODDALENIA

Do badań wpływu oddalenia grup aminowej i fosfonowej $[N-(C)_n-P]$ wybrano serię aminokwasów o wzrastającej długości łącznika węglowego: Gly^P (n=1); 2-Ala^P(n=2); 3-Hala^P(n=3); 4-Nval^P (n=4).

Wyniki badań zamieszczono w Tabeli 3-22. i zilustrowano na Schemacie 3-7.

3.2.4.2.2. WPŁYW R

Do badań nad wpływem podstawnika R w kwasach 1-aminoalkilofosfonowych na przebieg termolizy wybrano: Gly^P; Ala^P; Hala^P a także szereg arylowych pochodnych fosfonoglicyny (omawianych w dalszej części).

Wyniki badań zamieszczono w Tabeli 3-23.

3.2.4.2.3. WPŁYW RZĘDOWOŚCI GRUPY AMINOWEJ

Do badań nad wpływem rzędowości grupy aminowej w kwasach 1-aminoalkilofosfonowych na przebieg termolizy wybrano: t-Bu-Gly^P, Me-Hala^P, Et-Hala^P, Me₂-Hala^P.

Wyniki badań zamieszczono w Tabeli 3-24.

Wyniki badań nad pirolizą serii *N*-alkilowych pochodnych fosfonohomoalaniny (Me-Hala^P, Et-Hala^P, Me₂-Hala^P) zilustrowano na Schemacie 3-8.

Tabela 3-2	4. Zest <i>t</i> -Bu	tawieni I-Glv ^P : I	e głów Me-Hal	nych pr a ^P : Et-H	odukto Iala ^P : N	ów rozp ∕le₂-Hal	adu te a ^P [Wa	rmiczno runki t	ego am termol	ninokwa izv: 400	sów: J°C. 2 m	ninl
		<u> </u>			R^{1} $R^{2'}$	0 H C-P(0 R	H) ₂			<u> </u>		
				N	le₃C−N H	O -C-P(H ₂	OH) ₂					
_		C_4H_8			C_4H_{10}							
tBu-Gly ^P	RT	%	M	RT	%	M	RT	%	М	RT	%	М
	2,06	59	50	2,09	41	58						
					Me-N- H	H II -C-P(C Et	DH) ₂					
Me-Hala ^P	E	t-C(O)H		Et-0	CH=N-M	1e	//	, HN			\searrow) H
inc naid	RT	%	М	RT	%	М	RT	%	М	RT	%	Μ
	1,96	2,2	58	2,03	66	71	2,37	2,5	71	2,62	25	96
					Et—N- H	O H -C-P(C Et)H) ₂					
	E	Et-C(O)⊦	1	Et	t-CH=N-	Et	C₃H	l₅-N(Me)-Et		$C_8H_{15}N$	
Et-Hala ^P	RT	%	М	RT	%	M	RT	%	М	RT	%	Μ
	2,08	3	58	2,20	81	85	2,70	2,5	100	3,09	11	125
					Me N- Me	O H C-P(O Et	H) ₂					
Me ₂ -		Me₃N		/	~N	Me ₂	/	∕N	Me ₂		$C_5H_{10}N_2$	
Hala ^P	RT	%	М	RT	%	М	RT	%	М	RT	%	М
	2,06	2,	59	2,13	47	87	2,20	31	85	5,52	8,1	98

$$R^{1} \qquad O \\ R^{-} - P(OH)_{2} \qquad 400^{\circ}C \qquad Et-Hala^{P} \qquad C_{2}H_{5} - C = N-Me \\ (66\%) \qquad (66$$

Schemat 3-8. Zestawienie głównych produktów rozpadu termicznego aminokwasów: Me-Hala^P; Et-Hala^P; Me₂-Hala^P [Warunki termolizy: 400°C, 2 min]

3.2.4.2.4. WPŁYW RZĘDOWOŚCI WĘGLA Ca

Do badań nad wpływem rzędowości atomu węgla C α w kwasach 1-aminoalkilofosfonowych na przebieg termolizy wybrano: Mala^P, Et-Mala^P, 1-ACH-1-P.

Wyniki badań zamieszczono w Tabeli 3-25.

Tabela 3-2	25. Zes	tawieni	ie główr	nych pr	oduktó	w rozp	adu ter	miczne	ego ami	inokwa	sów:	
	Mal	la ^P ; Et-N	Mala ^P ; 1	-ACH-1	-P [Wa	runki to	ermolizy	/: 400°	C, 2 min]		
		⊂H HN=C,	3									
Mala ^r			3									
	RT	%	M	RT	%	M	RT	%	M	RT	%	Μ
	1,77	95	57									
Et-Mala ^P		C_4H_{10}		Et	−N=C´C	H ₃ H ₃	C8⊦	I ₁₄ /C ₆ H ₁	₀ N ₂			
	RT	%	М	RT	%	М	RT	%	М	RT	%	М
	1,77	9,5	58/57	2,13	75	85	2,86	9,5	110			
1-ACH-	Me ₂ NH Me-NH-CH ₂ -OH				-OH)	
-1-P	RT	%	М	RT	%	М	RT	%	М	RT	%	М
	1,67	44,5	45	1,74	5,9	61	1,90	9,1	82	2,49	37,4	98

Wyniki badań nad pirolizą serii *N*-alkilowych pochodnych fosfonohomoalaniny (Me-Hala^P, Et-Hala^P, Me₂-Hala^P) zilustrowano na Schemacie 3-9.

Schemat 3-9. Zestawienie głównych produktów rozpadu termicznego aminokwasów: Mala^P; Et-Mala^P; 1-ACH-1-P

3.2.4.3. BADANIA NAD PIROLIZĄ KWASÓW AMINOALKILOARYLOFOSFONOWYCH

Badania przeprowadzano na 2 klasach kwasów aminoalkiloarylofosfonowych:

- pochodnych arylowych fosfonoglicyny (ArGly^P);
- fosfonofenyloalaniny (Phe^P).

3.2.4.3.1. POCHODNE ARYLOWE Gly^P (ArGly^P)

Badania w klasie pochodnych arylowych fosfonoglicyny (ArGly^P) dotyczyły:

- pochodnych fosfonofenyloglicyny (Pgly^P);
- fosfononaftyloglicyny (NphGly^P).

3.2.4.3.1.1. BADANIA NAD PIROLIZĄ POCHODNYCH Pgly^P

Zestawienie głównych produktów rozpadu termicznego aminokwasów: Pgly^P; *o*-Me-Pgly^P; *m*-Me-Pgly^P; p-Me-Pgly^P; 2,3,4-Me₃-Pgly^P przedstawiono w Tabeli 3-26.

Tabela 3-2 <i>o</i> -N	6. Zesta 1e-Pgly ⁱ	wienie '; <i>m</i> -N	e główn Ie-Pgly ^F	ych pro ; p-Me	oduktóv e-Pgly ^P ;	v rozpa 2,3,4-	adu teri Me ₃ -Pg	miczne gly ^P [w	go amii arunki te	nokwaso ermolizy:	ów: Pgl 400°c,∶	y ^P ; 2 min]
				› R		-C-P(NH ₂	OH) ₂					
Pgly ^P	K	c	CH3		C;	=0	<		CN		C_7H_7	
. 9.1	RT	%	М	RT	%	Μ	RT	%	М	RT	%	М
	2,1	1,7	92	3,0	6,6	106	3,14	5,7	103	24,5	81	91
								011		1		
o-Me-	<pre></pre>	c	CH ₃	ć		H ₃	K		0		C_8H_8	
Pgiy	RT	%	М	RT	%	М	RT	%	М	RT	%	М
	2,33	2,1	92	2,69	1,2	106	4,08	23	120	24,0	72	104
							[1		
<i>m</i> -Me-	к н _з с		CH3	H ₃ C	P	=0	ہ H ₄ C	<u>_</u>	CN	н _з с		CH3
<i>m</i> -Me- Pgly [₽]	н _з с́ RT	<u>}_</u>	сн _з М	н _з с	c 	i=0 M	H ₃ C	<u>}</u> ;	CN	H₃C RT	×	СH ₃
m-Me- Pgly [₽]	н _з с RT 2,64	<u>%</u> 1,3	сн ₃ М 106	н ₃ с RT 4,14	⊢ 	=0 M 121	H ₃ C RT 4,42	% 7,5	CN M 117	н ₃ с RT 24,1	×	сн _з М 106
<i>m</i> -Me- Pgly [₽]	н _з с RT 2,64	% 1,3	сн ₃ М 106	H ₃ C RT 4,14	, 	=0 M 121	H ₃ C RT 4,42	% 7,5	CN M 117	н _з с RT 24,1	% 75	сн ₃ М 106
m-Me- Pgly ^P p-Me-	н _з с RT 2,64 н ₃ с-	% 1,3	сн ₃ М 106 сн ₃	н ₃ с RT 4,14 н ₃ с-	% 11,5	не <u>М</u> 121 Сперенальной странатира Сперенальной странатирии Сперенальной странатирии Сперенальной странатирии Сперенальной странатирии Сп	H ₃ C	% 7,5	CN M 117 CN	H ₃ C RT 24,1 H ₂ C=	× √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √	СН ₃ М 106 =NH
<i>m</i> -Me- Pgly ^P p-Me- Pgly ^P	н ₃ с RT 2,64 н ₃ с- RT	% 1,3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	сн ₃ 106 сн ₃	н ₃ с RT 4,14 н ₃ с-	% 11,5 %	=0 <u>M</u> 121 C=0 M	Н ₃ С RT 4,42 Н ₃ С- RT	% 7,5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CN M 117 CN M	H ₃ C RT 24,1 H ₂ C= RT	× √ × √ × √ × √ × √ × √	CH₃ M 106 =NH M
<i>m</i> -Me- Pgly ^P p-Me- Pgly ^P	н ₃ с RT 2,64 н ₃ с- RT 2,41	% 1,3 √ × × ×	сн ₃ <u>М</u> 106 сн ₃ <u>М</u> 106	H ₃ C RT 4,14 H ₃ C RT 4,08	% 11,5 % % 17	E=0 M 121 C=0 M 120	н ₃ с RT 4,42 н ₃ с- RT 4,39	% 7,5 % 14	CN M 117 -CN M 117	H ₃ C RT 24,1 H ₂ C= RT 24,53	% 75 € 64	СН ₃ <u>М</u> 106 =NH <u>М</u> 105
m-Me- Pgly ^P p-Me- Pgly ^P	H ₃ C RT 2,64 H ₃ C- RT 2,41	% 1,3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	сн ₃ М 106 сн ₃ М 106	H ₃ C RT 4,14 H ₃ C- RT 4,08	% 11,5 % 17	E=0 M 121 C=0 M 120	H ₃ C RT 4,42 H ₃ C- RT 4,39	% 7,5 % 14	CN M 117 CN M 117	H ₃ C RT 24,1 H ₂ C= RT 24,53	% 75 € 64	СН ₃ <u>М</u> 106 =NH <u>М</u> 105
m-Me- Pgly ^P p-Me- Pgly ^P 2,3,4- Me ₃ -Pgly ^P	н ₃ С <u>RT</u> 2,64 н ₃ С- <u>RT</u> 2,41 Н ₃ С-	% 1,3 % 2,2 CF	СН ₃ М 106 СН ₃ М 106 Ч ₃ - СН ₃ Ч ₃	H ₃ C RT 4,14 H ₃ C RT 4,08 H ₃ C	% 11,5 % 17 Cl	E=0 M 121 C=0 M 120 H ₃ -CN H ₃	H ₃ C RT 4,42 H ₃ C- RT 4,39	% 7,5 % 14 ℃+	CN M 117 CN M 117 CN CN CN CN CN CN CN CN 	н ₃ с RT 24,1 H ₂ C= RT 24,53	% 75	CH ₃ M 106 =NH 105
m-Me- Pgly ^P p-Me- Pgly ^P 2,3,4- Me ₃ -Pgly ^P	н ₃ с RT 2,64 Н ₃ с- RT 2,41 Н ₃ С-	% 1,3 √ % 2,2 ℃F ℃F %	СH ₃ М 106 СH ₃ М 106 Ч ₃ - CH ₃ Ч ₃ М	H ₃ C RT 4,14 H ₃ C RT 4,08 H ₃ C RT	% 11,5 % 17 ℃ √ ℃	E=0 M 121 C=0 M 120 H ₃ -CN H ₃ M	H ₃ C RT 4,42 H ₃ C- RT 4,39 H ₃ C-	% 7,5	CN M 117 -CN M 117 -CN -CN -CN -CN -CN -CN -CN -CN	H ₃ C RT 24,1 H ₂ C= RT 24,53 S n RT	%	СН ₃ М 106 =NH 105 а а А

Wyniki badań nad pirolizą serii pochodnych fosfonofenylooglicyny (Pgly^P; *o*-Me-Pgly^P; *m*-Me-Pgly^P; p-Me-Pgly^P; 2,3,4-Me₃-Pgly^P) zilustrowano na Schemacie 3-10. Zestawienie głównych produktów rozpadu termicznego *para*-podstawionych Pgly^P: *p*-Br-Pgly^P; *p*-Me-Pgly^P; *p*-NO₂-Pgly^P; *p*-HO₂C-Pgly^P przedstawiono w Tabeli 3-27.

Schemat 3-10. Zestawienie głównych produktów rozpadu termicznego aminokwasów: Pgly^P; *o*-Me-Pgly^P; *m*-Me-Pgly^P; *p*-Me-Pgly^P; 2,3,4-Me₃-Pgly^P

Tabela 3-2	7. Zest	awienie	e główr	ych pr	oduktó	w rozp	adu ter	miczne	go ami	nokwas	ów:	
	p-Br-P	gly"; <i>p</i> -I	Me-Pgl	y [,] ; <i>p</i> -N	O ₂ -Pgly	/ [°] ;	O ₂ C-Pg	ly ^r [Wa	runki te	rmolizy:	400°C, 2	min]
				R		0 -C-P(NH ₂	(OH) ₂					
<i>p</i> -Br-Pgly ^P	Br-		CH3	Br-	C - C	NH	Br-		CN			
	RT	%	М	RT	%	М	RT	%	М	RT	%	М
	3,72	12	172	6,50	9,5	185	6,58	11	183	28,7	59	102
	Strukt	ura nie	znana		Ph-NH ₂		Strukt	ura niez	nana	Struktı	ıra niezi	nana
<i>p</i> -O ₂ N-	RT	%	М	RT	%	М	RT	%	М	RT	%	М
Pgly ^P	1,78	8,8	48	3,09	83	94	6,18	4,4	129	9,80	3,7	102
p-HO ₂ C-	K	N	IH ₂				NC-		(O)H	NC	CN	١
r 81y	RT	%	М	RT	%	М	RT	%	М	RT	%	М
	3,00	3,5	93	4,42	11,2	117	6,98	34,8	131	7,45	42,4	128

Wyniki badań nad pirolizą serii pochodnych Pgly^P: p-Br-Pgly^P; p-Me-Pgly^P; p-NO₂-Pgly^P; p-HO₂C-Pgly^P zilustrowano na Schemacie 3-11.

Schemat 3-11. Zestawienie głównych produktów rozpadu termicznego aminokwasów: Pgly^P; *o*-Me-Pgly^P; *m*-Me-Pgly^P; *p*-Me-Pgly^P; 2,3,4-Me₃-Pgly^P

3.2.4.3.1.2. BADANIA NAD PIROLIZĄ POCHODNYCH NphGly^P

Zestawienie głównych produktów rozpadu termicznego kwasów 1-amino-1-naftylometylofosfonowego (1-NphGly^P) i 1-amino-2-naftylometylofosfonowego (2-NphGly^P) przedstawiono w Tabeli 3-27.

Tabela 3-2	7. Zest 1-Np	awienie hgly ^P i	e główr 2-Nph	nych pro gly ^P [W	oduktó arunki	w rozpa termolia	adu ter zy: 400°	miczne °C, 2 mi	go ami n]	nokwas	ów:	
1-Nphgly [₽]	(ĺ			(CN		HC≡		CN
	RT	%	Μ	RT	%	М	RT	%	М	RT	%	М
	6,16	15,2	129	9,02	16,8	142	14,7	30,4	153	15,0	13,6	127
2-Nphgly ^P	$\begin{array}{c c} \hline \\ \hline $											
	RT	%	М	RT	%	М	RT	%	М	RT	%	Μ
	6,08	11,3	128	8,41	30,4	142	15,0	11,8	127	15,6	24,9	153

3.2.4.3.2. BADANIA NAD PIROLIZĄ Phe^P

Zestawienie głównych produktów rozpadu termicznego kwasu 1-aminoetylo-2-fenylo-1fosfonowego (fosfonofenyloalanina; Phe^P) przedstawiono w Tabeli 3-28.

Tabela 3-2	8. Zest	awienie	e główr	nych pr	oduktó	w rozp	adu ter	miczne	go kwa	su 1-an	ninoety	'lo-2-
fei	nylo-1-f	fosfonc	wego	(fosfon	ofenylo	balanin	a; Phe ^P) [Warı	unki ter	molizy:	400°C, 2	2 min]
						C-C-F H ₂ I H ₂ NH ₂) P(OH) ₂			_		
		$\overset{0}{\bigtriangleup}$		<	\bigcirc	-			_	<		
	RT	%	М	RT	%	М	RT	%	М	RT	%	М
Pho ^P	2,08	7,4	44	2,43	19	94	2,91	8,0	104	3,95	5,9	92
The	(=	ST N	RUKTU	RA IA						
	RT	%	М	RT	%	М						
	27,2	27	102	32,2	12	207						

3.2.4.4. BADANIA NAD PIROLIZĄ INNYCH KWASÓW FOSFONOWYCH

Badania nad pirolizą innych kwasów fosfonowych dotyczyły termicznego rozkładu kwasów: 1-hydroksypropylo-fosfonowego (1-HP^P) i fosfonooctowego (^PAcOH). Wyniki badań zestawiono w Tabeli 3-29.

Tabela	3-29. Ze	estawier	nie główi	nych pro	oduktów	<pre>rozpad</pre>	u termio	znego k	wasu		
	1-	hydroks	y-propy	lo-fosfo	nowego	(1-HP ^P)	i kwasu	fosfond	octowe	go (^P Ac(DH)
	۷]	Varunki 🕇	termolizy	∕: 400°C,	2 min]						
	НС	0 D-C-P(C ₂ H ₅	(OH) ₂ 1-H	P ^P		HO ₂ C-C-P(OH) ₂ H ₂ ^P AcOH					
RT	%	Μ	RT	%	М	RT	%	М	RT	%	М
1,89	97,6	60	2,36	2,4	98	1,72	10	46	1,81	88	62
C ₃	H ₆ O [€	60]	C ₆ ⊦	H ₁₀ O [9	98]	CH	I ₂ O ₂ [4	6]	C ₂ H	H ₄ O ₂ [60]
H	₃C-C−Ć H₂ H	0 ,	H ₃ Q H ₂ Q	^C C ^C C	H CH ₃		HCO₂H			CH₃CO₂⊦	I

Badania nad przebiegiem pirolizy kwasów aminoalkilofosfonowych i ich pochodnych zaprezentowano na konferencjach:

Kudzin, M.H; Mrozińska, Z.: Investigation of thermal decomposition of aminoalkylphosphonic acids. 15th International Symposium Advances in the Chemistry of Heteroorganic Compounds, P-88. CBMM PAN, Łódź, 2012.11.16.^[283]

Kudzin, M.H.; Kudzin, Z.H.; Drabowicz, J. *Investigation of thermal decomposition of representative 1-(N-acylamino)alkylphosphonic acids and phosphonopeptides*. European Polymer Congress, P2-89. Piza, Italy, 2013.06.16-21.^[284]

Kudzin, M.H.; Kudzin, Z.H.; Piestrzeniewicz, J.; Mrozińska, Z.; Drabowicz, J.: *Investigation* of thermal decomposition of representative 1-aminoaralkylphosphonic acids. 16th International Symposium Advances in the Chemistry of Heteroorganic Compounds, P-086. CBMM PAN, Łódź, 2013.11.15.^[285]

Kudzin, M.H.; Kudzin, Z.H.; Mrozińska, Z.; Drabowicz, J.: *Investigation of thermal decomposition of representative 1-(N-alkylamino)alkylphosphonic acids*. 16th International Symposium Advances in the Chemistry of Heteroorganic Compounds, P-087. CBMM PAN, Łódź, 2013.11.15.^[286]

3.3. WŁAŚCIWOŚCI CHEMICZNE AMINOKWASÓW FOSFONOWYCH 3.3.1. STABILNOŚĆ AA^P W ROZTWORACH ZASAD I KWASÓW

W 1978 r. Gancarz zaobserwował nieoczekiwany przebieg deprotekcji pochodnych fluorenowych 1-(N-fenylamino)metylofosfonianu [FIGly^P(OEt)₂] (Sch. 3-12.)^[287].

Schemat 3-12. Katalizowana kwasowo defosfonylacja FIGly^P(OEt)₂^[287.1]

W latach następnych pojawiły się liczne doniesienia wskazujące na nietrwałość heterocyklicznych 1-aminoaralkilofoasfonianów w roztworach zasadowych^[288-290] i kwaśnych^[291-301] (Tab. 3-30., Rys. 3-24.).

Rysunek 3-24. Eksperyment kinetyczny Boduszka dla degradacji kwasowej kwasu imidazolo-2-yl-(1-*N*-benzyloamino)-metylofosfonowego w 1M H_2SO_4 (90°C) monitorowany ³¹P NMR^[294]

Częściową defosfonylację 1-(*N*-alkiloamino)-2-metylopropylofosfonianów dietylowych [R-Val^P(OEt)₂] zachodzącą podczas kwasowej deprotekcji grupy fosfonoestrowej obserwowała Kiersnowska (Sch. 3-13.1.)^[287.2].

Schemat 3-13.1. Katalizowano kwasowo defosfonylacja *N*-podstawionych *O*,*O*-dietylo 1-amino-2-metylpropylofosfonianów [R-Val^P(OEt)₂] [Kiersnowska, 2003]^[287.2]

Ponieważ w wymienionych pracach nie rozważano wpływu warunków hydrolitycznych na stabilność wolnych kwasów aminoalkilofosfonowych podjąłem prace nad ustaleniem wpływu tych czynników na trwałość wiązania C-P w badanych związkach.

3.3.1.1. BADANIA STABILNOŚCI KWASÓW 1-AMINOALKILOFOSFONOWYCH W ROZTWORACH ZASAD I KWASÓW

Do badań wytypowano dziesięć aminokwasów: cztery kwasy 1-aminoalkilofosfonowe, pochodne Gly^P różniące się podstawnikami przy węglu αC (Gly^P, Ala^P, Mala^P, Pgly^P) oraz sześć kwasów 1-(*N*-alkiloamino)alkilofosfonowych (R-AA^P) (Tab. 3-31.).

Tabela 3-3	1. Struktury	kwasów 1-	aminoalkilo	fosfonowych	i 1-(N-alkilo	amino)alkilo	-
	fosfonow	ych poddar	iych badanio	om stabilnośc	i w roztwor	ach kwasów	i zasad
	$H_2 N - C - R^1$	0 -P(OH) ₂			$\begin{array}{c} R^2 & R^1 \\ N - C^2 \\ R^3 & R \end{array}$	0 P(OH) ₂	
	A	۹ [₽]			R-A	A A ^P	
Glv ^P	Ala ^P	Pgly ^P	Mala ^P	^t Bu-Glv ^P	Me-Hala ^P	Me ₂ -Hala ^P	Et-Mala ^P
•.,					ine mara	me ₂ mara	
R=R ¹ =H	R=H; R ¹ =Me	R=H; R ¹ =Ph	R=R ¹ =Me	R=R ¹ =R ² =H; R ³ =tBu	R= Et; R ¹ =R ² =H; R ³ =Me	$R = Et;$ $R^{1} = H;$ $R^{2} = R^{3} = Me$	R=R ¹ =Me; R ² =H; R ³ =Et
R=R ¹ =H	R=H; R ¹ =Me	R=H; R ¹ =Ph	R=R ¹ =Me	R=R ¹ =R ² =H; R ³ =tBu	R= Et; R ¹ =R ² =H; R ³ =Me Et-Hala ^P	R= Et; R ¹ =H; R ² =R ³ =Me	R=R ¹ =Me; R ² =H; R ³ =Et
R=R ¹ =H	R=H; R ¹ =Me	R=H; R ¹ =Ph	R=R ¹ =Me	R=R ¹ =R ² =H; R ³ =tBu ^t Bu-Ala ^P R=Me;	R= Et; R ¹ =R ² =H; R ³ =Me Et-Hala ^P R=Et;	R = Et; $R^{1} = H;$ $R^{2} = R^{3} = Me$	R=R ¹ =Me; R ² =H; R ³ =Et
R=R ¹ =H	R=H; R ¹ =Me	R=H; R ¹ =Ph	R=R ¹ =Me	$R=R^{1}=R^{2}=H;$ $R^{3}=tBu$ $TBu-Ala^{P}$ $R=Me;$ $R^{1}=R^{2}=H;$	R= Et; R ¹ =R ² =H; R ³ =Me Et-Hala^P R=Et; R ¹ =R ² =H;	R = Et; $R^{1} = H;$ $R^{2} = R^{3} = Me$	R=R ¹ =Me; R ² =H; R ³ =Et

Warunki ekspozycji kwasów 1-aminoalkilofosfonowych i 1-(*N*-alkiloamino)alkilo-fosfonowych poddanych badaniom stabilności w roztworach kwasów i zasad zestawiono w Tabeli 3-32.

Tabela 3-32. Warunki ekspozycji kwasów 1-aminoalkilofosfonowych i 1-(N-alkiloamino)alkilofosfonowych w badaniach stabilności w roztworach kwasów i zasad								
Kwas / zasada	2 M HCl	2 M H ₂ SO ₄	2 M KOH	2 M KOH				
AA ^P /R-AA ^P	0,4 M	0,4 M	0,4 M	0,4 M				
Temperatura	25°C	100°C	25°C	100°C				
Czas ekspozycji	720 h	120 h	720 h	120 h				

Badania stabilności AA^P i R-AA^P w roztworach kwasów i zasad prowadzono z wykorzystaniem monitoringu ³¹P NMR. Wyniki badań (Tab. 3-33.) w postaci reprezentatywnych widm ³¹P-NMR i wykresów ilustrujących profile reaktywności przedstawiono w poniższych rozdziałach.

Tabela 3-33. Zestawienie badań wpływu ekspozycji kwasów 1-aminoalkilofosfonowych								
i 1-(N-alkiloamino)alkilofosfonowych w roztworach kwasów i zasad								
Kwas / zasada		2 M KOH	2 M KOH	2 M HCl	2 M H ₂ SO ₄			
AA ^P /R-AA ^P		0,4 M	0,4 M	0,4 M	0,4 M			
Temperatura		25°C	100°C	25°C	100°C			
Widma ³¹ P NMR	AA ^P		Rys. 3-13		Rys. 3-16			
	R-AA ^P							
Profile	AA ^P	Rys. 3-12	Rys. 3-14	Rys. 3-15	Rys. 3-17			
	R-AA ^P	Rys. 3-15						

3.3.1.1.1. BADANIA STABILNOŚCI AA^P W ROZTWORACH KWASÓW

Wyniki badań przedstawiono schematycznie dla układu: AA^P -2 M HCl na Rysunkach: 3-25. ($AA^P/2$ M HCl/20°C), 3-26. ($AA^P/2$ M H₂SO₄/100°C).

Widma ³¹P-NMR mieszanin reakcyjnych AA^P/ 2 M KOH /100°C, odpowiadające czasowi ekspozycji 24 h przedstawiono na Rysunku 3-27.

3.3.1.1.2. BADANIA STABILNOŚCI AA^P W ROZTWORACH ZASAD

Wyniki badań przedstawiono schematycznie dla układu: AA^{P} - 2 M KOH na Rysunkach: 3-28. (AA^{P} / 2 M KOH / 20°C), 3-29. (AA^{P} / 2 M KOH / 100°C).

Widma ³¹P-NMR mieszanin reakcyjnych AA^P w 2 M KOH poddane ekspozycji 24 h w temperaturze 100^oC, przedstawiono na Rysunku 3-30.

3.3.1.2. BADANIA STABILNOŚCI KWASÓW 1-(*N*-ALKILOAMINO)ALKILO-FOSFONOWYCH W ROZTWORACH KWASÓW I ZASAD

Wyniki prac dotyczących nietrwałości kwasowej aminoestrów ^[287-301] skłoniły mnie do rozszerzenia badań serii kwasów 1-aminoalkilofosfonowych (AA^P) o grupę reprezentatywnych kwasów 1-(*N*-alkiloamino)alkilofosfonowych (R-AA^P). Do badań wytypowano związki zestawione w Tabeli 3-34.

Tabela 3-34. Reprezentatywne kwasy 1-(N-alkiloamino)alkilofosfonowe		
$Bu^{t} - N - C - PO_{3}H_{2}$ H H ₂	Bu ^t -N-C-PO ₃ H ₂ H H Me	Me-N-C-PO ₃ H ₂ H L Et
^t Bu-Gly ^P	^t Bu-Ala ^P	Me-Hala ^P
Et-N-C-PO ₃ H ₂ H Et	$Me_2N-C-PO_3H_2$ Et	Me Et-N-C-PO ₃ H ₂ H Me
Et-Hala ^P	Me ₂ -Hala ^P	Et-Mala ^P

3.3.1.2.1. BADANIA STABILNOŚCI KWASÓW 1-(*N*-ALKILOAMINO)ALKILO-FOSFONOWYCH W ROZTWORACH KWASÓW

Widma ³¹P NMR 0,4 M roztworów R-AA^P (zawierających 0,2 M kwas metylofosfonowy użyty w charakterze wzorca wewnętrznego) w 2,0 M kwasie siarkowym oraz profile ekspozycyjne przedstawiono na Rysunkach 3-31.

Wykresy ilustrujące wpływ ekspozycji czasowej na stabilność 0,4 M roztworu tBu-Gly^P w 2 M H_2SO_4 w temperaturach 25°C i 100°C przedstawiono na Rysunkach 3-31.1.

Widma ³¹P NMR 0,4 M roztworów tBu-Gly^P (12,5 ppm) (zawierających 0,2 M MPA (30,6 ppm) użytego w charakterze wzorca wewnętrznego), w 2,0 M kwasie siarkowym przedstawiono na Rysunkach 3-31.1.1.

Wykresy ilustrujące wpływ ekspozycji czasowej na stabilność 0,4 M roztworu tBu-Ala^P w 2 M H_2SO_4 w temperaturach 25°C i 100°C przedstawiono na Rysunkach 3-31.2.

Widma ³¹P NMR 0,4 M roztworów tBu-Ala^P (15,9 ppm) [zawierających 0,2 M MPA (30,6 ppm) użytego w charakterze wzorca wewnętrznego] w 2,0 M kwasie siarkowym przedstawiono na Rysunkach 3-31.2.1.

Wykresy ilustrujące wpływ ekspozycji czasowej na stabilność 0,4 M roztworu Me-Hala^P w 2 M H_2SO_4 w temperaturach 25°C i 100°C przedstawiono na Rysunkach 3-31.3.

Widma ³¹P NMR 0,4 M roztworów Me-Hala^P (14,3 ppm) [zawierających 0,2 M MPA (30,6 ppm) użyty w charakterze wzorca wewnętrznego] w 2,0 M kwasie siarkowym przedstawiono na Rysunkach 3-31.3.1.

Wykresy ilustrujące wpływ ekspozycji czasowej na stabilność 0,4 M roztworu Et-Hala^P w 2 M H_2SO_4 w temperaturach 25°C i 100°C przedstawiono na Rysunkach 3-31.4.

Widma ³¹P NMR 0,4 M roztworów Et-Hala^P (14,5 ppm) [zawierających 0,2 M MPA (30,6 ppm) użytego w charakterze wzorca wewnętrznego] w 2,0 M kwasie siarkowym przedstawiono na Rysunkach 3-31.4.1.

Wykresy ilustrujące wpływ ekspozycji czasowej na stabilność 0,4 M roztworu Me₂-Hala^P w 2 M H_2SO_4 w temperaturach 25°C i 100°C przedstawiono na Rysunkach 3-31.5.

Widma ³¹P NMR 0,4 M roztworów Me_2 -Hala^P (12,6 ppm) [zawierających 0,2 M MPA (30,6 ppm) użytego w charakterze wzorca wewnętrznego] w 2,0 M H_2SO_4 przedstawiono na Rysunkach 3-31.5.1.

Wykresy ilustrujące wpływ ekspozycji czasowej na stabilność 0,4 M roztworu Et-Mala^P w 2 M H_2SO_4 w temperaturach 25°C i 100°C przedstawiono na Rysunku 3-31.6.

Widma ³¹P NMR 0,4 M roztworów Et-Mala^P (17,6 ppm) [zawierających 0,2 M MPA (30,7 ppm)] użytego w charakterze wzorca wewnętrznego] w 2,0 M kwasie siarkowym przedstawiono na Rysunkach 3-31.6.1.

3.3.1.2.2. BADANIA STABILNOŚCI KWASÓW 1-(*N*-ALKILOAMINO)ALKILO-FOSFONOWYCH W ROZTWORACH ZASAD

Wykresy ilustrujące wpływ ekspozycji czasowej na stabilność 0,4 M roztworu tBu-Gly^P w 2 M KOH w temperaturze 100°C przedstawiono na Rysunku 3-32.1.

Widma ³¹P NMR 0,4 M roztworów R-AA^P (zawierających 0,2 M kwas metylofosfonowy użyty w charakterze wzorca wewnętrznego) w 2,0 M KOH oraz profile ekspozycyjne przedstawiono na Rysunkach 3-32.

Widma ³¹P NMR 0,4 M roztworów tBu-Gly^P (17,6 ppm) [zawierających 0,2 M MPA (20,3 ppm) użytego w charakterze wzorca wewnętrznego] w 2,0 M KOH przedstawiono na Rysunkach 3-32.1.

Wykres ilustrujący wpływ ekspozycji czasowej na stabilność 0,4 M roztworu tBu-Ala^P w 2 M KOH w temperaturze 100°C przedstawiono na Rysunku 3-32.2.

Widma ³¹P NMR 0,4 M roztworów tBu-Ala^P (21,8 ppm) [zawierających 0,2 M MPA (20,3 ppm) użytego w charakterze wzorca wewnętrznego] w 2,0 M KOH przedstawiono na Rysunkach 3-32.2.1.

Wykres ilustrujący wpływ ekspozycji czasowej na stabilność 0,4 M roztworu Me-Hala^P w 2 M KOH w temperaturze 100°C przedstawiono na Rysunku 3-32.3.

Widma ³¹P NMR 0,4 M roztworów Me-Hala^P (20,1 ppm) [zawierających 0,2 M MPA (20,3 ppm) użytego w charakterze wzorca wewnętrznego] w 2,0 M KOH przedstawiono na Rysunkach 3-32.3.

Wykres ilustrujący wpływ ekspozycji czasowej na stabilność 0,4 M roztworu Me-Hala^P w 2 M KOH w temperaturze 100°C przedstawiono na Rysunku 3-32.4.

Widma ³¹P NMR 0,4 M roztworów Me-Hala^P (20,3 ppm) [zawierających 0,2 M MPA (20,4 ppm) użytego w charakterze wzorca wewnętrznego] w 2,0 M KOH przedstawiono na Rysunkach 3-32.4.1.

Wykres ilustrujący wpływ ekspozycji czasowej na stabilność 0,4 M roztworu Me-Hala^P w 2 M KOH w temperaturze 100°C przedstawiono na Rysunku 3-32.5.

Widma ³¹P NMR 0,4 M roztworów Me₂-Hala^P (12,5 ppm) [zawierających 0,2 M MPA (20,4 ppm) użytego w charakterze wzorca wewnętrznego] w 2,0 M KOH przedstawiono na Rysunkach 3-32.5.1.

Wykres ilustrujący wpływ ekspozycji czasowej na stabilność 0,4 M roztworu Me-Hala^P w 2 M KOH w temperaturze 100°C przedstawiono na Rysunku 3-32.6.

Widma ³¹P NMR 0,4 M roztworów Et-Mala^P (23,0 ppm) [zawierających 0,2 M MPA (20,2 ppm) użytego w charakterze wzorca wewnętrznego] w 2,0 M KOH przedstawiono na Rysunkach 3-32.6.1.

3.3.1.3. BADANIA STABILNOŚCI KWASÓW 1-AMINOFOSFONOWYCH W ROZTWORACH KWASÓW I ZASAD - WNIOSKI

3.3.1.3.1. STABILNOŚĆ KWASÓW 1-AMINOALKILOFOSFONOWYCH

Analiza wyników badań kwasów 1-aminoalkilofosfonowych wskazuje na stabilność roztworów badanych aminokwasów (Gly^P, Ala^P, Mala^P, Pgly^P) w roztworach:

- 2 M KOH [ekspozycja w 20°C w czasie 1536 h (64 dni) i ekspozycja w 100°C w czasie 120h];
- 2 M HCl [ekspozycja w 20°C w czasie 1536 h (64 dni)];
- 2 M H₂SO₄ (ekspozycja w 100°C w czasie 120 h).

3.3.1.3.2. STABILNOŚĆ KWASÓW 1-(*N*-ALKILOAMINO)ALKILOFOSFONOWYCH I 1-(*N*,*N*-DIALKILOAMINO)ALKILOFOSFONOWYCH

Analiza wyników badań nad stabilnością kwasów 1-(*N*-alkiloamino)alkilofosfonowych oraz 1-(*N*,*N*-dialkiloamino)alkilofosfonowych wskazuje na:

- kwasy 1-(*N*-alkiloamino)alkilofosfonowe oraz kwasy 1-(*N*,*N*-dialkiloamino)alkilofosfonowe wykazują stabilność w roztworach w 2,0 M H_2SO_4 w temp. pokojowej w czasie 30 dni (okres monitorowany), a także w temp. $100^{\circ}C$ w czasie 24 h;
- kwasy 1-(*N*-alkiloamino)alkilofosfonowe wykazują stabilność w roztworach w 2 M KOH w temperaturze pokojowej w czasie 30 dni (okres monitorowany), a także w temp. 100°C w czasie 24 h;
- kwasy 1-(N,N-dialkiloamino)alkilofosfonowe (Me₂Hala^P) wykazuje względną trwałość w roztworach w 2 M KOH w temp. pokojowej i ulega rozkładowi w temp. 100°C (Sch. 3-14.).

Schemat 3-14. Hipotetyczny mechanizm zasadowej degradacji Me $_2$ -Hala P

3.3.2. REAKCJA OKSYDACYJNEJ DEAMINACJI AMINOKWASÓW FOSFONOWYCH 3.3.2.1. REAKCJA DEZAMINACJI/DEFOSFONYLACJI AMINOKWASÓW FOSFONOWYCH

Wśród nielicznych opisanych przemian dezaminacyjnych aminokwasów fosfonowych najwcześniej zwrócono uwagę na defosfonylację zachodzącą w reakcji z ninhydryną (Sch. 3-15.) [Warren, 1966]^[302].

Schemat 3-15. Przebieg reakcji kwasów 1-aminoalkilofosfonowych z ninhydryną wg. Warren'a ^[302]

W opisanej przez Calvo [Calvo, 1987] ^[303], Szpoganicza i Martela [Szpoganicz & Martell, 1989]^[304] reakcji defosfonylacji aminokwasów fosfonowych działaniem pirydoksalu aminokwasy tworzą przejściowo połączenie iminowe PPyr-C=AK^P(H) ulęgające dalszej degradacji na drodze oksydacji dezaminacyjnej (Sch. 3-16.).

Schemat 3-17. Rozszczepienie wiązania C-P podczas utlenienia Hcys^{P [241]}

Kudzin i w-cy, odkryli w 2005, iż podczas utleniania fosfonohomocysteiny do kwasu fosfonohomocysteinowego następuje rozszczepienie wiązania C-P^[241] (Sch. 3-17.).

Inny przypadek oksydacyjnego rozszczepiania wiązania C-P na drodze oksydacji kwasu 1amino-1-(3,4-dihydroksyfenylo)metylofosfonowego za pomocą NaIO₄ opisali Drąg i Kafarski [Drąg i w-cy, 2004]^[305] (Sch. 3-18.).

Schemat 3-18. Rozszczepienie kwasu 1-amino-1-(3,4-dihydroksyfenylo)metylofosfonowego działaniem nadjodanu sodu^[305]

Kontynuowane badania nad przebiegiem tej reakcji defosfonylacji AA^P działaniem wody bromowej z wykorzystaniem układu dwufazowego (Rys. 3-33.) wykorzystywały monitoring za pomocą techniki ³¹P NMR ^[306-308].

Rysunek 3-33. Badania przebiegu reakcji defosfonylacji AA^P działaniem wody bromowej z wykorzystaniem układu dwufazowego AA^P-Br₂-H₂O-CHCl₃

Badania wykazały, że:

- reakcja przebiega ilościowo dla 1-AA^P w roztworach buforowych (pH 4,0) (Rys. 3-33.);
- reakcja nie przebiega w roztworach silnie kwaśnych (Rys. 3-34.);
- głównymi organicznymi produktami defosfonylacji 1-AA^P są związki karbonylowe;
- reakcja z bromem nie zachodzi w przypadku kwasów 1-(N-acyloamino)alkilo-fosfonowych;
- reakcja z kwasami ω-aminoalkilofosfonowymi przebiega wg. innego mechanizmu.

Przebieg reakcji można było śledzić wizualnie, podczas reakcji wydzielał się bezbarwny gaz (N_2) i warstwa wodna była bezbarwna w wyniku zużywania ekstrahowanego z fazy chloroformowej bromu. Pod koniec defosfonylacji AA^P warstwa wodna ulegała szybkiemu zabarwieniu na kolor brązowy. Oznaczenie konsumpcji bromu wykazało na stechiometrię ok. AA^P: Br₂ = 1:1 i wstępne założenie mechanizmu reakcji (Sch. 3-19.).

Schemat 3-19. Postulowany mechanizm reakcji defosfonylacji AA^P działaniem wody bromowej

3.3.2.2. REAKCJE AA^P Z NADTLENKIEM WODORU

Prace nad selektywną oksydacją kwasów 1-aminotiaalkilofosfonowych – analogów of *S*-alkilofosfonocystein i *S*-alkilofosfonohomocystein, z wykorzystaniem układów oksydacyjnych bazujących na nadtlenku wodoru i SeO₂ [Drabowicz i w-cy, 1978, 1982]^[309,310], w tym $AA^P/H_2O_2/H_2O/AcMe/DMSO$ i $AA^P/H_2O_2/H_2O/AcMe/SeO_2$ [Kudzin i w-cy, 1989^[105]; 1994^[113]; 2012^[308]] przedstawiono na Schemacie 3-20. (reakcje: 1.1. i 1.2.).

Podczas badań nad utlenieniem "surfaktantowych" *S*-alkilofosfonohomocystein (R>C₆H₁₃], zaobserwowano powstawanie kwasu dodecylo-3-sulfonylopropionowego (nadkwasu), tworzącego się w wyniku rozszczepienia wiązania C-P wyjściowego aminokwasu fosfonowego. Reakcja ta stanowi pierwszy opisany przypadek chemicznego, oksydacyjnego rozszczepienia wiązania C-P w chemii kwasów aminofosfonowych [Kudzin i w-cy, 1989] ^[105] (Sch. 3-21.).

$$C_{12}H_{25} - S - C - C - C - P - H + H_{2}O_{2}/ACOH + H_{2}O_$$

Schemat 3-21. Rozszczepienie kwasu 1-amino-3-(dodecylotio)propanofosfonowego działaniem nadtlenku wodoru

Do badań stabilności AA^P w roztworach nadtlenku wodoru wybrano:

- standardowy skład aminokwasów: Gly^P, Ala^P, Mala^P, Pgly^P;
- stosunek: AA^{P} : $H_{2}O_{2} = 1 : 5;$
- układ roztworów: 2 M KOH, 1 M bufor octanowy, 2 M HCl.

Stabilność roztworu aminokwasu dla układu AA^P-H₂O₂ oznaczano na podstawie widm ³¹P NMR [z zastosowaniem kwasu metylofosfonowego (MPA) jako wzorca wewnętrznego]. Profile reakcji defosfonylacji AA^P pod wpływem nadtlenku wodoru przedstawiono graficznie na Rysunkach: 3-35. (AA^P-H₂O₂-2 M KOH), 3-37. (AA^P-H₂O₂-bufor), 3-39. (AA^P-H₂O₂-2 M HCl). Widma ³¹P NMR mieszanin reakcyjnych po 768 h (32 dni) ekspozycji przedstawiono na Rysunkach: 3-36. (AA^P-H₂O₂-2 M KOH), 3-38. (AA^P-H₂O₂-1 M AcOK-AcOH), 3-40. (AA^P-H₂O₂-2 M HCl).

Dla celów porównawczych wykonano badania stabilności miana H_2O_2 w bazowych roztworach: wodne roztwory 2 M HCl- H_2O_2 , 2 M KOH- H_2O_2 i 1 M AcOK-AcOH- H_2O_2 . Profile stabilności roztworu nadtlenku wodoru w wodnych roztworach 2 M HCl, 2 M KOH i 1M AcOK-AcOH przedstawiono na Rysunku 3-41.

Dane doświadczalne wskazują na szybki spadek miana H_2O_2 w 2M HCl (6% początkowej ilości po tygodniu ekspozycji). Tym należy tłumaczyć stabilność roztworów AA^P w 2 M HCl- H_2O_2 . Z przedstawionych danych wynika:

- AA^P-H₂O₂-2 M HCl praktycznie brak zmiany AA^P w czasie ekspozycji do 768 h (32 dni);
- AA^P-H₂O₂-2 M KOH spadek stężenia AA^P o około 5-10% w czasie do 768 h (32 dni);
- AA^P-H₂O₂-1 M AcOK-AcOH spadek stężenia AA^P o około 20% w czasie do 768 h (32 dni).
 Analiza widm ³¹P NMR mieszanin reakcyjnych AA^P H₂O₂ wskazuje jedynie obecność wyjściowego AA^P i H₃PO₄ co dowodzi o powolnym tworzeniu związków przejściowych AA^P H₂O₂ i bardzo szybkim ich rozpadzie do kwasu fosforowego (fosforanu).

Porównywalne szybkości rozszczepiania wiązania P-C w aminokwasach z I rzędowym atomem C_a (Gly^P), II-rzędowym [Ala^P i Pgly^P(możliwość stabilizacji wolnego rodnika w pierścieniu fenylowym)], jak i III rzędowym (Mala^P; brak wiązania C_a-H) wyklucza przebieg reakcji AA^P z H₂O₂ wg. mechanizmu przedstawionego na Schemacie 3-22. Bardziej prawdopodobny jest mechanizm, w którym atak nadtlenku wodoru (HO-OH, HO-O⁻, HO⁻, etc.) zachodzi na grupę aminową lub fosfonową przedstawiony na Schemacie 3-23.

Co prawda, nie opracowano jak dotąd metody identyfikacji produktów organicznych rozpadu C-H kwasów badanych AA^P (Gly^P, Ala^P, Pgly^P, Mala^P), nie mniej wyizolowano wcześniej z

mieszaniny AcOH-H₂O₂ kwas dodecylo-3-sulfonylopropionowy (Sch. 3-21), produkt utlenienia przejściowego aldehydu.

Schemat 3-22. Hipotetyczny mechanizm degradacji AA^P działaniem H_2O_2 przy założeniu wolnorodnikowego ataku (HO-OH, HO-O⁻, HO⁻, etc.) na C_{α} -H

Schemat 3-23. Hipotetyczny mechanizm degradacji AA^P działaniem H₂O₂ przy założeniu wolnorodnikowego ataku (HO-OH, HO-O⁺, HO⁻, etc.) na P-OH i/lub grupę aminową

Badania nad przebiegiem stabilności kwasów aminoalkilofosfonowych na ekspozycję H₂O₂ zaprezentowano na sesji posterowej konferencji:

Kudzin, M.H.; Kudzin, Z.H.; Urbaniak, P.; Drabowicz, J.: *Reaction of 1-Aminoalkylphosphonic Acids with Hydrogen Peroxide. Oxidative Dephosphonylation*. XV International Symposium Advances in the Chemistry of Heteroorganic Compounds. P-036, CBMM PAN, Łódź, 2012.11.16.^[308]

3.4. BADANIA BIOLOGICZNE AMINOKWASÓW FOSFONOWYCH

3.4.1. AKTYWNOŚĆ BAKTERIOBÓJCZA – POJĘCIA PODSTAWOWE

Odporność na działanie określonego leku jest najważniejszym etapem diagnostyki mikrobiologicznej zakażeń bakteryjnych. Poniżej zostały zamieszczone podstawowe definicje terminów powszechnie stosowanych w mikrobiologii i farmakologii z zakresu lekowrażliwości drobnoustrojów ^[311, 312].

Antybiotyki (z greki anti – przeciw, bios – życie) – naturalne wtórne produkty metabolizmu drobnoustrojów, które działając wybiorczo w niskich stężeniach wpływają na struktury komórkowe lub procesy metaboliczne innych drobnoustrojów hamując ich wzrost i podziały. Antybiotyki mogą być pochodzenia naturalnego (wytworzone przez mikroorganizmy:

bakterie, grzyby) lub uzyskane na drodze półsyntetycznej lub syntetycznej.

Odkrycie pierwszego antybiotyku (penicyliny) zostało dokonane w 1928 roku przez Alexandra Fleminga, który zauważył, że przypadkowe zanieczyszczenie podłoża pleśnią *Penicillium notatum* powstrzymuje wzrost kultur bakterii (Rys. 3-42.; Tab. 3-35.).

Rysunek 3-42. Fotografia z eksperymentu Fleminga

[Photograph of a culture-plate showing the dissolution of staphylococcal colonies in the neighbourhood of a penicillium colony; Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of b. influenzae. Brit. J. Exp. Path. 1929,*10*, 226-236]^[313]

Tabela 3-35: Table III. Inhibitory Power of Penicillin on Different Bacteria											
Bacteria				Di	lution c	of penici	illin in b	roth			
	1/5	1/10	1/20	1/40	1/	1/	1/	1/	1/	1/	Control
	1/5	1/10	1/20	1/40	100	200	400	800	1600	3200	Control
Staphylococcus	0	0	0	0	0	0	0	Ŧ	+	+	+
aureus	0	0	0	0	0	0	0	<u>_</u>	+	+	+
Pneumococcus	0	0	0	0	0	0	0	0	+	‡	‡
"The inhibitory power can be accurately titrated by making serial dilution of penicillin in fresh nutrient broth."											
Alexander Flemming, On the antibacterial action of cultures of a penicillium, with special reference to their use											
in the isolation of b.	in the isolation of b. influenzae Brit. J. Exp. Path. 1929,10, 226-236.] ^[311]										

Antybiotyk bakteriostatyczny - antybiotyk hamujący rozwój mikroorganizmów. Leki o działaniu bakteriostatycznym wstrzymują wzrost i namnażanie się drobnoustrojów, ale nie zabijają bezpośrednio już istniejących komórek. Większość antybiotyków i chemio-terapeutyków wykazuje działanie bakteriostatyczne w mniejszych stężeniach, a bakteriobójcze w wyższych stężeniach.

Rysunek 3-43. Graficzne ilustracja współczynników MIC oraz MBC

Chemiterapeutyk – substancja o aktywności przeciwdrobnoustrojowej, uzyskana na drodze syntezy chemicznej, nie posiadająca wzorca naturalnego.

Antybiogram – wynik badania wrażliwości danego drobnoustroju na działanie określonego antybiotyku lub chemioterapeutyku.

MIC (ang. *Minimal Inhibitory Concentration*) - parametr wrażliwości danego drobnoustroju na działanie środka bakteriobójczego; minimalne stężenie hamujące, czyli najmniejsze stężenie środka bakteriobójczego (antybiotyku lub chemioterapeutyku), wyrażone w μg/ml (mg/l), hamujące wzrost drobnoustrojów [Andrews, 2001]^[314].

*MIC*₅₀, *MIC*₉₀ (μg/ml) - stężenia antybiotyku hamujące wzrost odpowiednio: 50% (MIC₅₀), 90% (MIC₉₀) testowanej populacji bakterii.

MBC/MLC (ang. Minimal Bactericidal Concentration / Minimal Lethal Concentration) (µg/ml) najmniejsze stężenie bakteriobójcze (potrzebne do zabicia bakterii) (zwykle 4-5 x MIC = MBC) (Rys. 3-43.).

CFU (ang. *Colony Forming Unit*) czyli *jednostka tworząca kolonię* - jednostka określająca ilość mikroorganizmów w materiale badanym przy zastosowaniu metody równomiernego posiewu na/w pożywce, tak aby w idealnym przypadku wszystkie mikroorganizmy leżały samotnie i w oddaleniu od siebie, tworząc poprzez rozmnażanie każdorazowo jedną kolonię (Rys. 3-44.). CFU oznacza ilość pojedynczych komórek, z których w wyniku podziałów powstaną kolonie komórek i wyrażane są CFU/ml lub CFU/g.

Skala McFarlanda - popularna metoda szacowania stężenia drobnoustrojów, wzrokowe porównanie zawiesin organizmów z wzorcem mętności [McFarland, 1907]^[317]. Wzorzec McFarlanda przygotowuje się przez dodanie chlorku baru do wodnego roztworu kwasu siarkowego. Gęstość powstałego osadu siarczanu baru może posłużyć do oszacowania liczby kolonii w przygotowanej zawiesinie; tzn. 1 w skali McFarlanda jest odpowiednikiem w przybliżeniu 3 x 10⁸ CFU/ml (Tab. 3-36.; Rys. 3-45.).

Tabela 3-36. Skala nefelometrycznych wzorców McFarlanda ^[317]									
Składniki (sparaktorystyka	Wzorce McFarland' [Nr]								
Skidulliki/Charakterystyka	0,5	1	2	3	4				
1% BaCl ₂ (ml) 0,05 0,1 0,2 0,3 0,4									
1% H ₂ SO ₄ (ml)	SO ₄ (ml) 9,95 9,9 9,8 9,7 9,6								
Gęstość komórek bakter. (1×10 ⁸ CFU/ml)	1,5	3,0	6,0	9,0	12,0				
Transmisja przy 600 nm 74,3 55,6 35,6 26,4 21,5									
Absorbancja przy 600 nm	0,08 do 0,1	0,257	0,451	0,582	0,669				

Rysunek 3-45. Wzorce nefelometryczne McFarland'a: Nr. 0,5, 1 i 2.

McFarland standards.JPG http://en.wikipedia.org/w/index.php ?title= File:McFarland_standards. JPG Creative Commons Attribution 3.0 *Contributors*: User:Akaniji ^[316]

Do pomiaru stężenia używa się także innych wzorców, w tym zawiesin dwutlenku tytanu [Roessler & Brewer, 1967]^[318] oraz cząsteczek kauczuku [Pugh&Heller, 1957] ^[319]. Instrumentalny pomiar mętności opiera się na zdolności cząsteczek w zawiesinie do rozpraszania światła. Pomiar rozproszonego światła nazywany jest nefelometrią [Mallette, 1969]^[320].

3.4.1.1. METODY OKREŚLANIA AKTYWNOŚCI BAKTERIOBÓJCZEJ

Metody określania wrażliwości danego drobnoustroju na działanie środka bakteriobójczego:

- metoda dyfuzyjno-krążkowa;
- metody rozcieńczeniowe;
- E-test .

Metoda dyfuzyjno-krążkowa (metoda Kirby-Bauera) – najczęściej używana metoda testowania lekooporności [Bauer i w-cy, 1996]^[322] (Rys. 3-46.), oparta jest na dyfuzji

antybiotyku zawartego w krążku do podłoża. Antybiotyk dyfunduje promieniście, tworząc gradient stężeń. Największa jego koncentracja występuje przy brzegach krążka i spada wraz z odległością od krążka. Wielkość strefy zahamowania wzrostu bakterii jest wprost proporcjonalna do stopnia wrażliwości bakterii na antybiotyk - im większa jest strefa zahamowania, tym bakteria jest bardziej wrażliwa. W zależności od wielkości strefy, bakterie określa się jako: wrażliwe, średnio wrażliwe lub oporne na podstawie przyjętych standardów (rekomendacje). Jest to metoda dobrze wystandaryzowana, powtarzalna, relatywnie tania.

Ograniczenia: niektóre antybiotyki słabo dyfundują w agarze, różnica w strefach zahamowania dla bakterii wrażliwych i opornych jest niewielka, co może prowadzić do nieprawidłowego określenia lekooporności (glikopeptydy, polimyksyna B).

Metody rozcieńczeniowe pozwalają na określenie minimalnego stężenia antybiotyku (MIC) hamującego wzrost bakterii. Seryjne rozcieńczenia antybiotyku przygotowuje się w podłożu płynnym lub podłożu agarowym, do których dodaje się odpowiednie *inoculum* i inkubuje. *Metoda seryjnych rozcieńczeń na podłożu płynnym* polega na przygotowaniu serii probówek z płynnym podłożem wzrostowym dla bakterii. Do probówek dodaje się badanego środka bakteriobójczego w odpowiednich, malejących stężeniach. Do każdej probówki dodaje się taką samą ilość zawiesiny danego drobnoustroju z hodowli. Po 16-18 godzinnej inkubacji w temperaturze 35 °C sprawdza się, w których probówkach rozwinęły się hodowle (obserwuje się zmętnienie w probówkach). W probówkach, w których stężenie leku było mniejsze od wartości MIC obserwuje się zmętnienie (wzrost bakterii) (Rys. 3-45.). Najniższe stężenie antybiotyku, przy którym nie rozwijają się mikroorganizmy wyznacza wartość MIC. *Metoda seryjnych rozcieńczeń na podłożu stałym* (z agarem) polega na przygotowaniu serii płytek ze stałym podłożem wzrostowym, z dodatkiem badanego antybiotyku, w malejących stężeniach. Na płytki posiewa sie bakterie z hodowli i po inkubacji obserwuje wzrost kolonii bakteryjnych. Wzrost na płytce więcej niż jednej kolonii bakteryjnej świadczy o tym, że stężenie antybiotyku w tej płytce było mniejsze od MIC. Najniższe stężenie antybiotyku, przy którym nie rozwija się więcej niż jedna kolonia, wyznacza wartość MIC.

E-test (Etest, Epsilometer test) - gradientowo-dyfuzyjna metoda służąca do ustalenia najmniejszego stężenia antybiotyku hamującego wzrost drobnoustroju która łączy dyfuzję antybiotyku w agarze i ilościowe określenie stężenia hamującego MIC. Etest[®] został wprowadzony do handlu w 1991 r. przez AB Biodisk ^[326]. Metoda ta polega na nałożeniu wąskiego plastikowego paska nasączonego antybiotykiem o stężeniu wzrastającym wzdłuż

paska, na wysiane bakterie, inkubację w odpowiednich warunkach oraz odczytanie wyniku po około jednej dobie (Rys. 3-48.). Dzięki opisanej technice możliwe jest dokładne ustalenie stopnia oporności na dany lek i podawanie pacjentowi optymalnych dawek.

Rysunek 3-48. Zasada działania I	E-testu								
AB AB 222 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000									
Rys. 3-48.1. Pasek nasączony antybiotykiem. Poniżej antybiogramy z paskami E-test oraz									
porównanie									
Rys. 3-46.2. E-test dla Neisseria	Rys. 3-46.3. Płytka z typowymi	Rys. 3-46.4. Zabarwiona płytka							
<i>gonorrhoeae</i> (dwoinka rzeżączki)	strefami inhibicji antybiogramów:	wzrostowa Pseudomonas							
Wyznaczenie MIC:	dla tradycyjnego dysku Kirby-	(pałeczka ropy błękitnej)							
strefa inhibicji przecina pasek Etest [®]	Bauer'a i gradientowego paska	z dyskami Kirby-Bauer'a i							
	Etest.	gradientowym paskiem Etest.							
	Wyznaczenie MIC:	Bakteria uwalnia zielony pigment							
	E-test: strefa inhibicji przecina	do medium.							
	pasek Etest® (←).	Antybiogram wskazuje na							
	Test Kirby-Bauer'a: średnica	oporność szczepu na stosowane							
	okręgu inhibicji (↔).	antybiotyki.							
Grafika:E-test Ngono.jpg [327] http://pl.wikipedia.org/w/index.php?title=Plik:E- test_Ngono.jpg Licencja: GNU Free Documentation License Autorzy: A doubt, Louve.pl, Philippinjl	Spilatro, S.R. spilatrs@marietta.edu. [328]								

Porównania metod oznaczania MIC dokonano w szeregu prac ostatnich dwóch dekad [Joyce i w-cy, 1992 ^[329]; NCCLS, 1997 ^[330]; Kelly i w-cy, 1999 ^[331]; Mc Gowan&Wise, 2001 ^[332]].

3.4.2. BADANIA BIOLOGICZNE AMINOKWASÓW FOSFONOWYCH

Wysoka aktywność inhibicyjna kwasów 1-aminoalkilofosfonowych w stosunku do enzymów szlaków metabolicznych aminokwasów naturalnych (Tab. 2-5.) kontrastuje z niską aktywnością antybakteryjną tych związków. Efekt ten wiązano z niską zdolnością penetracyjną AA^P, które w warunkach fizjologicznych występują w formie dianionowej. Badania grupy Atherthona [Hoffmann La Roche (UK)]^[67] dotyczące antybiotycznych właściwości AlaAla^P i innych mieszanych fosfonopeptydów (Tab.: 3-37., 3-38.) wykazały, iż istotnym etapem warunkującym aktywność tych związków jest transport aktywny peptydu przez ściankę komórkową bakterii (Rys. 3-49.).

Rysunek 3-49. Mechanizm działania Ala-Ala^P wg. Allena

Symbole: Ala-Ala^P- *alafosfina*; DCS - D-cykloseryna; PEN - penicylina; NAGA, *N*-acetylo-glukozamina; M - metabolit M Ala^P.

[Allen, J.G.; Atherton, F.R.; Hall, M.J.; Hassall, C.H.; Holmes, S.W.; Lambert, R.W.; Nisbet, L.J.; Ringrose, P.S. Phosphonopeptides, a New class of synthetic antibacterial agents. Nature 272 (1978) 56-58] [66]

Przetransportowany do wnętrza komórki bakteryjnej peptyd ulega hydrolizie uwalniając kwas 1-aminoalkilofosfonowy [w przypadku fosfonoalaniny (Ala-Ala^P)], wpływający na metabolizm komórki bakteryjnej.

Tabela 3-37. Antybakteryjne spektrum <i>in vitro</i> Ala-Ala ^P									
	ID ₅₀ (bulion)		MIC (agar)						
Bakteria*	[µgml⁻¹]	[µgml ⁻¹] [µgml ⁻¹]							
	Ala-Ala ^P	Ala-Ala ^P	Penicilin G	Ampicillin					
Escherichia coli E 73	0,05	0,06	16	2					
Escherichia coli E 30	0,10	0,06	> 256	> 256					
Klebsiella aerogenes K5	0,5	0,5	32	32					
Streptococcus faecalis S98	1,0	> 256	0,25	> 256					
Micrococcus NCTC 7526	1,0	2	< 0,12	< 0,12					
Enterobacter E98	1,3	4	> 256	> 256					
Serralia marcescens S42	1,4	4	64	8					
Serralia albus S228	1,6	4	< 0,12	< 0,12					
Salmonella lyphimurium S394	1,7	8	4	0,5					
Citrobacter C4	2,4	2	16	4					
Staphylococcus aureu Schoch S13	3,4	8	< 0,12	< 0,12					
Providence P131	2,6	4	16	32					
Shigella flexneri S466	ND	0,25	8	1					
Haemophilus influenzae H34A	ND	16	0,5	0,4					
Neisseria gonorheaeN3	ND	16	< 0,12	< 0,12					
Bacillus subtilis B8	140	16	< 0,12	< 0,12					
Proteus mirabilis P92	11	> 256	4	2					
Pseudomonas aeruginosa NC1B 8295	26	> 256	> 256	> 256					
Streptococcus pyogenes	ND	> 256	< 0,12	< 0,12					

ID₅₀ oznaczano metodą rozcieńczania w bulionie: W przybliżeniu 10⁶ komórek było zaszczepionych do aminokwasowego medium (5 ml) zawierającego kolejne dwukrotne rozcieńczenia Ala-Ala^P i inkubowano przez 18h w 37° C;

MICs oznaczano metodą rozcieńczania w agarze: w przybliżeniu 10⁴ komórek było zaszczepionych powierzchniowo do aminokwasowego medium zawierającego kolejne dwukrotne rozcieńczenia Ala-Ala^P i inkubowano przez 18h w 37° C;

MIC – minimalne stężenie inhibicyjne (inhibicja > 99.9% inoculum);

ID₅₀ – stężenie związku które inhibituje 50% wzrostu bakterii w stosunku do wzrostu w próbie kontrolnej; ND – nie oznaczano (Not Determined)

[Allen, J.G.; Atherton, F.R.; Hall, M.J.; Hassall, C.H.; Holmes, S.W.; Lambert, R.W.; Nisbet, L.J.; Ringrose, P.S. Phosphonopeptides, a New class of synthetic antibacterial agents. *Nature* 1978, *272*, 56-58 ^[66]]

Tabela 3-38. Wp	Tabela 3-38. Wpływ stereochemii mieszanych fosfonopeptydów (Ala) _n -Ala ^P na aktywność										
an	tybakteryjn	ą (MIC ₅₀	[µgml ⁻¹]))							
(Ala) _n -Ala ^P	Ala-Ala ^P	([Ala) ₂ -Ala ^F			(Ala)	₃ -Ala ^P		(Ala) ₄ -Ala ^P		
(konfiguracja)											
VS.	LL	LLL	DLL	LLD	LLLL	DLLL	LLLD	DLLD	DLLLL		
bakteria											
Escherichia coli 0.25 0.25 $>$ 256 $>$ 256 0.1 4 $>$ 256 $>$ 256 4											
NCTC 10418 0,25 0,25 ≥256 ≥256 0,1 4 ≥256 ≥256 4											
Klebsiella	0.25	0 1 2	>256	>256	0.5	27	>256	>256	16		
aerogenes K5	0,23	0,12	2230	2230	0,5	52	2230	2230	10		
Staphylococcus											
aureus NC1B	16	32	≥256	≥256	128	≥256	≥256	≥256	≥256		
8625											
Streptococcus	2	0.06	170	27	0.25	27	27	64	>256		
faecalis S98	Z	0,00	120	52	0,23	52	52	04	2230		
Haemophilus											
influenzae NCTC	16	0,01	128	128	0,01	64	32	64	0,5		
4560											
Dla (Ala) _n -Ala ^P o konfiguracji: <i>LDL, DLD, LDD, DDLL</i> - MIC ₅₀ \geq 256 µg/ml.											
[Allen, J.G.; Atherton, F.R.; Hall, M.J.; Hassall, C.H.; Holmes, S.W.; Lambert, R.W.; Nisbet, L.J.; Ringrose, P.S.											
Phosphonopeptides	s, a New class	of synthe	tic antibac	terial agei	nts. <i>Natur</i>	e 1978, 27	72, 56-58	^{.66]}]			

3.4.3. BADANIA WŁASNE NAD BAKTERIOBÓJCZYMI WŁASNOŚCIAMI

AMINOKWASÓW FOSFONOWYCH

Ponieważ, w naszym zespole opracowano wcześniej metody łatwych konwersji kwasów 1aminoalkilofosfonowych do ich *N*-acylopochodnych (Sch. 3-24.), podjęto badania nad określeniem aktywności antybakteryjnej tych związków.

Schemat 3-24. Konwersja kwasów 1-aminoalkilofosfonowych do odpowiadających kwasów 1-(*N*-acyloamino)alkilofosfonowych i/lub mieszanych di peptydów

Wyniki badań nad inhibicją wzrostu komórek *Staphylococcus aureus* i *Escherichia coli* (Rys. 3-51) działaniem kwasów 1-(*N*-acyloamino)alkilofosfonowych i mieszanych dipeptydów zestawiono w Tabelach: 3-39., 3-40., 3-41. oraz przedstawiono graficznie na Rysunkach: 3-52., 3-53.

Tabela 3-39. Wyniki badań po zastosowaniu metody krążkowo - dyfuzyjnej									
Badany związek		Stęż	enie	Wielkość strefy zahamowania wzrostu [mm]					
Ctrukturo	Masa	[[Staphylococcus	Escherichia				
Struktura	Molowa	νa [μg/ml] [μmol/m		aureus	coli				
Gly-Gly [₽]	168,1	30,6	0,182	brak	brak				
Me-Gly-Gly ^P (×H ₂ O)	200,2	53,9	0,269	brak	brak				
Me ₂ -Gly-Gly ^P (×2H ₂ O)	230,2	53,9	0,234	brak	brak				
Gly-Ala ^P (×H ₂ O)	200,1	53,9	0,27	brak	brak				
Me-Gly-Ala ^P (×H ₂ O)	214,1	53,9	0,252	brak	brak				
Gly-Pgly ^P (×H ₂ O)	262,2	54,0	0,206	brak	brak				
H_2N -Gly-Val ^P (× H_2O)	245,2	53,9	0,22	brak	brak				
Ac–Met ^P	227,2	54,0	0,238	brak	brak				

-alkilofosfonowych, uzyskanych w wyniku pomiaru mętności zawiesiny bakteryjne							eryjnej		
Badany związ	ek	Stężenie związku		Sta	phylococ aureus	ccus	Escherichia coli		
Struktura	Masa Mol	[µg /ml]	[µmol	Gęstoś	ć zawiesir	ny bakter w czasie	yjnej w s odczytu	kali Mc F	arlanda
	10101.		71111	"0"	5 h	24 h	"0" 5 h 24 0,4 3,9 5,6 0,5 0,8 4,6 0,4 3,7 6,5 0,5 4,6 5,7	24 h	
Ac–Gly [₽]	153,1	2,13	0,014	0,4	1,0	4,0	0,4	3,9	5,6
Ac–Ala [₽]	167,1	2,66	0,016	0,5	0,9	5,6	0,5	0,8	4,0
Ac–Hal ^P	181,1	3,02	0,017	0,5 0,8 3,5 0,4 3,7					
Ac–Nval [₽]	195,2	2,76	0,014	0,5	4,6	5,7			
۸c-\/əl ^p	105.2	2,20	0,011	0,5	1,3	5,3	0,5	4,7	5,6
AC-Vai	193,2	2,20	0,011	0,5	1,2	5,7	0,4	4,6	5,6
Ac–Met ^P	227,2	2,14	0,0091	0,5	1,3	5,6	0,5	5,0	5,9
Ac–Pgly ^P	229,2	2,06	0,0089	0,5	1,2	7,6	0,5	5,2	6,1
Ac–Phe ^P	243,2	2,12	0,0087	37 0,4 0,8 5,3 0,4 4,8					
nróba odniesienia		0,0	0,0	0,5	0,7	5,5	0,5	5,6	5,3
				doc	latek H ₂ C)			

Tabela 3-40. Zestawienie wyników badań zdolności antybakteryjnych 1-(*N*-acyloamino) -alkilofosfonowych, uzyskanych w wyniku pomiaru mętności zawiesiny bakteryjne

uzyska	uzyskanych w wyniku pomiaru mętności zawiesiny bakteryjnej									
Badany zwiaze	k	Steżenie	e związku	9	Staphyloco	occus		Escherichio 	ג	
					aureus	5		coli		
Struktura	Masa				Gęstość	zawiesin	y baktery	jnej w ska	ali	
	Mol	[µg /ml]	[µmol/ml]		Mc	Farlanda	w czasie o	odczytu		
	10101.			"0"	5 h	24 h	"0"	5 h	24 h	
Gly-Gly [₽]	168,1	3,05	0,018	0,4	1,1	6,9	0,5	2,1	5,0	
Gly-Ala ^P (×H ₂ O)	200,1	5,39	0,027	0,4	1,0	7,1	0,5	0,6	2,0	
Gly-Pgly ^P (×H ₂ O)	262,2	5,40	0,021	0,4	0,9	5,4	0,4	4,9	6,0	
Me-Gly-Gly ^P (×H ₂ O)	200,2	5,39	0,027	0,4	1,1	6,3	0,5	4,8	6,0	
Me ₂ -Gly-Gly ^P (×2H ₂ O)	230,2	5,39	0,023	0,4	1,1	7,0	0,5	5,5	6,4	
Me-Gly-Ala ^P (×H ₂ O)	214,1	5,39	0,025	0,5	1,2	6,9	0,5	5,1	4,6	
H ₂ N-Gly-Val ^P 245,2 (×H ₂ O)		5,39	0,022	0,4	0,5	0,4	0,4	2,4	4,6	
próba odniesienia		0,0	0,0	0,5	0,7	5,5	0,5	5,6	5,3	
					doda	tek H ₂ O				

Tabela 3-41. Zestawienie wyników badań, zdolności antybakteryjnych fosfonodipeptydów,

Badania opisane powyżej zostały wykonane w celu potwierdzenia lub wykluczenia bioaktywnych właściwości testowanych związków - cech biobójczych i biostatycznych (zahamowania wzrostu namnażania komórek bakteryjnych).

Wyniki zawarte w Tabeli 3-41. wskazują, że najwyższą aktywność szczególnie wobec bakterii *Staphylococcus aureus* (w porównaniu ze wzrostem tej samej bakterii w próbie odniesienia), wykazuje związek H_2N -Gly-Val^P (o stężeniu: 5,39 µg/ml; 0,022 µmol/ml). Po 5-godzinnym oraz 24–godzinnym kontakcie peptydu H_2N -Gly-Val^P z zawiesiną szczepu *Staphylococcus aureus* nie występowało namnażanie komórek bakteryjnych, wartość mętności pozostała na tym samym poziomie jak na początku doświadczenia, co mogłoby wskazywać nawet na właściwości biobójcze tego związku.

Związek Gly-Ala^P (o stężeniu: 5,39 μg/ml; 0,027 μmol/ml) wykazał, największy wpływ na użyty do testu szczep bakterii Gram (-) *Escherichia coli*, zahamował namnażanie bakterii o ponad 50% w stosunku do zmierzonej mętności w próbie odniesienia, co można uznać za działanie bakteriostatyczne wobec tego szczepu bakterii.

Kwasy 1-(*N*-acetyloamino)alkilofosfonowe: Ac–Ala^P, Ac–Gly^P, Ac–Hal^P, wpłynęły także w niewielkim stopniu na zahamowanie wzrostu bakterii *Escherichia coli* (Ac–Ala^P) i *Staphylococcus aureus* (Ac–Gly^P, Ac–Hal^P), jednak stężenia badanych związków (odpowiednio: 2,66; 2,13; 3,02 mg/l) były prawie dwukrotnie mniejsze niż peptydów AGV i AG.

Z przeprowadzonych badań wynika, że pozostałe przetestowane związki wpływały stymulująco na wzrost bakterii. Mętność inkubowanych roztworów była wyższa niż w próbie odniesienia.

Uzyskane wyniki sugerują kontynuację badań, w tym przeprowadzenie badań w kilku powtórzeniach i ze zwiększonym stężeniem badanych peptydów.

Badania aktywności biologicznej wyżej wymienionych związków przeprowadzono a następnie zaprezentowano na konferencji EPF 2011:

Kudzin M.H., Kudzin Z.H., Drabowicz J.: *Derivatives of aminoalkylphosphonic acids and glycylaminoalkylphosphonic acids as antibacterial additives in biopolymers*. European Polymer Congress EPF-2011; Grenada 2011.06.26.^[335]

200

4. CZĘŚĆ EKSPERYMENTALNA

4.1. BADANIA SYNTETYCZNE

4.1.1. ROZTWORY I REAGENTY

Odczynniki:

Tabel	Tabela 4-1. Odczynniki wykorzystane w części eksperymentalnej									
Nr.	Odczynniki		Tem	peratura	d	Czyst.[%]	Firma			
		MW	t. t.	t. w. [°C/	[g/ml]	/				
			[°C]	mm Hg]		Stęż. M]				
1.	Aldehydy i ketony									
1.1.	Metanal (formalina – 37% aq.)	30,0			1,09	37%	Aldrich			
1.2.	Paraformaldehyd	(30,0) _n	175			95%	Aldrich			
1.3.	Etanal	44,1	-125	21	0,785	99,5%	Aldrich			
1.4.	Propanal	58,1	-81	46-50	0,805	97%	Aldrich			
1.5.	Butanal	72,1	-96	75	0,80	98%	Aldrich			
1.6.	Pentanal	86,1	-92	102-103	0,81	97%	Aldrich			
1.7.	Ald. benzoesowy (benzaldehyd)	106,1	-26	178-179	1,044	98%	Aldrich			
1.8.	2-Metylobenzaldehyd	120,2		199-200	1,039	97%	Aldrich			
1.9.	3-Metylobenzaldehyd	120,2		80-82	1,019	97%	Aldrich			
				/0,01						
1.10.	4-Metylobenzaldehyd	120,2		80-85	1,019	97%	Aldrich			
				/0,01						
1.11.	2-Nitrobenzaldehyd	151,12	42-44			98%	Aldrich			
1.12.	3- Nitrobenzaldehyd	151,12	53-58			99%	Aldrich			
1.13.	4- Nitrobenzaldehyd	151,12	103-			98%	Aldrich			
			106							
1.14.	2-Chlorobenzaldehyd	140,57	9-11	209-215	1,248	99%	Aldrich			
1.15.	4- Bromobenzaldehyd	185,02	55-58			99%	Aldrich			
1.16.	4- Nitrylobenzaldehyd	131,13	100-	133/12		95%	Aldrich			
			102							
1.17.	2,4,5-Trimetylobenzaldehyd	148,2	10-12	237	1,006	98%	Aldrich			
	(Aldehyd mesytylowy)									
1.18.	Ald. 1-naftoesowy (1-naftalaldehyd)	156,18	1-2	160-	1,15	95%	Aldrich			
				161/15						
1.19.	Ald. 2-naftoesowy (2-naftalaldehyd)	156,18	58-61			98%	Aldrich			
1.20.	Aceton	58,1	-94	56	0,791	99,5%	Aldrich			
1.21.	Cykloheksanon	98,1	-47	155	0,947	99,5%	Aldrich			
	EtOH		-115	78						
	iPrOH		-86	83						
2.	Kwasy i bezwodniki kwasowe									
2.1.	Kwas octowy	60,1	16,2	117-118	1,049	99%	Aldrich			
2.2.	Kwas trifluorooctowy	114,0	-15,4	72,4	1,489	99%	Aldrich			
2.3.	Kwas chlorooctowy	94,5	60-	189		99%	Aldrich			
		402.1	63	100 110	4.00					
2.4.	Bezwodnik octowy	102,1	-73	138-140	1,08	99%	Aldrich			
2.5.	Bezwodnik chlorooctowy	171,0	48-60	120-123		95%	Aldrich			

Tabel	a 4-1. (c.d.). Odczynniki wykorzys	tane w cz	zęści ek	speryment	alnej				
Nr.	Odczynniki		Tem	peratura	d	Czyst.[%] Firma			
		MW	t. t.	t. w. [°C/	[g/ml]	/			
			[°C]	mm Hg]		Stęż. M]			
3.	Zasady azotowe								
			-				•		
3.1.	Amoniak (25% aq)	17,1			0,910	13,3M/	Aldrich		
						10M ^{/a}			
3.2.	Metyloamina (40% aq)	31,1			0,897	11,5M/	Aldrich		
						10M ^{/a}			
3.3.	Metyloamina (33% w EtOH)	31,1			0,756	4,9M	Aldrich		
3.4.	Metyloamina - 2M roztw. w THF	31,1			0,861	2M	Aldrich		
3.5.	Etyloamina - 2M roztw. w THF	45,1			0,856	2M	Aldrich		
3.6.	Dimetyloamina (40% aq)	45,1			0,89	7,9M/	Aldrich		
						8,0M ^{/b}			
3.7.	Dimetyloamina 2M roztw. w MeOH	45,1			0,775	2M	Aldrich		
3.8.	Trietyloamina	101,2	-115	89	0,726	99%	Aldrich		
3.9.	tert-Butyloamina	73,1	-67	46	0,696	98%	Aldrich		
3.10.	Hydrazyna (80% aq.)	32,0			1,040	26M	Aldrich		
4.	Związki fosforu								
4.1.	Trichlorek fosforu	137,3	-112	74-78	1,574	99%	Aldrich		
4. 2.	Fosforyn dietylowy	138,1		50-51	1,072	99%	Aldrich		
				/2					
4.3.	Fosforyn trifenylowy	310,3	22-	360	1,184	97%	Aldrich		
			24						
5.	Inne								
5.1.	Izotiocyjanian fenylowy	135,2	-23	218	1,132	99%	Aldrich		
5.2.	Benzamid	121,1	125-		1,34	99%	Aldrich		
			128						
5.3.	Dekalina	138,3	-125	189-91	0,896	97%	Aldrich		
5.4.	2,4-Dinitrofenylohydrazyna	198,14	197-			97%	Aldrich		
			200						
5.5.	Ninhydryna	178,14	250			95%	Aldrich		
5.6.	Dowex [®] 50Wx8 (50-100 mesh)						Aldrich		
Roztwo	ory amoniaku i amin poddano miareczko	owaniu alka	acymetry	cznemu uzys	skując: dla	NH₃ i MeNI	H ₂ stężęnie		
ok. ^{a/} 10	DM; b – dla dimetyloaminy ^{b/} 8 M.								

Inne odczynniki i rozpuszczalniki zakupiono w firmie POCH.

Kwasy fosfonowe i aminokwasy:

Kwasy: metylofosfonowy, 2-fosfonoetanowy, 3-fosfonopropanowy zakupione w firmie Aldrich^[336].

Aminokwasy fosfonowe: 2-aminoetylofosfonowy (2-Ala^P), 3-aminopropylofosfonowy (3-Hala^P), 4-amino-butylofosfonowy (4-Nval^P), 3-aminopropylo-1-hydroksy-1,1-difosfonowy (PAM), 4-aminobutylo-1-hydroksy-1,1-difosfonowy (ALN) zostały zakupione w firmie Sigma^[337].

Kwasy 1-aminoalkilofosfonowe: Ala^P; Hala^P; Nval^P; Val^P; Nleu^P; Leu^P; Ileu^P; ^tLeu^P; Met^P; Eth^P; Hphe^P zostały otrzymane wcześniej w Zespole i posiadały czystość analityczną. Kwasy: 1-hydroksypropanofosfonowy; 1-aminopropylo-1,1-difosfonowy (Hal^{P,P}); 1-aminobutylo-1,1-difosfonowy (Nval^{P,P}) zostały otrzymane wcześniej w Zespole i posiadały czystość analityczną.

Roztwory:

• roztwór ninhydryny:

Do kolby miarowej (50 ml) wsypano naważkę ninhydryny (1,0 g), po czym wlano porcjami butanol wysycany wodą do rozpuszczenia wskaźnika. Roztwór uzupełniono *do kreski* butanolem.

• roztwór molibdenianowy:

Do kolby miarowej (100 ml) przeniesiono roztwór molibdenianu amonowego (1,0 g), w wodzie (40 ml), dodano stężonego kwasu solnego (12 M; 3 ml), następnie roztwór kwasu nadchlorowego (70%, 5 ml). Roztwór po ochłodzeniu do temperatury pokojowej uzupełniono "do kreski" acetonem.

Temperatury topnienia wyznaczono w kapilarze, w aparacie Melt-Temp II (Laboratory Devices, USA).

Miareczkowanie potencjometryczne AA^P było przeprowadzone na drodze pH-metrycznego miareczkowania za pomocą automatycznego titratora EMU-meter (Politechnika Wrocławska, Polska) sterowanego komputerem PC (Elwro, Polska), wyposażonego w elektrodę szklano-kalomelową OP-0808 P (Radelkis). Elektroda była wykalibrowana przez użycie wzorcowych roztworów pH (2 < pH < 10), odczyty pH-metru mogły być odnoszone do stężenia jonów wodorowych. We wszystkich przypadkach, temperatura wynosiła 20°C (±0,25)°C. Dokładne stężenia aminokwasów i pochodnych w roztworach były oznaczane przez miareczkowanie w próbkach objętości 4 ml.

4.1.2. PRACE ZWIĄZANE Z SYNTEZĄ/RESYNTEZĄ MODELOWYCH KWASÓW AMINOALKILOFOSFONOWYCH

4.1.2.1. SYNTEZA KWASÓW AMINOARALKILOFOSFONOWYCH WG METODY TIOUREIDOALKANO-FOSFONIANOWEJ

Kwasy 1-aminoaralkilofosfonowe otrzymywano wg metody tioureidoalkanofosfonianowej [Kudzin&Stec, 1978] ^[171].

 $(Ph-NH_2 + Ph-OH + H_2S)$

a: AcOH; b: AcOH/H₂O/HCl, temp. wrzenia; c: tlenek propylenu/etanol

Schemat 4-1. Synteza kwasów 1-aminoalkanofosfonowych wg metody tioureidoalkanofosfonianowej

Procedura

Reakcję (etap a) przeprowadzono w zestawie reakcyjnym złożonym z kolby Erlenmeyera (250 ml) zamykanej szczelnie korkiem, mieszadła magnetycznego oraz z łaźni olejowej z regulacją temperatury. W kolbie umieszczano kolejno kwas octowy lodowaty (50 ml), aldehyd (0,06 mola) i *N*-fenylotiomocznik (0,05 mola, 7,60 g). Mieszaninę mieszano w temp.

50-60 °C do uzyskania homogenicznego roztworu, po czym dodawano fosforyn trifenylowy (0,05 mola, 15,50 g), mieszaninę ogrzewano w temp. 50-60°C przez 1 h i pozostawiono w temp. pokojowej przez 12 h. Wydzielone kryształy odpowiednich tioureidoalkano-fosfonianów odsączano, przemywano kwasem octowym i wykorzystywano do syntezy kwasów 1-aminoalkanofosfonowych (etap b). Dla potrzeb charakteryzacji - próbkę tioureidoalkanofosfonianu (1,0 g) rekrystalizowano z układu chloroform-heptan (5:1) i suszono w eksykatorze próżniowym nad pięciotlenkiem fosforu.

Proces kwasowej degradacji N-fenylotioureidoalkanofosfonianów do odpowiadających kwasów 1-aminoalkanofosfonowych (etap b) przeprowadzono w zestawie złożonym z kolby okrągłodennej (500 ml), zaopatrzonej w chłodnicę zwrotną i płaszcz elektryczny. Ze względu na wydzielanie się podczas degradacji ugrupowania tiomocznikowego toksycznego siarkowodoru, wylot chłodnicy połączony był z płuczką zawierającą roztwór wodorotlenku kolbie umieszczano kwas octowy (100 ml), następnie wsypywano sodu. W tioureidoalkanofosfonian (0,04 mola), zawartość kolby ogrzewano do homogenizacji. Do roztworu dodawano porcjami, przez wlot chłodnicy zwrotnej, stężony roztwór kwasu chlorowodorowego (200 ml), ogrzewając mieszaninę do wrzenia w czasie 10 h. Po schłodzeniu z mieszaniny reakcyjnej ekstrahowano fenol za pomocą benzenu (3x20 ml), a warstwę wodną zatężano przez ewaporację pod obniżonym ciśnieniem, po czym stałą pozostałość rozpuszczano w alkoholu etylowym (50 ml). Alkoholowy roztwór chlorowodorków aminokwasów fosfonowych (etap c) traktowano tlenkiem propylenu w temp. ~ 0° C, wydzielone kryształy odsączano po 3 h, przemywano etanolem i eterem dietylowym, po czym suszono w eksykatorze próżniowym nad pięciotlenkiem fosforu. Charakterystykę otrzymanych pochodnych arylowych fosfonoglicyny ArGly^P przedstawiono w Tabeli 4-2.

205

4.1.2.1.1. SYNTEZA N-FENYLOTIOMOCZNIKA

N-Fenylotiomocznik otrzymywano na drodze addycji amoniaku do izotiocyjanianu fenylu zgodnie ze Schematem 4-2.

Schemat 4-2. Synteza N-fenylotiomocznika

Procedura

Reakcje przeprowadzono w kolbie stożkowej (500 ml), zaopatrzonej w mieszadło magnetyczne. W kolbie umieszczano kolejno: roztwór wodny amoniaku (200 ml, 25% aq., 10M) i dioksan (100 ml), po czym podczas intensywnego mieszania wkraplano izotiocyjanian fenylu (100 g). Mieszaninę reagentów mieszano w temperaturze pokojowej dodatkowo przez 1 h, po czym odstawiano na 24 h. Utworzone kryształy *N*-fenylotiomocznika dekantowano, rozdrabniano w moździerzu, po czym ponownie zalewano roztworem amoniaku (z dekantacji). Mieszaninę pozostawiano na 24 h, otrzymany osad odsączano, przemywano na lejku roztworem amoniaku (1:1, 5 M), metanolem i eterem dietylowym. Kryształy *N*-fenylo-tiomocznika suszono na powietrzu (24 h), po czym w eksykatorze próżniowym nad stałym wodorotlenkiem potasu i pięciotlenkiem fosforu. Otrzymano *N*-fenylotiomocznik (105 g; 93%) homogeniczny na TLC, o temperaturze topnienia 147-150°C (145-150°C^[334]), który użyto do dalszych syntez bez dodatkowego oczyszczania.

Tabela 4-2. Zestawienie otrzymanych kwasów 1-amino-1-arylometano-fosfonowych (Ar-Gly ^P)										
Ora	az pośredn	ich tiou	Ireidoal	kanofo	sfonianów	[Ptc-Ar	Gly (C	DPh) ₂] -Gly ^P		
				³¹ D		\\/\vd	7.0	T t [°C]	³¹ p (MR
Struktura	Symbol	Wyd. [%]	T. t. [°C]	P NMR [CDCl₃]	AA ^P	(Isol.)	Wyz n.	Lit.	2N HCl	2N KOH
	Ph-	85	169- 170	15,0	Pgly ^P	80	268- 270	269-271 ^[171] 279-281 ^[338]		17,9
CH ₃	2-Me-Ph-	82	139- 142	15,4	2-Me- Pgly ^P	90	234- 236	264-267 ^[339]	13,4	19,2
H ₃ C	3-Me-Ph-	86	154- 158	15,7	3-Me- Pgly ^P	90	280- 282	282-285 ^[339]	13,2	18,6
н ₃ с-	4-Me-Ph-	90	192- 195 ^(R)	15,5	4-Me- Pgly ^P	97	276- 278	278-279 ^[172] 274-277 ^[181] 266-267 ^[340]	13,3	18,7
	1-Nph-	40	182- 184	15,5	1-Npgly ^P	75	238- 240	249-251 ^[176]	13,0	18,8
	2-Nph-	70	177- 179	15,5	2-Npgly ^P	91	250- 253	252-254 ^[176] 307-308 ^[239]	12,9	18,4
	2-Cl-Ph-	81	130- 134	13,7	2-Cl-Pgly ^P	49	235- 237	247-248 ^[339]	11,8	18,0
Br-	4-Br-Ph-	68	177- 179	13,7	4-Br-Pgly ^P		266- 269	268-272 ^[176] 290-296 ^[339]		18,1
	2-O ₂ N-Ph-	68	164- 166	12,5	2-O ₂ N- Pgl ^P	45	245- 248	236-239 ^[282]	10,8	17,2
O ₂ N	3-O ₂ N-Ph-	76	146- 149	13,0	3-O ₂ N- Pgl ^P	99	231- 233	272-274 ^[181]	11,2	17,1
	$4-O_2N-Ph-$	34	164- 167 ³¹ D NM4	12,7	4-O ₂ N- Pgl ^P	37	223- 224	234-238 ^[181] 236-239 ^[252]	10,9	16,8

Wyniki analizy elementarnej nowych kwasów 1-aminoarylometylo-1-fosfonowych (4- HO_2C - $Pgly^P$ i 2,4,6- Me_3 - $Pgly^P$) przedstawiono w Tabeli 4.3.

Tabela 4	1-3. Wyniki analizy eleme	entarnej nowyo	ch kwas	ów					
		-1-10510110/wyc	M.M.		Wyniki /	Analizy	Element	arnej	
			ozn. ^{/a}	(C	I	4	1	N
Symbol	Struktura	Wz. sumar. [MM]		Licz.	Ozn.	Licz.	Ozn.	Licz.	Ozn.
4-HO ₂ C- Pgly ^P	$HO_2C \qquad \qquad$	C ₈ H ₁₀ NPO₅ [231,18]	230,0	41,56	41,26; 41,32	4,33	4,29; 4,41	6,06	6,08; 6,11
2,4,6- Me ₃ - Pgly ^P	$H_{3}C \xrightarrow{CH_{3}} O \underset{CH_{3}}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{$	C ₁₀ H ₁₆ NPO ₃ [229,13]	238,0	52,40	50,51; 50,64	6,70	7,04; 7,10	6,11	5,97; 5,99
	2,4,6-Me ₃ -Pglγ ^P × 0,5 H ₂ 0	C ₁₀ H ₁₇ NPO _{3,5} [238,2]		50,37		7,22		5,89	
^{/a/} Wyznac	czono za pomocą miareczkow	ania alkacymetry	cznego						

Tabela 4-4. Charakterystyka nowych kwasów 1-aminoarylometylo-1-fosfonowych						
R-AA ^P	Temp.	NMR [ppm]				
	topn. ^{/a}	³¹ P NMR ^{/a}	¹ H NMR ^{/b}			
4-HO ₂ C-Pgly ^P	282-284°C	18,2	Nie rozpuszczalny w układzie TFA-CDCl ₃			
2,4,6- Me₃Pgly ^P	152-154°C	19,6	2,28 (s, 3H, Ph-C <u>H₃</u>); 2,37 (s, 3H, Ph-C <u>H₃</u>); 2,52 (s, 3H, Ph-C <u>H₃</u>); 5,45 (d, J=25,6Hz, 1H, CH-P); 6,95 (s, 1Har); 6,98 (s, 1Har); 7,55-7,75 (bs, 3H, NH ₃)			
^{/A/} 0,1M roztwór w 2 M KOH; / ^{b/} 0,1M roztwór w TEA CDCL (1:1)						

4.1.2.2. SYNTEZA KWASÓW AMINOALKILOFOSFONOWYCH METODĄ PIKLA-OLEKSYSZYNA 4.1.2.2.1. SYNTEZA KWASU 1-AMINOMETYLOFOSFONOWEGO

Kwas 1-aminometylofosfonowy otrzymano wg procedury Soroki, wychodząc z hydroksymetylobenzamidu i trichlorku fosforu ^[213] (Sch. 4.3.).

Schemat 4-3. Synteza kwasu 1-aminometylofosfonowego wg procedury Soroki [Soroka, 1989]^[213]

Procedura

Do mieszaniny *N*-(hydroksymetylo)benzamidu (15,1 g; 0,10 mola) w bezwodnym kwasie octowym (20 ml), wkroplono w temperaturze 10-25°C, przy intensywnym mieszaniu, świeżo przedestylowany trichlorek fosforu (8,75 ml; 0,10 mola). Mieszaninę ogrzewano do wrzenia pod chłodnicą zwrotną przez 1 h, po czym poddawano ewaporacji pod obniżonym ciśnieniem (60° C/10-20 mm Hg), dodawano stężony roztwór kwasu chlorowodorowego (12 M_{aq}; 50 ml), i mieszaninę ogrzewano do wrzenia przez 8 h. Po ochłodzeniu, odsączono wydzielony kwas benzoesowy i filtrat poddawano ewaporacji pod obniżonym ciśnieniem (jw.). Pozostałość rozpuszczano we wrzącej wodzie (20 ml),następnie roztwór stopniowo rozcieńczano metanolem (100 ml). Roztwór traktowano dodatkowo tlenkiem propylenu do uzyskania pH ~ 5-6, umieszczano w lodówce na 24 h i wydzielone kryształy kwasu aminometylofosfonowego odsączano, przemywano metanolem i suszono w eksykatorze próżniowym. Surowy aminokwas (ok. 10,0 g) oczyszczano na kolumnie z wymieniaczem jonowym Dowex 50Wx8, stosując elucję wodą. Otrzymany kwas aminometylofosfonowy (7-8 g; 0,056 mola; 56%) był homogeniczny w ¹H NMR i ³¹P NMR [w roztworach TFA-CDCl₃ (1:1)].

4.1.2.2.1.1. SYNTEZA N-(HYDROKSYMETYLO)BENZAMIDU

Wyjściowy *N*-(hydroksymetylo)benzamid otrzymywano wg procedury Hellmanna^[341], w wyniku reakcji benzamidu i aldehydu mrówkowego (Sch. 4-4.).

Schemat 4-4. Reakcja tworzenia N-(hydroksymetylo)benzamidu wg procedury Hellmanna^[341]

Procedura

Benzamid (60,5 g, 0,50 mola), mieszano z wodnym roztworem (70 ml) węglanu potasu (2 g), dodawano roztwór formaliny (40 g; 40%) i mieszaninę ogrzewano do wrzenia pod chłodnicą zwrotną, do pełnej homogenizacji. Roztwór odstawiono na 24 h w temperaturze pokojowej, odsączano wydzielone kryształy produktu i poddawano rekrystalizacji z etanolu. Otrzymano *N*-(hydroksymetylo)benzamid (60 g; 0,4 mola; 80%), homogeniczny na TLC związek (temp. topn. 96-98°C; 95-100°C)^[334], który wykorzystano w syntezie kwasu aminometylofosfonowego (4.1.3.2.).

4.1.2.2.2. SYNTEZA KWASU 1-AMINO-1-METYLOETANOFOSFONOWEGO

Schemat 4-5. Reakcja tworzenia kwasów 1-amino-1-alkiloalkilo-1-fosfonowych [Soroka, 1987]^[2]

Procedura

Do roztworu 11,8 g (0,2 mola) acetamidu w 25 ml kwasu octowego wkroplono, przy intensywnym mieszaniu i chłodzeniu w łaźni lodowej 7,85 g (0,1 mola) chlorku acetylu z taka szybkością, aby temperatura mieszaniny nie przekraczała 20 °C. Po kilku minutach wypada biały osad. Po wkropleniu chlorku acetylu do mieszaniny poreakcyjnej dodano w tej samej

temperaturze 0,1 mola związku karbonylowego (acetonu – 5,8 g, cykloheksanolu – 9,8 g), po czym mieszano jeszcze kilka minut. Do otrzymanego w ten sposób surowego octanu *N*-acetamidokarbinolu dodano 13,7 g (0,1 mola) trichlorku fosforu, po czym mieszano roztwór przez godzinę w temperaturze pokojowej.

Mieszaninę reakcyjną poddano ewaporacji, a pozostałość hydrolizuje, ogrzewając do wrzenia z 50 ml 12 M kwasu solnego pod chłodnica zwrotną w czasie 8 godzin. Hydrolizat poddano ewaporacji, a z pozostałości ekstrahowano chlorowodorek aminokwasu za pomocą 50 ml etanolu. Osad chlorku amonu oddzielono przez filtrację, a następnie przemywano dwiema porcjami, po 10 ml, etanolu. Z połączonych przesączy wytrącono aminokwas przez dodanie tlenku propylenu (6 ml). Mieszaninę pozostawiono do krystalizacji w lodówce na dwie doby, po czym aminokwas odsączono i przemyto etanolem (3 × 10 ml).

Otrzymano:

Mala^P [139,1]: 12,5 g białego krystalicznego kwasu 1-amino-1-metylo-etanofosfonowego (90%) o temp. topn. 260-262 °C (z rozkładem); (265-268°C [Soroka, 1987]^[2]). ¹H NMR (TFA-CDCl₃, 1:1) 1,72 (d, 6H, J=14,40 Hz, N⁺-C(C<u>H₃)</u>₂-P); 7,1-7,3 (bs, 3H, C-N⁺<u>H₃</u>).

1-ACh^P [179,1]: 14,3 g białego krystalicznego kwasu 1-amino-cykloheksylo-1-fosfonowego (80%) o temp. topn. 260-262 °C (264-265 °C [Soroka, 1987]^[2]). ¹H NMR (TFA-CDCl₃, 1:1) 1,72(d, 6H, J=14.40 Hz, N⁺-C(C<u>H₃)</u>₂-P); 7,1-7,3 (bs, 3H, C-N⁺<u>H₃</u>).

4.1.2.3. SYNTEZA KWASÓW 1-(N-ALKILOAMINO)ALKILOFOSFONOWYCH (R-AA^P)

Schemat 4-6. Synteza R-AA^P na drodze hydrofosfonylowania imin

Procedura

Do roztworu aldehydu (0,05 mola) w THF (10 ml) i roztworu alkiloaminy w THF (ok. 2 M, 50 ml), (Tab. 4-5.) dodawano bezwodny węglan potasu (1,0 g) i mieszaninę reakcyjną utrzymywano w temperaturze pokojowej w czasie 48 h. Roztwór przesączano, ewaporowano w temp. pokojowej i pozostałość rozpuszczano w bezwodnym etanolu (50 ml), zawierającym EtONa (0,1 mole) i dodawano fosforyn dietylowy (0,06 mola, 8,3 g) (Tab. 4-4.). Mieszaninę reakcyjną trzymano w temp. pokojowej przez 48 h, następnie odparowywano w próżni (20 mm Hg przy 30° C 0,3 mm Hg przy 70° C). Pozostałość rozpuszczano w AcOH (100 ml), roztwór rozcieńczano HCl (100 ml, 33%, 10 M) i ogrzewano do wrzenia pod chłodnicą zwrotną przez 10 h. Hydrolizat odparowywano w próżni [20 mm Hg przy 30° C do 70° C], rozpuszczano w wodzie (10 ml) i oczyszczano na drodze chromatografii jonowo-wymiennej (Dowex-50W-H₂O).

Tabela 4-5, Synteza kwasów 1-(N-alkiloamino)alkilofosfonowych									
$ \begin{array}{c} $	Reagenty do syntezy <i>O</i> , <i>O</i> -dietylo 1-(<i>N</i> -alkiloamino)alkilofosfonianów*[mmole]								
	Aminy			z	Wiązki ka	Fosforyn	Wyd.		
	Me-	Et-NH ₂	tBu-	Me-	Et-	Ph-	Me ₂ CO	(EtO) ₂ P-	Izol. AA ^{P /*}
	NH_2		NH_2	C(O)H	C(O)H	C(O)H		(O)H	
Me-Hal ^P	0,1				0,05			0,06	65%
Et-Hal ^P		0,1			0,05			0,06	60%
Et-Mal ^P		0,1					0,05	0,06	50%
tBu-Ala [₽]			0,1	0,05				0,06	70%
Me-Pgl ^P	0,1					0,05		0,06	70%
*Utworzone <i>O,O</i> -dietylo 1-(<i>N</i> -alkiloamino)alkilofosfoniany poddawano degradacji hydrolitycznej do									
aminokwasów które izolowano na drodze chromatografii jonowymiennej									

Charakterystykę analityczną nowych kwasów 1-(*N*-alkiloamino)alkilofosfonowych przedstawiono w Tabelach: 4-6., 4-7.

Tabela 4-6. Analiza elementarna nowych kwasów 1-(N-alkiloamino)alkilofosfonowych									
۸۸ ^p				Wyniki Analizy Elementarnej					
AA			M.M.	С		Н		N	
Symbol	Struktura	Wz. sumar. [MM]	ozn. ^{/a}	Licz.	Ozn.	Licz.	Ozn.	Licz.	Ozn.
tBu-Ala ^P	$ \begin{vmatrix} CH_{3} & O \\ I & H_{3}C - C - N - C - P(OH)_{2} \\ I & H \\ CH_{3} & CH_{3} \end{vmatrix} \begin{vmatrix} C_{6}H_{16}NPO_{3} \\ I & BI, 18 \end{vmatrix} $		185,0	39,78	39,22; 39,28	8,84	8,76; 8,81	7,73	7,15; 7,26
	$tBu-Ala^{P} \times 0,5H_{2}O$	C ₆ H _{16.5} NPO _{3.25} [185,7]		38,77		8,93		7,54	
$Me-Hala^P$	$H_{3}C - N - C - P(OH)_{2} = \begin{bmatrix} O \\ H_{12} \\ C_{4}H_{12}NPO_{3} \\ C_{2}H_{5} \end{bmatrix} = \begin{bmatrix} C_{4}H_{12}NPO_{3} \\ [153,13] \end{bmatrix}$		153,0	31,37	31,10; 31,24	7,84	8,01; 8,02	9,15	9,10; 9,15
Et-Hala ^P	$\begin{array}{c} O\\ H \overset{H}{\underset{H}{\overset{H}{\underset{C_2}}}} H_{5}^{H} - C - P(OH)_{2}\\ H \overset{H}{\underset{C_2}{\overset{H}{\underset{5}}}} H_{5}^{H} \end{array}$	C₅H ₁₄ NPO ₃ [167,15]	175,1	35,93	33,72; 33,86	8,38	8,74; 8,76	8,38	8,00; 8,07
	$Et-Hala^P \times 0,5H_20$	C ₅ H _{15.5} NPO _{3.5} [176,2]		34,05		8,57		7,95	
Et-Mala ^P	$C_{2}H_{5}-N-C-P(OH)_{2}$	C₅H ₁₄ NPO ₃ [167,15]	186,3	35,93	32,12; 32,28	8,38	8,75; 8,73	8,38	7,56; 7,58
	$Et-Mala^P \times H_20$	C₅H ₁₆ NPO₄ [185,2]		32,43		8,64		7,56	
^{a/} Wyznaczono no drodze miareczkowania alkacymetrycznego aminokwasu									

Tabela 4-7. Charakterystyka nowych kwasów 1-(N-alkiloamino)alkilofosfonowych							
R-AA ^P	Temp.	NMR [ppm] ^{/b}					
	topn. ^{/a}	³¹ P	¹ H NMR				
Me-Hal ^P	224-226	16,43	1,23 (t, J=7,5Hz, 3H, C <u>H</u> ₃ CH ₂); 2,05-2,20 (m,2H);				
			3,07 (t, J=5,64Hz, 3H, C <u>H</u> ₃N ⁺ H₂,); 3,55-3,65 (m, 1H, CH);				
			7,30-7,40 (m, 1H, CH ₃ N ⁺ H ₂); 7,50-7,70 (m, 1H, CH ₃ N ⁺ H ₂)				
Et-Hal ^P	231-233	16,61	1,22 (t, J=7,53Hz, 3H, C <u>H</u> ₃CH₂); 1,50 (t, J=7,26Hz, 3H, C <u>H</u> ₃N ⁺ H₂);				
			2,01-2,24 (m,2H); 3,40-3,48 (m, 1H, CH); 3,38-3,60 (m, 2H);				
			7,15-7,30 (m, 1H, CH ₂ N ⁺ H ₂); 7,35-7,50 (m, 1H, CH ₂ N ⁺ H ₂)				
Et-Mal ^P	218-220	19,25	1,51 (t, J=7,23Hz, 3H, CH ₃ CH ₂); 1,64 [d, J=14,7Hz, 6H, (C <u>H</u> ₃) ₂ C-P];				
			3,28-3,35 (m, 2H, CH₃C <u>H₂</u>); 7,3-7,4 (bs, 2H, Et-N ⁺ <u>H</u> ₂)				
tBu-Ala ^P	224-226	17,52	1,60 [s, 9H, (C <u>H</u> ₃) ₃ C]; 1,745 (d, J= 7,2Hz, 3H, C <u>H</u> ₃ -CH);				
			3,7-3,8 (m, 1H, C <u>H</u> -P) ; 6-6-6,7 (bs, 1H, N <u>H</u>); 7,3-7,5 (bs, 1H, N <u>H</u>)				
Me-Pgl ^P	272-276 242-245 ^{/[342]}	12,51	2,91 (t, 3H, J=10,3Hz, 3H, C <u>H</u> ₃-N ⁺ H₂); 4,48-4,76 (m, 1H, C <u>H</u> -P);				
			7,45-7,50 (m, 2H _{Ar}); 7,52-7,58 (m, 3H _{Ar}); 7,77-7,88 (bs, NH);				
			8,1-8,2 (bs, NH)				
^{a/} Temperatura topnienia/rozkładu.							
^{b/} Roztwory ok. 0,2 M AA ^P w TFA-CDCl ₃ (1:1)							

4.1.2.4. SYNTEZA KWASÓW 1-(N,N-DIMETYLOAMINO)ALKILOFOSFONOWYCH (Me₂-AA^P)

Schemat 4-7. Synteza Me₂Hala^P

Procedura

Do kolby okrągłodennej (500 ml) wprowadzano kolejno 2 M roztwór dimetyloaminy w metanolu (0,05 mola; 25 ml), fosforyn dietylowy (0,05 mola, 7,8 g) i aldehyd propionowy (0,05 mola, 2,9 g). Mieszaninę reakcyjną pozostawiono na 24 h w temperaturze pokojowej, po czym roztwór poddawano ewaporacji (20 mm Hg w 30-70°C i 0,03 mm Hg w 30-70°C). Pozostałość rozpuszczano w AcOH (100 ml), rozcieńczano 10 M HCl (33% aq., 100 ml) i ogrzewano do wrzenia w czasie 10 h. Hydrolizat poddawano ewaporacji (warunki j.w.), oleistą pozostałość rozpuszczano w wodzie (100 ml) i ponownie poddawano ewaporacji. Pozstałość ropuszczano w wodzie (10 ml) i nanoszono na kolumnę zawierającą wymieniacz jonowy Dowex 50W (100 ml). Elucję prowadzono wodą, zbierając frakcje objętości 20 ml. Frakcje wykazujące pozytywny wynik z testem molibdenianowym (niebieskie zabarwienie) łączono i poddawano ewaporacji (warunki j.w.) do suchej pozostałości. Otrzymano 12,4 g aminokwasu (70%) w postaci białego proszku. Dane analityczne Me₂Hala^P zestawiono w Tabelach: 4-8., 4-9.
Tabela 4-8	Tabela 4-8. Synteza kwasów 1-(N-alkiloamino)alkilofosfonowych										
	٨٨٩		Wyniki Analizy Elementarnej								
	AA	M.M.		С	н		I	N			
Symbol	Struktura	ozn. ^{/a}	Licz.	Ozn.	Licz.	Ozn.	Licz.	Ozn.			
Me_2Hala^P	$\begin{array}{c} H_{3}C & O \\ & H & H \\ & N - C - P(OH)_{2} \\ H_{3}C & C_{2}H_{5} \end{array}$	$\begin{array}{c c} H_{3}C & O \\ H_{3}U & H_{1}U \\ N-C-P(OH)_{2} \\ H_{3}C & C_{2}H_{5} \end{array} \begin{array}{c} C_{5}H_{14}NPO_{3} \\ [167,145] \end{array}$			34,86; 35,06	8,38	8,15; 8,31	8,38	8,20; 8,24		
	Me_2Hala^P × 0,25 H ₂ 0	C ₅ H _{14.5} NPO _{3.25} [171,7]		34,94		8,50		8,19			
^{a/} Wyznaczo	ono no drodze miareczko	wania alkacymetr	ycznego a	iminokwa	asu						

Tabela 4-9	Tabela 4-9. Dane analityczne Me ₂ Hala ^P									
Symbol	Tomp topp	NMR [ppm] ^{/a}								
Symbol	remp. topn.	. ³¹ P ¹ H								
Me_2Hala^P	204-207°C	15,2	1,24 (t, J=Hz, 3H, C <u>H</u> ₃CH₂); 1,95-2,15 (m, 2H, CH₃C <u>H₂</u>); 3,02 [d, J=5,22Hz, 3H, (C <u>H₃)</u> ₂N ⁺ H]; 3,13 [d, J=5,04Hz, 3H, (C <u>H₃)</u> ₂N ⁺ H]; 3,55-3,62 (m, 1H, C <u>H</u> -P); 8,0-8,2 [bs, 1H, (CH₃)₂N ⁺ H]							
^{a/} 0,1M roztw	ór Me₂Hala ^P w T	FA-CDCl ₃ (1	1:1)							

4.1.3. SYNTEZA POCHODNYCH *N*-ACYLOWYCH KWASÓW 1-AMINOALKILOFOSFONOWYCH 4.1.3.1. ACYLOWANIE KWASÓW 1-AMINOALKILOFOSFONOWYCH BEZWODNIKAMI KWASOWYMI

Kwasy 1-aminoalkilofosfonowe poddawano *N*-acetylowaniu działaniem bezwodnika octowego, zgodnie z ogólnym Schematem 4-8.

Schemat 4-8. Synteza kwasów 1-(N-acetyloamino)alkilofosfonowych

Procedura

Próbkę aminokwasu AA^P (1 mmol) dodawano do mieszaniny kwasu octowego i jego bezwodnika (10 ml, 1:1, v/v), mieszaninę reakcyjną mieszano w temp. 100°C, do rozpuszczenia aminokwasu (30 min.). Utworzony roztwór poddawano ewaporacji (50°C, 10-20 mm Hg), oleistą pozostałość rozpuszczano w wodzie (20 ml) i ponownie poddawano ewaporacji. Podczas zatężania wydzielały się krystaliczne, czyste kwasy 1-(*N*-acetyloamino)-alkilo-fosfonowe (Ac-AA^P), które po odsączeniu suszono w eksykatorze próżniowym nad stałym KOH (48 h). Próbki były homogeniczne w ³¹P NMR i ¹H NMR (Tabela 4-10.). Masy uzyskanych 1-(N-acetyloamino)alkilofosfonowych wskazują na wydajności > 95% [Kudzin i w-cy., 2005]^[242].

Tabela 4-10	. Charakteryst	yka otrzymany	ch kwasów 1-(N-acetyloamino)alkilofosfonowych
• • • • P	Temp. topn.	³¹ P NMR ^{/a,b}	¹ H NMR
Ac-AA [*]	^{/c} [°C]	δ [ppm]	[TFA-CDCl ₃ (1:1)
	185-187	20 1 ^{/a} · 12 7 ^{/b}	2,32 [s, 3H, C <u>H</u> ₃C(O)]; 3,75-4,25 (m, 2H, C <u>H</u> ₂P);
AC-Oly	105 107	20,1 , 13,7	7,90-8,20 [br s, 1H, N <u>H</u> CH ₂ P]
$\Delta c_{-} \Delta l_{P}^{P}$	127-129	23 0 ^{/a} ·17 3 ^{/b}	1,57 (s, 3H, C <u>H</u> ₃ CHP); 2,36 [s, 3H, C <u>H</u> ₃ C(O)];
AC-Ald	127 125	23,0 ,17,3	4,50-4,80 (m, 1H, C <u>H</u> P); 8,82 (s, 1H, N <u>H</u> CHP)
			1,05 (t, J = 7,2 Hz, 3H, C <u>H</u> ₃ CH ₂ CHP);
	172-175	22 0/a. 17 0/b	1,75-1,81 (m, 1H, CH ₃ C <u>H</u> ₂ CH); 2,02-2,08 (m, 1H, CH ₃ C <u>H</u> ₂ CH);
AC-Hai	1/2-1/5	22,8 , 17,0	2,32 [s, 3H, C <u>H</u> ₃ C(O)]; 4,26-4,46 (m, 1H, C <u>H</u> P);
			7,55 (d, J = 15.1 Hz, 1H, N <u>H</u> CHP)
			0,95 (t, J = 7,2 Hz, 3H, C <u>H</u> ₃ CH ₂ CH ₂ CHP);
a a uP	101 102		1,30-1,60 (m, 2H, CH ₃ C <u>H</u> ₂ CH ₂ CH);
AC-INVal	181-183	22,9'*;17,0'*	1,65-2,00 (m, 2H, CH ₃ CH ₂ C <u>H</u> ₂ CH); 2,33 [s, 3H, C <u>H</u> ₃ C(O)];
			4,28-4,68 (m, 1H, C <u>H</u> P); 7,85-8,00 (m, 1H, N <u>H</u> CHP)
			1,09 [d-d, J = 6,65, 6,80 Hz, 6H, (C <u>H₃)</u> 2CHCHP];
Ac-Val ^P	178-181	22,1 ^{/a} ; 16,1 ^{/b}	2,20-2,35 [(CH ₃) ₂ C <u>H</u> CH]; 2,35 [s, 3H, C <u>H₃</u> C(O)];
			4,32-4,48 (m, 1H, C <u>H</u> P); 7,95 (d, J = 9,4 Hz, 1H, N <u>H</u> CHP)
			2,00-2,10 (m, 2H, CH ₃ SCH ₂ C <u>H</u> ₂ CHP);
			2,15 (s, 3H, C <u>H</u> ₃ SCH ₂ CH ₂ CH); 2,30 [s, 3H, C <u>H</u> ₃ C(O)];
Ac-Met ^P	173-175	21,8 ^{/a} ; 15,6 ^{/b}	2,50-2,75 (m, 1H, CH ₃ SC <u>H</u> ₂ CH ₂ CH);
			2,60-2,85 (m, 1H, CH ₃ SC <u>H₂-</u> CH ₂ CH); 4,55-4,80 (m, 1H, C <u>H</u> P);
			7,85-8,00 (m, 1H, N <u>H</u> CHP)
			2,37 [s, 3H, C <u>H</u> ₃C(O)]; 5,40-6,00 (m, 1H, PhC <u>H</u> P);
Ac-Pgl ^P	201-203	18,2 ^{/a} ;13,5 ^{/b}	7,20-7,50 (m, 5H _{ar}); 8,40-8,70 (br s, 1H, N <u>H</u> CHP)
			2,15 [s, 3H, C <u>H</u> ₃ C(O)]; 3,90-4,10 (m, 1H, PhC <u>H</u> ₂ CHP);
Ac-Phe ^P	188-191	21,2 ^{/a} ;15,8 ^{/b}	4,30-4,50 (m, 1H, PhC <u>H</u> 2CHP); 4,60-4,90 (m, 1H, C <u>H</u> P);
			7,16-7,39 (m, 5H _{ar}); 7,80-8,00 (br s, 1H, N <u>H</u> CHP)
^{/a,b/} Widma wo	dnych 0,5M rozt	worów Ac-AA ^P za	wierające D_2O (10%) dla "locku" w 2M HCl (a) lub 2M NaOH (b);
^{c/} Temp. topn.	otrzymanych Ac-	AA ^P były zgodne :	z danymi z pracy [Kudzin et al., 2005] ^[242]

4.1.3.2. SYNTEZA KWASÓW 1-(*N*-CHLOROACETYLOAMINO)ALKILOFOSFONOWYCH (Mca-AA^P) ORAZ 1-*N*-(GLICYLOAMINO)ALKILOFOSFONOWYCH (Gly-AA^P, MeGly-AA^P I Me₂Gly-AA^P)

Schemat 4-9. Schemat konwersji kwasów 1-aminoalkilofosfonowych do pochodnych fosfonopeptydów: Gly-AA^P, MeGly-AA^P i Me₂Gly-AA^P [Kudzin et al., 2005]^[244]

4.1.3.2.1. SYNTEZA KWASÓW 1-(*N*-CHLOROACETYLOAMINO)ALKILOFOSFONOWYCH (MCA-AA^P)

Procedura

Próbkę aminokwasu AA^P (1 mmol) dodawano do mieszaniny kwasu chlorooctowego (1 mmol; 94,5 mg) i bezwodnika chloroctowego (2 mmole; 342 mg), mieszaninę ogrzewano w temperaturze 80-85°C do rozpuszczenia, po czym dodatkowo 1 h. Po tym czasie mieszaninę reakcyjną chłodzono, rozpuszczano w eterze dietylowym (10 ml), dodawano wodę (10 ml) i całość mieszano w temp. pokojowej przez 15 min. Mieszaninę poddawano ewaporacji (25°C/10-20 mm Hg i 50°C/0,5 mm Hg), do oleistej pozostałości dodawano dekalinę (5 ml) i mieszaninę poddawano ewaporacji (50°C/10-20 mm Hg i 50°C/0,5 mm Hg), do oleistej pozostałości dodawano dekalinę (5 ml) i mieszaninę poddawano ewaporacji (50°C/10-20 mm Hg). Proces powtarzano dwukrotnie, dodawano bezwodnik trifluorooctowy (2 mmoli; 0,42 g), roztwór mieszano 0,5 h i poddawano ewaporacji (warunki jw.). Pozostałość rozpuszczano w wodzie (10 ml), poddawano ekstrakcji eterem naftowym (2 x 10 ml), warstwę wodną oczyszczano z węglem, po czym zatężano przez ewaporację (50 °C/10-20 mm Hg).

4.1.3.2.2. SYNTEZA KWASÓW 1-N-(GLICYLOAMINO)ALKILOFOSFONOWYCH (GIy-AA^P)

Procedura

Próbkę kwasu 1-(*N*-chloroacetyloamino)alkilofosfonowego (1 mmol) rozpuszczano w schłodzonym do temp. 0-5°C (łaźnia lodowa) 10 M wodnym roztworze amoniaku (25%, 10 ml). Roztwór trzymano w temp. pokojowej przez 24 h, po czym poddawano ewaporacji pod obniżonym ciśnieniem (20°C/10 mm Hg). Pozostałość rozpuszczano w wodzie (10 ml) i roztwór wodny fosfonopeptydu przepuszczano przez kolumnę z wymieniaczem jonowym Dowex 50Wx4, stosując elucję wodą. Frakcje dające pozytywny wynik z ninhydryną (ninhydryno-pozytywne) łączono, zatężano do sucha na drodze ewaporacji pod obniżonym ciśnieniem (20°C/10-20 mm Hg), i suszono na linii próżniowej nad silikażelem (50°C/0,5 mm Hg).

4.1.3.2.3. SYNTEZA KWASÓW 1-*N*-(METYLOGLICYLOAMINO)ALKILOFOSFONOWYCH (MeGly-AA^P)

Procedura

Próbkę kwasu 1-(*N*-chloroacetyloamino)alkilofosfonowego (1 mmol) rozpuszczano w schłodzonym do temp. 0-5°C (łaźnia lodowa) 10 M wodnym roztworze metyloaminy (40% aq., 10 ml). Roztwór po ekspozycji w temp. pokojowej przez 24 h poddawano ewaporacji pod obniżonym ciśnieniem (20°C/10-20 mm Hg). Pozostałość rozpuszczano w wodzie (10 ml) i roztwór wodny fosfonopeptydu przepuszczano przez kolumnę z wymieniaczem jonowym Dowex 50Wx4, stosując elucję wodą. Frakcje dające pozytywny wynik z reagentem molibdenianowym (molibdeniano-pozytywne) łączono, zatężano do sucha na drodze ewaporacji pod obniżonym ciśnieniem (20°C/10-20 mm Hg), i suszono na linii próżniowej nad silikażelem (50°C/0,5 mm Hg).

4.1.3.2.4. SYNTEZA KWASÓW 1-N-(METYLOGLICYLOAMINO)ALKILOFOSFONOWYCH

(MeGly -AA^P)

Procedura

Próbkę kwasu 1-(*N*-chloroacetyloamino)alkilofosfonowego (1 mmol) rozpuszczano w schłodzonym do temp. 0-5°C (łaźnia lodowa) 8 M wodnym roztworze dimetyloaminy (40% aq., 10 ml). Roztwór pozostawiono w temp. pokojowej na 24 h, po czym poddano ewaporacji pod obniżonym ciśnieniem (20°C/10-20 mm Hg). Pozostałość rozpuszczano w wodzie (10 ml) i roztwór wodny fosfonopeptydu przepuszczano przez kolumnę z wymieniaczem jonowym Dowex 50Wx4, stosując elucję wodą. Frakcje dające pozytywny wynik z reagentem molibdenianowym (molibdeniano-pozytywne) łączono, zatężano do sucha na drodze ewaporacji pod obniżonym ciśnieniem (20°C/10-20 mm Hg) i suszono na linii próżniowej nad silikażelem (50°C/0,5 mm Hg).

Tabela 4-11.	Wydajn	ości i v	wybrar	ne właś	Tabela 4-11. Wydajności i wybrane właściwości analityczne kwasów									
	1-(<i>N</i> -am	ninoac	etylo-a	imino)a	alkilofosfonowych									
	M/vd	T +			NMR δ [ppm]									
AA-AA ^P	νν γα. Γο⁄ 1 ^a		³¹ P ^{b,c}		31 ₁₁ d									
	[70]	[C]	HCI	КОН	п									
P		242-			4,80-4,90 [m, 4H, H ₃ NC <u>H</u> ₂ C(O)-NHC <u>H</u> ₂ P(O)(OH) ₂];									
Gly-Gly ^r	65	246	19,7	16,4	6,75-7,15 [br s, 3H, N <u>H</u> ₃ CH ₂ C(O)];									
		2.10			7,50-7,60 [m, 1H, H ₃ NCH ₂ C(O)-N <u>H</u> CH ₂ P]									
					1,11 [d-d, J = 7,4, 15,8 Hz, 3H, $CH_3CH(NH)P(O)(OH)_2$];									
		216-			3,85-4,10 [m, 2H, H ₃ NC <u>H₂C(O)NHCHP];</u>									
Gly-Ala	40	218	22,8	17,2	[4,37-4,63 [m, 1H, CH ₃ C <u>H(</u> NH)P];									
		_			$6,35-6,85$ br s, $3H$, H_3 NCH ₂ C(O)-NHCHP];									
					7,80 [d, J = 10,0 Hz, 1H, H ₃ NCH ₂ C(O)N <u>H</u> CHP]									
					3,40-3,75 [m, 1H, H ₃ NC <u>H₂</u> C(O)NHCHP(O)(OH) ₂];									
P		244- 246	17,6		3,75-4,10 [m, 1H, H ₃ NC <u>H₂</u> C(O)NH];									
Gly-Pgl	58			13,5	5,49 (dd, J = 8,9, 20, 4 Hz, 1H, PhCHP);									
					$6,55-6,91$ [br s, 3H, H_3 NCH ₂ C(O)] 7,10-7,25 (m, 5H _{ar});									
					8,42-8,56 [m, 1H, C(O)N <u>H</u> CHP]									
					3,07 [t, J = 5,4 Hz, 3H, C <u>H₃NH₂CH₂C(O)NHCH₂.P(O)₂(OH)];</u>									
MeGly-Gly ^P		249-			4,06 [dd, J=6,0, 12,7 Hz, 2H, CH ₃ NH ₂ C <u>H₂</u> C(O)NH];									
Wedly-diy	27	251	19,7	13,6	4,19 [t (dd), J=5,4, 5,6 Hz, 2H, CH ₂ C(O)NHC <u>H</u> ₂ P];									
		201			7,40-7,95 [br s, 2H, CH ₃ N <u>H₂</u> CH ₂ C(O)-NH];									
					8,19 [s, 1H, CH ₃ NH ₂ CH ₂ C(O)N <u>H</u> CH ₂ .P(O) ₂ (OH)]									
					1,67 [dd, J=5,9, 17,2 Hz, 3H, C <u>H</u> ₃ CH(NH)P(O)(OH) ₂];									
MeGly-Ala ^P	29	188-	22.7	177	3,16 [s, 3H, C <u>H</u> ₃ NH ₂ CH ₂ C(O)]; 4,27 [s, 2H, CH ₃ NH ₂ C <u>H₂</u> -C(O)];									
	25	190	22,7	1,,,	4,60-5,00 (m, 1H, CHP); 7,50-7,90 [br s, 2H, CH ₃ N <u>H</u> ₂ CH ₂ -C(O)];									
					8,02 ([d, J=8,4 Hz, 1H, H ₃ NCH ₂ C(O)-N <u>H</u> CHP]									
					$3,14 [d, J = 5,0 Hz, 6H, (CH_3)_2NHCH_2C(O)NHCH_2-P(O)(OH)_2];$									
		124-			4,02 [dd, J=5,9, 13,0 Hz, 2H, (CH ₃) ₂ HNC <u>H</u> ₂ -C(O)NH];									
Ivie ₂ diy-diy	38	126	19,7	13,4	4,20 [d, J=5,1 Hz, 2H, C(O)NHC <u>H</u> ₂ P];									
		120			7,90-6,15 [m, 1H, HNCH ₂ C(O)N <u>H</u> CH ₂ P];									
2/					8,15-8,50 [br s, 1H, , (CH ₃) ₂ N <u>H</u> CH ₂ C(O)NH]									
"Wydajności izc	ol. związk	ów												
^{b-d/} 0,2 M r-ry Gl	y-AA ^P w:	^{b/} 2M H	ICI; ^{c/} 2N	1 KOH; ^d	[/] TFA/CDCl ₃ (1:1; v/v)									

4.2. FIZYCZNE WŁAŚCIWOŚCI AMINOKWASÓW FOSFONOWYCH

4.2.1. WYZNACZANIE ROZPUSZCZALNOŚCI AMINOKWASÓW

Rozpuszczalność aminokwasów fosfonowych wyznaczano na podstawie oznaczania stężenia AA^P w próbkach roztworów nasyconych tych kwasów. Nasycanie przeprowadzono w mini-reaktorkach f-my Aldrich (*Screw-top V-vial*: Aldrich Z115065-5ml; Rys. 4-1.) zaopatrzonych w dipol magnetyczny (*spinvane* - Aldrich Z115177) oraz alternatywnie w w mini-reaktorkach f-my Aldrich (*Screw-top V-vial*: Aldrich Z115061-1ml) zaopatrzonych w dipol magnetyczny (*spinvane* - Aldrich Z115169).

Do otrzymywania nasyconych roztworów kwasów aminoalkilofosfonowych zastosowano dwie różne procedury:

• powolnej krystalizacji z przesyconego roztworu AA^P (Metoda A);

Rysunek 4-1. Procedur aminofos	Rysunek 4-1. Procedury i aparatura do przyrządzania nasyconych roztworów kwasów aminofosfonowych									
NOLINA Y										
Meto	da A	Meto	da B							
Rozpuszczenie naważki AA	^P (Val ^P ; 50 mg) w wodzie	Sonifikacja suspensji AA ^P	Odwirowanie suspensji							
(1 ml) w 80°C i powolna ł	krystalizacja w gradiencie	(Val ^P ; 50 mg) w wodzie	AA^{P} (Val ^P).							
temp. do 25°C		(1 ml) w 25°C	Ekspozycja w 25°C							

• sonikacji suspensji AA^P w wodzie (Metoda B).

Metoda A – naważkę aminokwasu fosfonowego umieszczano w mini-reaktorze pojemności 5 ml, dodawano wodę (1,0 ml) i poddawano sonikacji w łaźni ultradźwiękowej przez okres 30 minut. Po tym okresie do reaktora wprowadzano dipol magnetyczny, zamykano naczyńko i zawartość mieszano w temperaturze pokojowej przez okres 1 h. Po tym, zawartość reaktorka przenoszono do probówki Oppendorfa i poddawano odwirowaniu. Probówki

termostatowano w temp. $25^{\circ}C \pm 0,1^{\circ}C$ przez okres 48 h, po czym w rotworach supernatantu (0,1 ml) oznaczano aminokwas.

Metoda B - naważkę aminokwasu fosfonowego umieszczano w mini-reaktorze pojemności 5 ml, dodawano wodę (1,0 ml) i ogrzewano do 80° C przy mieszaniu przez okres 1 h, po czym pozostawiano do powolnego ostygnięcia do 30° C. Po pojawieniu się kryształów, reaktorki termostatowano w temp. 25° C ± 0,1°C przez okres 48 h, po czym klarowny roztwór AA^P (znad fazy kryształów) poddawano oznaczeniu. W przypadku braku kryształów do reaktorka dodawano kolejną porcję AA^P i procedurę powtarzano aż do uzyskania przesycenia na zimno.

4.2.1.1. METODA MIARECZKOWANIA pH-METRYCZNEGO

Metodę poddano testowi na drodze oznaczeń stężenia przygotowanych z naważek, 0,2 M roztworów reprezentatywnych kwasów 1-aminoalkilofosfonowych i 1 M roztworów wzorców (MPA, KH₂PO₄) (Tab. 4-12.).

Tabela 4-12	Tabela 4-12.1. Otrzymywanie standardowych roztworów KH_2PO_4 , MPA i AA ^P											
Kwasy fosfonowe		KH ₂ PO ₄	MPA	Gly [₽]	Ala ^P	Hala [₽]	Val [₽]	Mala ^P				
Masy mo	olowe	136,1	96	111,1 125,1		139,1	153,1	139,1				
5 mmol	w 5ml	0,68 g	0,48g									
Odważono	w 5ml	0,68 g	0,48g									
Miano r. za	ałożone	1M	1M									
Miano r. rze	eczywiste	0,97 M	0,56 M									
0,2 mmola	w 1ml			22 mg	25 mg	28 mg	30 mg	14 mg				
Odważono	w 1ml			23 mg	26 mg	28 mg	30 mg	14 mg				
Miano r. za	ałożone			0,2M	0,2 M	0,2 M	0,2M	0,1 M				
Miano r. rzeczywiste				0.188 M	0.212 M	0 188 M	0 164 M	0,082				
101101.126	CZ y WISLE			0,100 101	0,212 101	0,100 101	0,104 101	Μ				

Wyniki oznaczeń (Tab. 4-12.1.) wskazują na występowanie badanych kwasów fosfonowych w postaci hydratów. Dosypanie do otrzymanych roztworów dodatkowych naważek MPA czy AA^P (Gly^P, Hala^P, Val^P) lub rozcieńczenie roztworów (Ala^P) prowadzi do roztworów o pożądanych stężeniach (Tab. 4-12.2.).

Tabela 4-12.2. Otrzymywanie standardowych roztworów KH ₂ PO ₄ , MPA i AA ^P										
Kwasy fosfonowe	KH ₂ PO ₄	MPA	Gly [₽]	Ala ^P	Hala ^P	Val [₽]	Mala [₽]			
Struktura cząstoczki	N/I	M×4	M×0,5	N/I	M×0,5		M×0,5			
Struktura cząsteczki	IVI	H ₂ O	H ₂ O	IVI	H ₂ O		H ₂ O			
Masy molowe	136,1	96	120	125,1	148	171	139,1			
Dedatkowa naważka	20 mg	222 mg	2 mg	0,05ml	2	Г ma				
DOUALKOWA NAWAZKA	20 mg	322 mg	Zing	H ₂ O	Zing	Sing	-			
Ostateczne miano	1,00 M	0,99 M	0,201 M	0,20 M	0,20 M	0,20 M	0,081 M			

4.2.1.2. METODA ³¹P-NMR-OWA

Oznaczanie stężeń kwasów 1-aminoalkilofosfonowych na drodze porównania powierzchni sygnałów ³¹P wzorca (MPA, $K_nH_{n-3}PO_4$) i oznaczanego AA^P (Gly^P, Ala^P, Hala^P, Nval^P, Val^P, Mal^P, etc.) wymaga wcześniejszej korelacji powierzchni sygnałów obu składników pary MPA-AA^P (lub $K_nH_{n-3}PO_4$ -AA^P).

4.2.1.2.1. BADANIA NAD KORELACJĄ POWIERZCHNI SYGNAŁÓW ³¹P-NMR PAR STANDARD-AA^P

4.2.1.2.1.1. BADANIA NAD KORELACJĄ POWIERZCHNI SYGNAŁÓW ³¹P-NMR PAR MPA-AA^P

Serię roztworów MPA-AA^P do badań nad korelacją powierzchni sygnałów przygotowano przez zmieszanie odpowiednich roztworów wg. klucza przedstawionego w Tabelach 4-13.

Tabela 4-13.1. Skład roztworu do badań korelacyjnych MPA-Gly ^P (2 M KOH)											
C D	N	IPA	Gly ^P		КОН		EDTA	D.O			
	0,195 M		0,2 M		10 M		0,02 M	D_2O			
(GIV -IVIPA)	ml	g	ml	g	ml	bo	ml	ml			
G-P-1Z	0,100	0,104	0,100	0,100 0,102		0,142	0,050	0,160			
G-P-2Z	0,100	0,105	0,070	0,072	0,10	0,202	0,050	0,200			
G-P-3Z	0,100 0,106		0,260 0,268		0,10	0,137	0,050	0,100			
	Do	0,26 x 0,2 N	1= 0,052 ml	Mola	1 ml	Mola					

Tabela 4-13.2. Skład roztworu do badań korelacyjnych MPA-Ala ^P (2 M KOH)											
	MPA		Ala ^P		КОН		EDTA	DО			
A-F-Z	0,195 M		0,2 M		10 M		0,02 M	D_2O			
(Ala -IVIPA)	ml	g	ml	g	ml	g	ml	ml			
A-P-1Z	0,100	0,104	0,100	0,102	0,10	0,149	0,050	0,150			
A-P-2Z	0,100	0,105	0,200	0,207	0,10	0,137	0,050	0,050			
A-P-3Z	0,100 0,104		0,300 0,312		0,10	0,146	0,050	-			
	0,2 mlx0,	,2M do 0,4 i	mlx0,2M (0	,08 mMol)	1m Mol						

Tabela 4-13	.3.1. Skła	d roztwo	ru do ba	dań kor	elacyjr	nych	ו MPA-H	al ^P (2 M I	(OH)	
	N	1PA		Hala [₽]			KO	Н	EDTA	
	0,1	0,195 M		0,2 M		10 M		0,02 M	D_2O	
	ml	g	ml		g		ml g		ml	ml
H-P-1Z	0,100	0,105	0,05	0 0	,052		0,10	0,131	0,050	0,150
H-P-2Z	0,100	0,101	0,10	0 0	,105		0,10	0,135	0,050	0,050
H-P-3Z	0,100	0,103	0,20	0,200 0,2			0,10	0,122	0,050	-
	0,2 mlx0	,2M do 0,4	4 mlx0,21	∕I (0,08 r	nMol)		1m N	/lol		
Tabela 4	4-13.3.2.	Skład roz	tworu de	o badań	korela	icyji	nych MF	PA-Hal ^P (2	M AcOK	-AcOH)
цпр	MPA		На	Hala ^P		KC	ЭН	EDTA		AcOH
	0,19	5 M	0,2	0,2 M		10 M		0,02 M	D ₂ O	16 M
	ml	g	ml	g	ml		g	ml	ml	ml
H-P-1B	0,100	0,105	0,050	0,052	0,1	0	0,131	0,050	0,150	0,070
H-P-2B	0,100	0,101	0,100	0,105	0,1	0	0,135	0,050	0,050	0,070
H-P-3B	0,100	0,103	0,200	0,208	0,1	0	0,122	0,050	-	0,070
	do 0,3	3 ml × 0,2 l	И (0,06 n	nMol)		1m	Mol			1,1 mMol

Tabela 4-13.4.1. Korelacje MPA-Val ^P (2 M KOH)											
V-P-Z	N	1PA	Va	I ^P	KC	ЭН	EDTA	D ₂ O			
(Val ^P -MPA)	0,1	95 M	0,2	М	10	M	0,02 M				
	ml	g	ml	g	ml g		ml	ml			
V-P-1Z	0,100	0,094	0,050	0,054	0,10	0,127	0,050	0,200			
V-P-2Z	0,100	0,104	0,100	0,100	0,10	0,145	0,050	0,150			
V-P-3Z	0,100	0,101	0,200	0,204	0,10	0,118	0,050	0,050			
	do (),3 ml x 0,2	M (0,06 m	Mol)	1m	Mol					

Tabela 4-13.4.2. Skład roztworu do badań korelacyjnych MPA-Val ^P (2 M AcOK-AcOH)										
V-P-B	MPA		Val [₽]		КОН		EDTA		AcOH	
	0,195 M		0,2 M		10 M		0,02 M	D_2O	16 M	
	ml	g	ml	g	ml	g	ml	ml	ml	
V-P-1B	0,100	0,094	0,050	0,054	0,10	0,127	0,050	0,200	0,070	
V-P-2B	0,100	0,104	0,100	0,100	0,10	0,145	0,050	0,150	0,070	
V-P-3B	0,100	0,101	0,200	0,204	0,10	0,118	0,050	0,050	0,070	
	do 0,	3 ml × 0,2	M (0,06 r	nMol)	1m	Mol			1,1 mMol	

4.2.1.2.1.2. BADANIA NAD KORELACJĄ POWIERZCHNI SYGNAŁÓW ³¹P PAR:

$K_nH_{3-n}PO_4 - AA^P$

Serię roztworów $K_n H_{3-n} PO_4$ -AA^P do badań nad korelacją powierzchni sygnałów przygotowano przez zmieszanie odpowiednich roztworów wg. klucza przedstawionego w Tabelach 4-14.

Tabela 4-14.1.1. Skład roztworu do badań korelacyjnych K ₃ PO ₄ -Nval ^P (2 M KOH)										
Nv-Pi-Z (Nval ^P -PO ₄)	KH ₂ PO ₄ 0,2 M		Nval ^P 0,2 M		КОН 10 М		ED 0,0	TA 2 M	D ₂ O	
(INVal -PO ₄)	ml	gg	ml	g	ml	g	ml	g	ml	g
Nv-Pi-1Z	0,100	0,102	0,050	0,052	0,10	0,139	0,05	0,049	0,20	0,22
Nv-Pi-2Z	0,100	0,098	0,100	0,104	0,10	0,124	0,05	0,051	0,15	0,17
Nv-Pi-3Z	0,100	0,104	0,200	0,205	0,10	0,125	0,05	0,048	0,10	0,11
	do 0,3	3 ml x 0,2	M (0,06 r	nMol)	1 m	Mol	0,001	mMol		

Tabela 4-14.1.2. Skład roztworu do badań korelacyjnych K _n H _{3-n} PO ₄ -Nval ^P (2 M AcOK)										
Nv-Pi-B (Nval ^P -PO₄)	KH ₂ PO ₄ 0,2 M		Nval [₽] 0,20 M		КОН 10 М		EDTA	D_2O	AcOH	
(1974)	ml	g	ml	ml	ml	g	ml	ml	ml	
Nv-Pi-1B	0,100	0,102	0,050	0,052	0,10	0,139	0,050	0,200	0,075	
Nv-Pi-2B	0,100	0,098	0,100	0,104	0,10	0,124	0,050	0,150	0,075	
Nv-Pi-3B	0,100	0,104	0,200	0,205	0,10	0,125	0,050	0,100	0,075	
	do 0,3	3 ml x 0,2	M (0,06	mmol)	1m	mol			1,1 mmol	

Tabela 4-14.2.1. Skład roztworu do badań korelacyjnych K ₃ PO ₄ -Mal ^P (2 M KOH)										
Ma-Pi-Z	KH ₂ PO ₄ 0,2 M		Mal ^P 0,08 M		КС 10	KOH EE 10 M 0,0		TA 2 M	D ₂ O	
(10141 - PO ₄)	ml	gg	ml	g	ml	g	ml	g	ml	g
Ma-Pi-1Z	0,100	0,105	0,050	0,052	0,10	0,139	0,050	0,051	0,200	0,220
Ma-Pi-2Z	0,100	0,101	0,100	0,104	0,10	0,124	0,050	0,051	0,150	0,170
Ma-Pi-3Z	0,100	0,106	0,200	0,209	0,10	0,125	0,050	0,051	0,100	0,110
	do 0,3	do 0,3 ml x 0,2 M (0,06 mMol) 1 mMol 0,001 mMol								

Tabela 4-14.2.2. Skład roztworu do badań korelacyjnych K _n H _{3-n} PO ₄ -Mal ^P (2 M AcOK)										
Ma-Pi-B (Mal ^P -PO₄)	KH ₂ PO ₄ 0,2 M		Mal ^P 0,08 M		КОН 10 М		EDTA	D_2O	AcOH	
(10141 - PO ₄)	ml	g	ml	ml	ml	g	ml	ml	ml	
Ma-Pi-1B	0,100	0,105	0,050	0,052	0,10	0,139	0,050	0,200	0,075	
Ma-Pi-2B	0,100	0,101	0,100	0,104	0,10	0,124	0,050	0,150	0,075	
Ma-Pi-3B	0,100	0,106	0,200	0,209	0,10	0,125	0,050	0,100	0,075	
	do 0,3	3 ml x 0,2	M (0,06	mmol)	1m	mol			1,1 mmol	

Korelację powierzchni sygnałów par: STANDARD- AA^P przeprowadzono na podstawie wyliczeń przedstawionych w Tabelach: 4-15. (MPA- AA^P), 4-16. ($K_nH_{3-n}PO_4-AA^P$).

4.2.1.2.2. WYZNACZANIE WSPÓŁCZYNNIKÓW KORELACYJNYCH ³¹P-NMR PAR MPA-AA^P

Korelację powierzchni sygnałów par MPA-AA^P przeprowadzono na podstawie wyliczeń przedstawionych w Tabelach 4-15.

Tabela 4-1	.5.1. Wyznaczenie	stosunku p	owierzchn	i sygnałów	³¹ P dla pary	/ MPA-Gly ^P	(2M KOH)			
Analiza		G-P	-Z-1	G-P	-Z-2	G-P	-Z-3			
układu	PA/	MPA	Gly [₽]	MPA	Gly ^P	MPA	Gly ^P			
Gly ^P -MPA	C _{PA}	0,195 M	0,20 M	0,195 M	0,20 M	0,195 M	0,20 M			
(G-P-Z)	V [ml]	0,100	0,100	0,100	0,070	0,100	0,260			
	mMole _(v)	0,0195	0,02	0,0195	0,014	0,0195	0,052			
	mM:mM _{st} (v/v)	1	1,026	1	0,718	1	2,667			
	m [g]	0,104	0,102	0,105	0,072	0,106	0,268			
	V1 [d=1,00]	0,104	0,102	0,105	0,072	0,106	0,268			
	mMole _(m)	0,0203	0,0204	0,0203	0,0144	0,0203	0,0536			
	mM:mM _{st} (m/m)	1	1,005	1	0,709	1	2,640			
Analiza	δ (P); ppm	20,22	19,04	20,22	19,04	20,22	19,04			
³¹ P NMR	RA	1	0,782	1	0,551	1	2,193			
	RA dla MPA- PA	1 000	0.762	1	0 767	0.000				
	[1:1] (v/v)	1,000	0,762	T	0,767	0,822				
	MPA/ Gly ^P (v/v)	1,3	12	1,3	03	1,216				
	Średnia w,									
	MPA/Gly ^P			1,277	10,05					
	RA dla MPA- PA	1,000	1 000	0 777	1 000	0.021				
	[1:1] (m/m)	0,778	1,000	0,777	1,000	0,831				
	MPA/ Gly ^P		05							
	(m/m)	1,2	.85	1,2	89	1,2	:04			
	Średnia w,			4.950						
	MPA/Gly ^P	1,259±0,05								
Średnia wa	artości wsp. MPA/									
Gly ^P z oblic	zeń (<mark>v/v)</mark> i (m/m)	1,268±0,01								
PA – kwas fo	sfonowy (phosphonic	c acid);								
V – obietość	wprowadzonego roz	tworu AA ^P (G	lv ^P) i/lub MP/	A :						

m - masa wprowadzonego roztworu AA^P (Gly^P) i/lub MPA;

 C_{PA} – stężenie kwasu fosfonowego: C_{MPA} i C_{AAP} stężenia wprowadzonych roztworów MPA i/lub AA^P (Gly^P);

mMole_(v) – ilość milimoli AA^P i/lub MPA wyliczona na podstawie objętości wprowadzonych roztworów AA^P (Gly^P) i/lub MPA;

 $mMole_{(v)}$ – ilość milimoli AA^P (Gly^P) i/lub MPA wyliczona na podstawie masy wprowadzonych roztworów Gly^P i/lub MPA:

RA – powierzchnie sygnału ³¹P z widm ³¹P NMR;

RA_{AAP} - powierzchnia sygnału AA^P (Gly^P), RA_{MPA} -powierzchnia sygnału MPA; RA dla MPA-Gly^P [1:1] –powierzchnia sygnału ³¹P aminokwasu AA^P, wyliczona dla stosunku MPA:Gly^P =1:1; RA_{MPA} -powierzchnia sygnału ³¹P dla MPA;

MPA/Gly^P – współczynnik korekcyjny powierzchni sygnału ³¹P dla Gly^P względem MPA

Tabela 4-1	.5.2. Wyznacze (2 M KOH)	nie stosunk	u powierzcl	hni sygnałóv	v ³¹ P dla pai	ry MPA-Ala ^P			
Analiza	((A-P	-Z-1	A-P	-Z-2	A-P	-Z-3		
układu	PA/	MPA	Ala ^P	MPA	Ala ^P	MPA	Ala ^P		
Ala ^P -MPA	C_{PA}	0,195 M	0,20 M	0,195 M	0,20 M	0,195 M	0,20 M		
(A-P-Z)	V [ml]	0,100	0,100	0,100	0,200	0,100	0,300		
	mMole _(v)	0,0195	0,0200	0,0195	0,0400	0,0195	0,0600		
	mM:mM _{st} (v/v)	1	1,025	1	2,051	1	3,077		
		0.104	0.102	0.105	0.207	0.104	0.212		
		0,104	0,102	0,105	0,207	0,104	0,312		
		0,104	0,102	0,105	0,207	0,104	0,312		
		0,0203	0,0204	0,0205	0,0414	0,0203	0,0624		
	(m/m)	1	1,005	1	2,02	1	3,074		
Analiza	δ (P): nnm	20.24	22,11	20.2	22.1	20.2	22.1		
³¹ P NMR	RA	1.396	1	0.584	1	0.425	1		
		_,000		0,001		0,120			
	RA: MPA-PA	1 200	0.070	0.504	0.400	0.425	0.005		
	[1:1] (v/v)	1,396	0,976	0,584	0,488	0,425	0,325		
	MPA/Ala ^P		20		20				
	(v/v)	1,4	30	1,	20	1,3	808		
	Średnia w,			1.217	0+0.1				
	MPA/Gly ^P			1,51:	5±0,1				
					1				
	RA: MPA- PA	1.396	0,995	0.584	0.495	0.425	0.325		
	[1:1] (m/m)	_,			.,		-,		
	MPA/Ala'	1,4	03	1,1	80	1,3	808		
	(m/m)	,				,			
	Srednia w,			1,297	′±0,12				
Ćradnia u									
	variosci wsp. P ^P z obliczoń			1 205	+0.01				
	i (m/m)			1,505	10,01				
PA – kwas fo	sfonowy (nhosnh	onic acid):							
V – obietość	wprowadzonego	o roztworu AA	(Ala ^P) i/lub N	/IPA:					
m - masa w	prowadzonego ro	ztworu AA ^P (A	la ^P) i/lub MPA	, \;					
C _{PA} – stężeni	C_{PA} – stężenie kwasu fosfonowego: C_{MPA} i C_{AAP} stężenia wprowadzonych roztworów MPA i/lub AA ^P (Ala ^P);								
mMole _(v) – i	$mMole_{(v)}$ – ilość milimoli AA ^r i/lub MPA wyliczona na podstawie objętości wprowadzonych roztworów AA ^r								
(Ala') i/lub N							P		
mMole _(v) – il i/lub MPA:	lość milimoli AA	(Ala') i/lub M	PA wyliczona	na podstawie	e masy wprow	adzonych roz	tworow Ala		
RA – powier	zchnie svenału ³¹ F	2 widm ³¹ P N	MR:						
RA _{AAP} - pow	vierzchnia sygnału	AA ^P (Ala ^P), R	A _{MPA} -powierz	chnia sygnału	MPA;				
RA dla MPA-	Ala ^P [1:1] –powie	rzchnia sygna	łu ³¹ P aminok	wasu AA ^P , wyli	iczona dla stos	sunku MPA:Ala	a ^P =1:1;		
PA powi	orzebnia ovanału ³								

RA_{MPA}-powierzchnia sygnału ³¹P dla MPA; MPA/Ala^P – współczynnik korekcyjny powierzchni sygnału ³¹P dla Ala^P względem MPA.

Tabela 4-1	5.3. Wyznacze	nie stosunk	u powierzcl	nni sygnałóv	v ³¹ P dla pa	ry MPA-Hala	P
Apolizo	(2 M KOH)	<u>п</u> п	7 1		7 0		7 0
Analiza	PA/		- <u>Z-1</u> Hala ^P		-Z-Z		-2-3
Hal ^P -MPA	C _{PA}	0 195 M	Паіа 0.20 М	0 195 M	⊓ala 0.20 M	0 195 M	
(H-P-Z)	V [ml]	0 100	0.050	0,100	0,20 101	0,100	0,20101
, ,	mMole _(v)	0.0195	0.0100	0.0195	0.0200	0.0195	0.0400
	mM:mM _{st}	1	0,513	1	1,026	1	2,051
	(0,0)						
	m [g]	0,105	0,052	0,101	0,105	0,103	0,208
	V1 [d=1.00]	0,105	0,052	0,101	0,105	0,103	0,208
	mMole _(m)	0,0205	0,0104	0,0197	0,021	0,0201	0,0416
	mM:mM _{sT} (m/m)	1	0,507	1	1,066	1	2,07
Analiza	δ (P); ppm	20,24	21,51	20,22	21,51	20,24	21,52
³¹ P NMR	RA	2,107	1	1,042	1	0,522	1
	RA: MPA-PA [1:1] (v/v)	2,107	1,949	1,042	0,975	0,522	0,488
	MPA/Ala ^P	1,0	81	1,0	69	1,0	70
	Średnia w. MPA/Gly ^P			1,073	±0,08		
	Średnia w. MPA/Gly [₽]			1,073	±0,08		
	Średnia w. MPA/Gly ^P RA: MPA-PA [1:1] (m/m)	2,107	1,972	1,073	±0,08 0,938	0,522	0,483
	(77) Średnia w. MPA/Gly ^P RA: MPA-PA [1:1] (m/m) MPA/ Ala ^P (m/m)	2,107	1,972	1,073 1,042 1,1	±0,08 0,938 11	0,522	0,483 81
	(v/v) Średnia w. MPA/Gly ^P RA: MPA-PA [1:1] (m/m) MPA/Ala ^P (m/m) Średnia w, MPA/Ala ^P	2,107	1,972 68	1,073 1,042 1,1 1,087:	±0,08 0,938 11 ±0,025	0,522	0,483 81
Średnia v MPA/Ha (v/v)	(r/v) Średnia w. MPA/Gly ^P RA: MPA-PA [1:1] (m/m) MPA/Ala ^P (m/m) Średnia w, MPA/Ala ^P vartości wsp. la ^P z obliczeń) i (m/m)	2,107	1,972	1,073 1,042 1,1 1,087: 1,078:	±0,08 0,938 11 ±0,025 ±0,009	0,522	0,483 81
Średnia w MPA/Ha (v/v) PA – kwas fo V – objętość m - masa w C _{PA} – stężen mMole _(v) – i (Hala ^P) i/lub mMole _(v) – il i/lub MPA;	(v/v) Średnia w. MPA/Gly ^P RA: MPA-PA [1:1] (m/m) MPA/Ala ^P (m/m) Średnia w, MPA/Ala ^P (m/m) Średnia w, MPA/Ala ^P vartości wsp. la ^P z obliczeń i (m/m) osfonowy (phosph wprowadzonego ro ie kwasu fosfonowi ilość milimoli AA ^P MPA; ość milimoli AA ^P (2,107 1,0 onic acid); o roztworu AA ^I ztworu AA ^P (H vego: C _{MPA} i C _A i/lub MPA w Hala ^P) i/lub M	1,972 68 ² (Hala ^P) i/lub ala ^P) i/lub MP _{AP} stężenia wp yliczona na PA wyliczona	1,073 1,042 1,1 1,087: 1,078: MPA; A; prowadzonych podstawie obj na podstawie	±0,08 0,938 11 ±0,025 ±0,009 roztworów N ętości wprow masy wprow	0,522 1,0 IPA i/lub AA ^P (I vadzonych rozto	0,483 81 Hala ^P); tworów AA ^P worów Hala ^P

RA – powierzchnie sygnału ³¹P z widm ³¹P NMR; RA_{AAP} - powierzchnia sygnału AA^P (Hala^P), RA_{MPA} powierzchnia sygnału MPA; RA dla MPA-Hala^P [1:1] –powierzchnia sygnału ³¹P aminokwasu AA^P, wyliczona dla stosunku MPA:Hala^P =1:1; RA_{MPA} -powierzchnia sygnału ³¹P dla MPA; MPA/Hala^P – współczynnik korekcyjny powierzchni sygnału ³¹P dla Hala^P względem MPA

Tabela 4-1	5.3.1. Wyznac	zenie stosu	nku powier	zchni sygnał	ów ³¹ P dla	pary MPA-H	ala ^P		
	[w 2 M	buforze (Ac	OK-AcOH)]						
Analiza		H-P	-B-1	H-P-	-B-2	H-P	-B-3		
układu	PA/	MPA	Hala ^P	MPA	Hala ^P	MPA	Hala ^P		
Hal ^P -MPA	CPA	0,195 M	0,20 M	0,195 M	0,20 M	0,195 M	0,20 M		
(H-P-B)	V [ml]	0,100	0,05	0,100	0,100	0,100	0,200		
	mMole _(v)	0,0195	0,0100	0,0195	0,0200	0,0195	0,0400		
	mM:mM _{st} (v/v)	1	0,513	1	1,026	1	2,051		
	m [g]	0,105	0,052	0,101	0,105	0,103	0,208		
	V1 [d=1.00]	0,105	0,052	0,101	0,105	0,103	0,208		
	mMole _(m)	0,0205	0,0104	0,0197	0,021	0,0201	0,0416		
	mM:mM _{st} (m/m)	1	0,507	1	1,066	1	2,07		
Analiza	δ (P); ppm	24,11	13,20	24,08	13,16	24,11	13,21		
³¹ P NMR	RA	1	0,423	1	0,863	1	1,686		
	RA: MPA- PA [1:1] (v/v)	1	0,825	1	0,841	1	0,822		
	MPA/Ala ^P (v/v)	1,2	13	1,1	.89	1,2	216		
	Średnia w.			1,206	±0,015				
	IVIPA/GIV								
	RA: MPA-PA	1	0 824	1	0.810	1	0.814		
	[1:1](m/m)	-	0,034	-	0,010	-	0,014		
	MPA/Ala ^P	1 1	qq	1.2	25	1.2	28		
	(m/m)	-,-					.20		
	Šrednia w.			1.221	±0.014				
4	MPA/Ala ^r			_,	,				
Srednia w	vartości wsp.								
MPA/Ala	a' z obliczeń			1,214	±0,07				
(v/v)	<u>(m/m)</u>	· · · · ·							
PA – kwas to	stonowy (<i>phosph</i>	onic acia);	[°] /⊔ələ ^P \i/lub						
m - masa wi	nrowadzonego ro	71021W01U AA 71W0ru AA ^P (H	ala ^P) i/lub MP	WFA, α·					
C _{PA} – steżeni	C_{pa} – steżenie kwasu fosfonowego: C_{AAD} i C_{AAD} steżenia wprowadzonych roztworów MPA i/lub AA ^P (Hala ^P):								
mMole _(v) – i	lość milimoli AA ^P	i/lub MPA w	yliczona na j	podstawie obj	ętości wprow	adzonych roz	tworów AA ^P		
(Hala ^P) i/lub	MPA;	_					_		
mMole _(v) -il	ość milimoli AA ^P (Hala ^P) i/lub M	IPA wyliczona	na podstawie	masy wprow	adzonych rozt	worów Hala ^P		
i/lub MPA;									
RA – powierz	zchnie sygnału ³¹ F	z widm [™] P N	MR;						
RA dla MPA-	Hala ^P [1:1] –nowi	erzchnia svøn	ału ³¹ P amino	kwasu AA ^P ww	liczona dla sto	osunku MPA·H	lala ^P =1:1		

RA dia MPA-Hala [1:1] –powierzchnia sygnatu ^P aminokwasu AA , wyliczona dia stosur RA_{MPA} -powierzchnia sygnatu ³¹P dla MPA; MPA/Hala^P – współczynnik korekcyjny powierzchni sygnatu ³¹P dla Hala^P względem MPA

Tabela 4-1	5.4. Wyznaczen	ie stosunku	powierzch	ni sygnałów	³¹ P dla par	y MPA-Val ^P	(2M KOH)			
Analiza		V-P	-Z-1	V-P	-Z-2	V-P	-Z-3			
układu	PA	MPA	Val ^P	MPA	Val ^P	MPA	Val ^P			
Val ^P -MPA		0,195 M	0,20 M	0,195 M	0,20 M	0,195 M	0,20 M			
(V-P-Z)	V [ml]	0,100	0,050	0,100	0,100	0,100	0,200			
	mMole _(v)	0,0195	0,010	0,0195	0,020	0,0195	0,040			
	mM:mM _{st} (v/v)	1	0,513	1	0,975	1	2,051			
		0.004	0.05.4	0.104	0.10	0.101	0.204			
		0,094	0,054	0,104	0,10	0,101	0,204			
	V1 [d=1.00]	0,094	0,054	0,104	0,10	0,101	0,204			
	miviole _(m)	0,0183	0,0108	0,0203	0,020	0,0197	0,0408			
	mivi:mivi _{st} (m/m)	1	0,589	1	0,985	1	2,071			
Analiza	δ (P) [ppm]	20,24	20,95	20,24	20,95	20,24	20,95			
³¹ P NMR	RA	1,7254	1	0,9656	1	0.446	1			
	DA ASDA M I ^P									
	RA: MPA-Val	1,7254	1,949	0,9656	1,026	0,446	0,488			
	[1:1] (v/v)	,		,		,				
	MPA/ Val' (v/v)	0,8	85	0,9	914					
	Średnia w. MPA / Val ^P	0,913±0,03								
	RA: MPA-Val ^P	1.7254								
	[1:1] (m/m)	1,698	0,9656	1,015	0,446	0,483				
	MPA/ Val ^P									
	(m/m)	1,0)16	0,9	51	0,9	023			
	Średnia w.			0,963	±0,05					
é sa da ta	IVIPA/ Val									
Srednia v	vartosci wsp.									
MPA/Val z	obliczen (V/V) i			0,938	5±0,03					
1)	<u>n/m)</u>									
PA – kwas fos	stonowy (<i>phosphol</i>	nic acia); Yoztworu AA ^P I		DA.						
v – objętosc	v = objętosc wprowadzonego roztworu AA (val) i/lub MPA;m. masa wprowadzonego roztworu AAP (ValP) i/lub MPA;									
C _{DA} – steżenie	C_{PA} – steżenie kwasu fosfonowego: C_{AAPA} i C_{AAP} steżenia wprowadzonych roztworów MPA i/lub AA ^P (Val ^P):									
$mMole_{(y)} - ilc$	ość milimoli AA ^P i/l	ub MPA wylic	zona na pods	tawie objętoś	ci wprowadzo	nych roztword	$5 \text{ w AA}^{P}(\text{Val}^{P})$			
i/lub MPA;	,	, .				,	- (-)			
mMole _(v) – ilo	ość milimoli AA ^P (\	/al ^P) i/lub MP	A wyliczona	na podstawie	masy wprow	adzonych rozt	tworów Val ^P			
i/lub MPA;	34	21								
RA – powierz	chnie sygnału ³¹ P z	widm ³¹ P NN	1R;							
RA _{AAP} - powi	RA _{AAP} - powierzchnia sygnału AA ^P (Val ^P), RA _{MPA} -powierzchnia sygnału MPA;									

RA dla MPA-Val^P [1:1] –powierzchnia sygnału ³¹P aminokwasu AA^P, wyliczona dla stosunku MPA:Val^P =1:1; RA_{MPA}-powierzchnia sygnału ³¹P dla MPA; MPA/Val^P – współczynnik korekcyjny powierzchni sygnału ³¹P dla Val^P względem MPA

Tabela 4-1	5.4.1. Wyznacz	zenie stosur	אר powierz	zchni sygnało	ów ³¹ P dla p	oary MPA-Va	al ^P			
Analiza			JK-ACUH)] .R-1	\/_P.	-B-2	\/_P.	-B-3			
układu	PΔ		Val ^P		Val ^P		Val ^P			
Val ^P -MPA		0 195 M	0 20 M	0 195 M		0 195 M				
(V-P-B)	V [m]]	0,10	0,2010	0,100	0.1.0	0,10	0.20 101			
(•••••)	mMole	0,10	0,05	0,10	0,10	0,10	0,20			
	mM:mM _{st}	1	0,513	1	0,020 0,975	1	2,051			
	m [g]	0,094	0,054	0,104	0,10	0,101	0,204			
	V1 [d=1.00]	0,094	0,054	0,104	0,10	0,101	0,204			
	mMole _(m)	0,0183	0,0108	0,0203	0,020	0,0197	0,0408			
	mM:mM _{st} (m/m)	1	0,589	1	0,985	1	2,071			
Analiza	δ (P) [ppm]	24,16	12,57	24,13	12,56	24,07	12,52			
³¹ P NMR	RA	1	0,522	1	0,948	1	1,944			
	RA dla									
	MPA- Val ^P	1	1,018	1	0,972	1	0,948			
	[1:1] (v/v)									
	MPA/ Val ^P	0.9	82	1.0	129	1.0	55			
	(v/v)	-,-								
	Šrednia w.			1.022	±0.03					
	MPA/ Val ^r			_,						
				T	ſ	1				
	RA dla									
	MPA- Val ^P	1	0.886	1	0.962	1	0.939			
	[1:1]	-	0,000	-	0,001	-	0,000			
	(m/m)									
	MPA/ Val ^P	1.1	29	1.0	940	1.0	065			
	(m/m)	_/_		_,-		_/-				
	Srednia w.			1.078	+0.04					
	MPA/ Val ^P			_,						
Średnia wartości wsp.										
MPA/Val	MPA/Val' z obliczeń 1,050±0,03									
(v/v)	i (m/m)									
PA – kwas fosf	PA – kwas fosfonowy (phosphonic acid);									
m - masa wpr	owadzonego roztw	voru AA ^P (Val ^P) i	/lub MPA:							
C _{PA} – stężenie	kwasu fosfonoweg	o: C _{MPA} i C _{AAP} ste	zenia wprowa	dzonych roztwo	rów MPA i/lub	AA ^P (Val ^P);				
mMole _(v) – iloś	ć milimoli AA ^P i/luk	MPA wyliczon	a na podstawie	objętości wpro	wadzonych rozt	tworów AA ^P (Va	l ^P) i/lub MPA;			
mMole _(v) –iloś	$Mole_{(v)}$ – ilość milimoli AA ^P (Val ^P) i/lub MPA wyliczona na podstawie masy wprowadzonych roztworów Val ^P i/lub MPA;									
DA	hate even 1 31	utalian ³¹ D NINAC								

RA_{AAP} - powierzchnia sygnału AA^P (Val^P), RA_{MPA}-powierzchnia sygnału MPA; RA dla MPA-Val^P [1:1] –powierzchnia sygnału ³¹P aminokwasu AA^P, wyliczona dla stosunku MPA:Val^P =1:1; RA_{MPA}-powierzchnia sygnału ³¹P dla MPA; MPA/Val^P – współczynnik korekcyjny powierzchni sygnału ³¹P dla Val^P względem MPA

4.2.1.2.3. WYZNACZANIE WSPÓŁCZYNNIKÓW KORELACYJNYCH ³¹P-NMR PAR:

Tabela 4-16	5.1.1. Wyznacz	zenie stosur	nku powierz	chni sygnał	ów ³¹ P dla p	ary K ₃ PO ₄ -N	Ival ^P
Analiza		NV-P	P₀-Z-1	Nv-F	P;-Z-2	Nv-F	P;-Z-3
układu	PA	Nval ^P	P _i	Nval ^P	Pi	Nval ^P	Pi
Nval ^P -PO ₄		0,19 M	0,20 M	0,19 M	0,20 M	0,19 M	0,20 M
(Nv-P _i -Z)	V [ml]	0,050	0,100	0,100	0,100	0,200	0,100
	mMole _(v)	0,0095	0,020	0,019	0,020	0,038	0,020
	mM:mM _{st} (v/v)	0,475	1,00	0,95	1,00	1,9	1,00
	m [g]	0,052	0,102	0,109	0,098	0,205	0,104
	V (d=1.00)	0,052	0,102	0,109	0,098	0,205	0,104
	mMole _(m)	0,00988	0,0204	0,0207	0,0196	0,041	0,0208
	mM:mM _{st} (m/m)	0,484	1	1,056	1	1,971	1
Analiza	δ (P) [ppm]	21,82	5,21	21,82	5,21	21,82	5,21
³¹ P NMR	RA	1	1,708	1	0.852	1	0.431
	RA: Pi/Nval ^e [1:1] (v/v)	2,105	1,708	1,053	0.852	0.526	0.431
	Pi/Nval ^P (v/v)	0,8	311	0,8	309	0,8	319
	Średnia w. Pi/Nval ^P			0,813	±0,05		
	RA: Pi/Nval ^P [1:1] (m/m)	2,066	1,708	0,947	0,852	0,507	0,431
	Pi/Nval ^P (m/m)	0,8	327	0,9	900	0,8	350
	Średnia w. Pi/Nval ^P			0,860)±0,04		
Średnia war z obliczeń (tości Pi/Nval ^P (v/v) i (m/m)	0,836±0,024					

$K_NH_{3-N}PO_4-AA^P$

PA – kwas fosfonowy (phosphonic acid);

V – objętość wprowadzonego roztworu AA^P (Nval^P) i/lub K₃PO₄;

m - masa wprowadzonego roztworu AA^P (Nval^P) i/lub K₃PO₄;

 C_{PA} – stężenie kwasu fosfonowego: C_{MPA} i C_{AAP} stężenia wprowadzonych roztworów MPA i/lub AA^P (NVal^P);

 $mMole_{(v)}$ – ilość milimoli AA^P i/lub K₃PO₄ wyliczona na podstawie objętości wprowadzonych roztworów AA^P (Nval^P) i/lub MPA;

 $mMole_{(v)}$ – ilość milimoli AA^{P} (Nval^P) i/lub K₃PO₄ wyliczona na podstawie masy wprowadzonych roztworów Nval^P i/lub MPA;

RA – powierzchnie sygnału ³¹P z widm ³¹P NMR;

 RA_{AAP} - powierzchnia sygnału AA^{P} (Nval^P), RA_{MPA} -powierzchnia sygnału $K_{3}PO_{4}$; RA dla Pi-Nval^P [1:1] – powierzchnia sygnału ³¹P aminokwasu AA^{P} , wyliczona dla stosunku $K_{3}PO_{4}$:Nval^P =1:1; RA_{Pi}-powierzchnia sygnału ³¹P dla K₃PO₄;

Pi/Nval^P – współczynnik korekcyjny powierzchni sygnału ³¹P dla Nval^P względem K₃PO₄

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tabela 4-1	6.1.2. Wyznacz	zenie stosur	nku powierz	chni sygnał	ów ³¹ P dla p	ary K _n H _{3-n} P	O₄-Nval [₽]		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Apolizo		utorze (Acu							
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline $Nval P_1 $Nval $Nva $Nval $Nval $Nval $Nval $Nva $Nva $Nva $Nva Nva	układu	DA	Nucl ^P	γ _i -Β-1	INV-P	′i-B-Z	INV-P	γ _i -B-3		
$ \begin{array}{ l $	Nval ^P -PO ₄	PA								
$\frac{\sqrt{ m }}{ m } = \frac{\sqrt{ m }}{\sqrt{ m }} = \sqrt{ m $	(Nv-P _i -B)		0,19 10	0,20 101	0,19 10	0,20 101	0,19 10	0,20 101		
$\frac{m(m(m(m)_{r})}{m(u(v))} = 0,0095} = 0,020 = 0,019 = 0,020 = 0,038 = 0,020 = 0,019 = 0,009 $			0,050	0,100	0,100	0,100	0,200	0,100		
$ \begin{array}{ c c c c c c } \hline & 0,475 & 1,00 & 0,95 & 1,00 & 1,90 & 1,00 \\ \hline & & & & & & & & & & & & & & & & & &$		miviole _(v)	0,0095	0,020	0,019	0,020	0,038	0,020		
$ \begin{array}{ c $		(v/v)	0,475	1,00	0,95	1,00	1,90	1,00		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.050	0.400	0.400	0.000	0.005	0.404		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		m [g]	0,052	0,102	0,109	0,098	0,205	0,104		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		V1 (d=1.00)	0,052	0,102	0,109	0,098	0,205	0,104		
$ \begin{array}{ c c c c c } \hline m/m, m/m, m/m, m/m, m/m, m/m, m/m, m/$		mMole _(m)	0,00988	0,0204	0,0207	0,0196	0,041	0,0208		
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		mM:mM _{st} (m/m)	0,484	1	1,056	1	1,971	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{ c c c c c c } \hline P \ NMR & RA & 0,468 & 1 & 0,966 & 1 & 1,914 & 1 \\ \hline & & & & & & & & & & & & & & & & & &$	Analiza ³¹ D NAAD	δ (P) [ppm]	13,39	0,263	13,45	0,163	13,43	0,263		
$\begin{tabular}{ c c c c c c c } \hline RA: Pi/Nval^P & 0,985 & 1 & 1,017 & 1 & 1,037 & 1 \\ \hline Pi/Nval^P & 1,015 & 0,983 & 0,964 \\ \hline Pi/Nval^P & 0,967 & 1 & 0,987 \pm 0,05 \\ \hline Srednia w. & 0,987 \pm 0,05 \\ \hline RA: Pi/Nval^P & 0,967 & 1 & 0,915 & 1 & 0,971 & 1 \\ \hline Pi/Nval^P & 1,034 & 1,090 & 1,030 \\ \hline Srednia w. & 1,051 \pm 0,04 \\ \hline Pi/Nval^P & 1,034 & 1,090 & 1,030 \\ \hline Srednia w. & 1,051 \pm 0,04 \\ \hline Srednia wartości wsp. \\ Pi/Nval^P & 1,034 & 1,019 \pm 0,03 \\ \hline Nul^P z & obliczeń (v/v) i & 1,019 \pm 0,03 \\ \hline (m/m) & 1,019 \pm 0,03 \\ \hline (m/m$	PNMR	RA	0,468	1	0,966	1	1,914	1		
$ \begin{array}{ c c c c c } RA: Pi/Nval^{r} & 0,985 & 1 & 1,017 & 1 & 1,037 & 1 \\ \hline Pi/Nval^{r} & 1,015 & 0,983 & 0,964 \\ \hline Pi/Nval^{r} & 0,967 & 1 & 0,915 & 1 & 0,971 & 1 \\ \hline Pi/Nval^{r} & 0,967 & 1 & 0,915 & 1 & 0,971 & 1 \\ \hline Pi/Nval^{r} & 0,967 & 1 & 0,915 & 1 & 0,971 & 1 \\ \hline Pi/Nval^{r} & 1,034 & 1,090 & 1,030 \\ \hline Srednia w. \\ Pi/Nval^{r} & 1,034 & 1,090 & 1,030 \\ \hline Srednia wartości wsp. \\ Pi/Nval^{r} & 1,034 & 1,090 & 1,030 \\ \hline Srednia wartości wsp. \\ Pi/Nval^{r} & 1,015 + 0,04 \\ \hline Pi/Nval^{r} & 1,015 + 0,04 \\ \hline Srednia wartości wsp. \\ Pi/Nval^{r} & 1,019 + 0,03 \\ \hline Srednia wartości myp. \\ PA - kwas fosfonowy (phosphonic acid); \\ V - objętość wprowadzonego roztworu AA^{r} (Nval^{r}) i/lub K_{n}H_{3:n}PO_4; \\ m - masa wprowadzonego roztworu AA^{r} (Nval^{r}) i/lub K_{n}H_{3:n}PO_4; \\ m - masa wprowadzonego roztworu AA^{P} (Nval^{r}) i/lub K_{n}H_{3:n}PO_4; \\ C_{PA} - stężenie kwasu fosfonowego: C_{MPA i C} C_{AAP} stężenia wprowadzonych roztworów K_{n}H_{3:n}PO_4 i/lub AA^{P} (Nval^{P}); \\ mMole_{(m)} - ilość milimoli AA^{P} (Ival^{P}) i/lub K_{n}H_{3:n}PO_4; \\ (Nval^{r}) i/lub K_{n}H_{3:n}PO_4; \\ (Nval^{r}) i/lub K_{n}H_{3:n}PO_4; \\ RA - powierzchnia sygnału 3^{1}P wing 3^{1}P NMR; \\ RA_{AAP} - powierzchnia sygnału 3^{1}P wing 3^{1}P minokwasu AA^{P}, wyliczona dla stosunku K_{n}H_{3:n}PO_4; Nval^{P} =1:1; \\ RA_{pi} - powierzchnia sygnału 3^{1}P dla K_{n}H_{3:n}PO_4; \\ Pi/Nval^{r} - współczynnik korekcyjny powierzchni sygnału 3^{1}P dla Nval^{P} względem K_{n}H_{3:n}PO_4 \\ \hline Nval^{r} - współczynnik korekcyjny powierzchni sygnału 3^{1}P dla Nval^{P} względem K_{n}H_{3:n}PO_4 \\ \hline Nval^{r} - współczynnik korekcyjny powierzchni sygnału 3^{1}P wing względem K_{n}H_{3:n}PO_4 \\ \hline Nval^{r} - współczynnik korekcyjny powierzchni sygnału 3^{1}P dla Nval^{r} względem K_{n}H_{3:n}PO_4 \\ \hline Nval^{r} - współczynnik korekcyjny powierzchni sygnału 3^{1}P dla Nval^{r} względem K_{n}H_{3:n}PO_4 \\ \hline Nval^{r} - współczynnik korekcyjny powierzchni sygnału 3^{1}P dla Nval^{r} względem K_{n}H_{3:n}PO_4 \\ \hline Nval^{r} - współczynnik korekcyjny$										
$\begin{tabular}{ c $		RA: Pi/Nval ^P	0.985	1	1.017	1	1.037	1		
$\begin{tabular}{ c c c c c } \hline Pi/Nval^P & 1,015 & 0,983 & 0,964 \\ \hline (v/v) & $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$		[1:1] (v/v)	0,000	-		-	_,	-		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Pi/Nval ^P	1 (115	0.0	983	0.0	064		
$\begin{tabular}{ c c c c c } \hline Sirednia w. \\ Pi/Nval^P & 0,987\pm0,05 \\ \hline \\ $		(v/v)	1,0	,15	0,5	/05	0,5			
$\begin{tabular}{ c c c c c } \hline RA: Pi/Nval^P & 0,967 & 1 & 0,915 & 1 & 0,971 & 1 \\ \hline RA: Pi/Nval^P & 1,034 & 1,090 & 1,030 \\ \hline Pi/Nval^P & 1,034 & 1,090 & 1,030 \\ \hline Srednia w. \\ Pi/Nval^P & 1,031 & 1,051\pm0,04 \\ \hline Srednia wartości wsp. \\ Pi/Nval^P & 1,051\pm0,04 & 1,051\pm0,04 \\ \hline Srednia wartości wsp. \\ Pi/Nval^P & 1,019\pm0,03 & 1,019\pm0,03 \\ \hline Mmm & 1,019\pm0,03 & 1,019\pm0,03 \\ \hline Mmm & 1,019\pm0,03 & 1,019\pm0,03 \\ \hline PA - kwas fosfonowy (phosphonic acid); \\ V - objętość wprowadzonego roztworu AA^P (Nval^P) i/lub K_nH_{3,n}PO_4; \\ m - masa wprowadzonego roztworu AA^P (Nval^P) i/lub K_nH_{3,n}PO_4; \\ m - masa wprowadzonego roztworu AA^P (Nval^P) i/lub K_nH_{3,n}PO_4; \\ mole_{(v)} - ilość milimoli AA^P (Nval^P) i/lub K_nH_{3,n}PO_4 wyliczona na podstawie objętości wprowadzonych roztworów AA^P (Nval^P); \\ mMole_{(v)} - ilość milimoli AA^P (Nval^P) i/lub K_nH_{3,n}PO_4 wyliczona na podstawie masy wprowadzonych roztworów AA^P (Nval^P) i/lub K_nH_{3,n}PO_4; \\ RA - powierzchnia sygnatu ^{31}P z widm ^{31}P NMR; \\ RA_{APP} - powierzchnia sygnatu AA^P (Nval^P), RA_{MPA} - powierzchnia sygnatu K_{H_{3,n}}PO_4; \\ RA dla Pi-Nval^P [1:1] - powierzchnia sygnatu ^{31}P aminokwasu AA^P, wyliczona dla stosunku K_nH_{3,n}PO_4; \\ Nval^P - współczynnik korekcyjny powierzchni sygnatu ^{31}P dla Nval^P względem K_nH_{3,n}PO_4 \\ \hline Nval^P - współczynnik korekcyjny powierzchni sygnatu ^{31}P dla Nval^P względem K_nH_{3,n}PO_4 \\ \hline Nval^P - współczynnik korekcyjny powierzchni sygnatu ^{31}P dla Nval^P względem K_nH_{3,n}PO_4 \\ \hline Nval^P - współczynnik korekcyjny powierzchni sygnatu ^{31}P dla Nval^P względem K_nH_{3,n}PO_4 \\ \hline Nval^P - współczynnik korekcyjny powierzchni sygnatu ^{31}P dla Nval^P względem K_nH_{3,n}PO_4 \\ \hline Nuse + Nu$		Średnia w. Pi/Nval ^P		0,987±0,05						
$\begin{array}{ c c c c c } RA: Pi/Nval^{P} & 0,967 & 1 & 0,915 & 1 & 0,971 & 1 \\ \hline Pi/Nval^{P} & 1,034 & 1,090 & 1,030 \\ \hline Pi/Nval^{P} & 1,034 & 1,090 & 1,030 \\ \hline Srednia w. \\ Pi/Nval^{P} & 1,031 & 1,051\pm0,04 \\ \hline Srednia wartości wsp. \\ Pi/Nval^{P} & 1,019\pm0,03 & 1,019\pm0,03 \\ \hline PA - kwas fosfonowy (phosphonic acid); \\ V - objętość wprowadzonego roztworu AA^{P} (Nval^{P}) i/lub K_{n}H_{3\cdot n}PO_{4}; \\ m - masa wprowadzonego roztworu AA^{P} (Nval^{P}) i/lub K_{n}H_{3\cdot n}PO_{4}; \\ R - stężenie kwasu fosfonowego: C_{MPA} i C_{AAP} stężenia wprowadzonych roztworów K_{n}H_{3\cdot n}PO_{4} i/lub AA^{P} (Nval^{P}); \\ mMole_{(v)} - ilość milimoli AA^{P} i/lub K_{n}H_{3\cdot n}PO_{4} wyliczona na podstawie objętości wprowadzonych roztworów AA^{P} (Nval^{P}) i/lub K_{n}H_{3\cdot n}PO_{4}; \\ male K_{N} - powierzchnia sygnału AA^{P} (Nval^{P}) i/lub K_{n}H_{3\cdot n}PO_{4} wyliczona na podstawie masy wprowadzonych roztworów AA^{P} (Nval^{P}) i/lub K_{n}H_{3\cdot n}PO_{4}; \\ RA - powierzchnia sygnału AA^{P} (Nval^{P}) AMR; \\ RA_{AAP} - powierzchnia sygnału AA^{P} (Nval^{P}) RA_{MPA} - powierzchnia sygnału K_{n}H_{3\cdot n}PO_{4}; \\ RA - powierzchnia sygnału AA^{P} (Nval^{P}), RA_{MPA} - powierzchnia sygnału K_{n}H_{3\cdot n}PO_{4}; \\ RA - powierzchnia sygnału AA^{P} (Nval^{P}), RA_{MPA} - powierzchnia sygnału K_{n}H_{3\cdot n}PO_{4}; \\ RA - powierzchnia sygnału AA^{P} (Nval^{P}), RA_{MPA} - powierzchnia sygnału K_{n}H_{3\cdot n}PO_{4}; \\ RA - powierzchnia sygnału AA^{P} (Nval^{P}), RA_{MPA} - powierzchnia sygnału K_{n}H_{3\cdot n}PO_{4}; \\ RA - powierzchnia sygnału AA^{P} (Nval^{P}), RA_{MPA} - powierzchnia sygnału K_{n}H_{3\cdot n}PO_{4}; \\ RA - powierzchnia sygnału AA^{P} (Nval^{P}), RA_{MPA} - powierzchnia sygnału K_{n}H_{3\cdot n}PO_{4}; \\ RA - powierzchnia sygnału AA^{P} (Nval^{P}), RA_{MPA} - powierzchnia sygnału K_{n}H_{3\cdot n}PO_{4}; \\ RA - powierzchnia sygnału AA^{P} (Nval^{P}), RA_{MPA} - powierzchnia sygnału K_{n}H_{3\cdot n}PO_{4}; \\ Pi/NVal^{P} - współczynnik korekcyjny powierzchni sygnału ^{31} P dla Nval^{P} względem K_{n}H_{3\cdot n}PO_{4} \\ \end{array} \right$										
Pi/Nval ^P 1,034 1,090 1,030 Średnia w. Pi/Nval ^P 1,051±0,04 1,051±0,04 Średnia wartości wsp. 1,019±0,03 1,019±0,03 Pi/Nval ^P z obliczeń (v/v) i (m/m) 1,019±0,03 1,019±0,03 PA – kwas fosfonowy (phosphonic acid); 1,019±0,03 1,019±0,03 V – objętość wprowadzonego roztworu AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; m - masa wprowadzonego roztworu AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; PA – kwas fosfonowego: C _{MPA} i C _{AAP} stężenia wprowadzonych roztworów K _n H _{3-n} PO ₄ i/lub AA ^P (Nval ^P); mMole _(W) – ilość milimoli AA ^P i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie objętości wprowadzonych roztworów AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; mMole _(W) – ilość milimoli AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie masy wprowadzonych roztworów AA ^P Nval ^P i/lub K _n H _{3-n} PO ₄ ; RA – powierzchnia sygnału ³¹ P X widm ³¹ P NMR; RA _{AAP} - powierzchnia sygnału ³¹ P Z widm ³¹ P Aminokwasu AA ^P , wyliczona dla stosunku K _n H _{3-n} PO ₄ :Nval ^P =1:1; RA _{PI} -powierzchnia sygnału ³¹ P dla K _n H _{3-n} PO ₄ ; Pi/NVal ^P – współczynnik korekcyjny powierzchni sygnału ³¹ P dla Nval ^P względem K _n H _{3-n} PO ₄		RA: Pi/Nval ^P	0,967	1	0,915	1	0,971	1		
Image: constraint of the system1,0341,0901,030Ímage: constraint of the systemÍmage: co		Pi/Nyal ^P								
Średnia w. Pi/Nval ^P 1,051±0,04Średnia wartości wsp.I,019±0,03Pi/ Nval ^P z obliczeń (v/v) i (m/m)1,019±0,03PA – kwas fosfonowy (phosphonic acid);1,019±0,03V – objętość wprowadzonego roztworu AA ^P (Nval ^P) i/lub K _n H _{3-n} PO4;C _{PA} – stężenie kwasu fosfonowego: C _{MPA} i C _{AAP} stężenia wprowadzonych roztworów K _n H _{3-n} PO4 i/lub AA ^P (Nval ^P); mMole _(v) – ilość milimoli AA ^P i/lub K _n H _{3-n} PO4 wyliczona na podstawie objętości wprowadzonych roztworów AA ^P (Nval ^P) i/lub K _n H _{3-n} PO4; mole _(v) – ilość milimoli AA ^P (Nval ^P) i/lub K _n H _{3-n} PO4 wyliczona na podstawie masy wprowadzonych roztworów AA ^P (Nval ^P) i/lub K _n H _{3-n} PO4; mMole _(v) – ilość milimoli AA ^P (Nval ^P) i/lub K _n H _{3-n} PO4 wyliczona na podstawie masy wprowadzonych roztworów Nval ^P i/lub K _n H _{3-n} PO4; RA – powierzchnie sygnału ³¹ P z widm ³¹ P NMR; RA _{AAP} - powierzchnia sygnału AA ^P (Nval ^P), RA _{MPA} -powierzchnia sygnału K _n H _{3-n} PO4; RA dla Pi-Nval ^P [1:1] –powierzchnia sygnału ³¹ P aminokwasu AA ^P , wyliczona dla stosunku K _n H _{3-n} PO4:Nval ^P =1:1; RA _{Pi} -powierzchnia sygnału ³¹ P dla K _n H _{3-n} PO4; PO4; Pi/NVal ^P – współczynnik korekcyjny powierzchni sygnału ³¹ P dla Nval ^P względem K _n H _{3-n} PO4		(m/m)	1,0)34	1,0)90	1,0)30		
Pi/Nval'Średnia wartości wsp.Pi/Nval ^P z obliczeń (v/v) i(m/m)PA – kwas fosfonowy (phosphonic acid);V – objętość wprowadzonego roztworu AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ;m - masa wprowadzonego roztworu AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ;C _{PA} – stężenie kwasu fosfonowego: C _{MPA} i C _{AAP} stężenia wprowadzonych roztworów K _n H _{3-n} PO ₄ i/lub AA ^P (Nval ^P);mMole _(v) – ilość milimoli AA ^P i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie objętości wprowadzonych roztworów AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ;mMole _(v) – ilość milimoli AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie masy wprowadzonych roztworów AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ;mMole _(v) – ilość milimoli AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie masy wprowadzonych roztworów Nval ^P i/lub K _n H _{3-n} PO ₄ ;RA – powierzchnia sygnału ³¹ P z widm ³¹ P NMR;RA _{AAP} - powierzchnia sygnału ³¹ P z widm ³¹ P mainokwasu AA ^P , wyliczona dla stosunku K _n H _{3-n} PO ₄ :Nval ^P =1:1;RA _{Pi} - powierzchnia sygnału ³¹ P dla K _n H _{3-n} PO ₄ ;Pi/NVal ^P – współczynnik korekcyjny powierzchni sygnału ³¹ P dla Nval ^P względem K _n H _{3-n} PO ₄		Średnia w.			1,051	±0,04				
Srednia wartości wsp.Pi/ Nval ^P z obliczeń (v/v) i1,019±0,03(m/m)PA – kwas fosfonowy (phosphonic acid);V – objętość wprowadzonego roztworu AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ;m - masa wprowadzonego roztworu AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ;C _{PA} – stężenie kwasu fosfonowego: C _{MPA} i C _{AAP} stężenia wprowadzonych roztworów K _n H _{3-n} PO ₄ i/lub AA ^P (Nval ^P);mMole _(v) – ilość milimoli AA ^P i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie objętości wprowadzonych roztworów AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ;mMole _(v) – ilość milimoli AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie masy wprowadzonych roztworów AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ;mMole _(v) – ilość milimoli AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie masy wprowadzonych roztworów Nval ^P i/lub K _n H _{3-n} PO ₄ ;mAle _(v) – ilość milimoli AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie masy wprowadzonych roztworówNval ^P i/lub K _n H _{3-n} PO ₄ ;RA – powierzchnie sygnału ³¹ P z widm ³¹ P NMR;RA _{AAP} - powierzchnia sygnału AA ^P (Nval ^P), RA _{MPA} -powierzchnia sygnału K _n H _{3-n} PO ₄ ;RA dla Pi-Nval ^P [1:1] –powierzchnia sygnału ³¹ P aminokwasu AA ^P , wyliczona dla stosunku K _n H _{3-n} PO ₄ :Nval ^P =1:1;RA _{Pi} -powierzchnia sygnału ³¹ P dla K _n H _{3-n} PO ₄ ;Pi/NVal ^P – współczynnik korekcyjny powierzchni sygnału ³¹ P dla Nval ^P względem K _n H _{3-n} PO ₄	<u> </u>	Pi/Nval'								
Pi/ Nval ² z obliczen (v/v) i 1,019±0,03 (m/m) PA – kwas fosfonowy (phosphonic acid); V – objętość wprowadzonego roztworu AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; m - masa wprowadzonego roztworu AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; C _{PA} – stężenie kwasu fosfonowego: C _{MPA} i C _{AAP} stężenia wprowadzonych roztworów K _n H _{3-n} PO ₄ i/lub AA ^P (Nval ^P); mMole _(v) – ilość milimoli AA ^P i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie objętości wprowadzonych roztworów AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; mMole _(v) – ilość milimoli AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie masy wprowadzonych roztworów AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; mMole _(v) – ilość milimoli AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie masy wprowadzonych roztworów Nval ^P i/lub K _n H _{3-n} PO ₄ ; RA – powierzchnie sygnału ³¹ P z widm ³¹ P NMR; RA _{AAP} - powierzchnia sygnału AA ^P (Nval ^P), RA _{MPA} -powierzchnia sygnału K _n H _{3-n} PO ₄ ; RA dla Pi-Nval ^P [1:1] –powierzchnia sygnału ³¹ P aminokwasu AA ^P , wyliczona dla stosunku K _n H _{3-n} PO ₄ :Nval ^P =1:1; RA _{Pi} -powierzchnia sygnału ³¹ P dla K _n H _{3-n} PO ₄ ; Pi/NVal ^P – współczynnik korekcyjny powierzchni sygnału ³¹ P dla Nval ^P względem K _n H _{3-n} PO ₄	Srednia w	vartości wsp.								
(m/m) PA – kwas fosfonowy (<i>phosphonic acid</i>); V – objętość wprowadzonego roztworu AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; m - masa wprowadzonego roztworu AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; C _{PA} – stężenie kwasu fosfonowego: C _{MPA} i C _{AAP} stężenia wprowadzonych roztworów K _n H _{3-n} PO ₄ i/lub AA ^P (Nval ^P); mMole _(v) – ilość milimoli AA ^P i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie objętości wprowadzonych roztworów AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; mMole _(v) – ilość milimoli AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie masy wprowadzonych roztworów AA ^P (Nval ^P i/lub K _n H _{3-n} PO ₄ ; RA – powierzchnie sygnału ³¹ P z widm ³¹ P NMR; RA _{AAP} - powierzchnia sygnału AA ^P (Nval ^P), RA _{MPA} -powierzchnia sygnału K _n H _{3-n} PO ₄ ; RA dla Pi-Nval ^P [1:1] –powierzchnia sygnału ³¹ P aminokwasu AA ^P , wyliczona dla stosunku K _n H _{3-n} PO ₄ :Nval ^P =1:1; RA _{Pi} -powierzchnia sygnału ³¹ P dla K _n H _{3-n} PO ₄ ; Pi/NVal ^P – współczynnik korekcyjny powierzchni sygnału ³¹ P dla Nval ^P względem K _n H _{3-n} PO ₄	Pi/ Nval [®] z d	obliczen (V/V) i			1,019	±0,03				
PA – kwas fostonowy (phosphonic acid); V – objętość wprowadzonego roztworu AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; m - masa wprowadzonego roztworu AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; C _{PA} – stężenie kwasu fosfonowego: C _{MPA} i C _{AAP} stężenia wprowadzonych roztworów K _n H _{3-n} PO ₄ i/lub AA ^P (Nval ^P); mMole _(v) – ilość milimoli AA ^P i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie objętości wprowadzonych roztworów AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; mMole _(v) – ilość milimoli AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie masy wprowadzonych roztworów Nval ^P i/lub K _n H _{3-n} PO ₄ ; RA – powierzchnie sygnału ³¹ P z widm ³¹ P NMR; RA _{AAP} - powierzchnia sygnału AA ^P (Nval ^P), RA _{MPA} -powierzchnia sygnału K _n H _{3-n} PO ₄ ; RA dla Pi-Nval ^P [1:1] –powierzchnia sygnału ³¹ P aminokwasu AA ^P , wyliczona dla stosunku K _n H _{3-n} PO ₄ :Nval ^P =1:1; RA _{Pi} -powierzchnia sygnału ³¹ P dla K _n H _{3-n} PO ₄ ; Pi/NVal ^P – współczynnik korekcyjny powierzchni sygnału ³¹ P dla Nval ^P względem K _n H _{3-n} PO ₄	(n	n/m)								
V – objętość Wprowadzonego roztworu AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; m - masa wprowadzonego roztworu AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; C _{PA} – stężenie kwasu fosfonowego: C _{MPA} i C _{AAP} stężenia wprowadzonych roztworów K _n H _{3-n} PO ₄ i/lub AA ^P (Nval ^P); mMole _(v) – ilość milimoli AA ^P i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie objętości wprowadzonych roztworów AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ ; mMole _(v) – ilość milimoli AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie masy wprowadzonych roztworów Nval ^P i/lub K _n H _{3-n} PO ₄ ; RA – powierzchnie sygnału ³¹ P z widm ³¹ P NMR; RA _{AAP} - powierzchnia sygnału AA ^P (Nval ^P), RA _{MPA} -powierzchnia sygnału K _n H _{3-n} PO ₄ ; RA dla Pi-Nval ^P [1:1] –powierzchnia sygnału ³¹ P aminokwasu AA ^P , wyliczona dla stosunku K _n H _{3-n} PO ₄ :Nval ^P =1:1; RA _{Pi} -powierzchnia sygnału ³¹ P dla K _n H _{3-n} PO ₄ ; Pi/NVal ^P – współczynnik korekcyjny powierzchni sygnału ³¹ P dla Nval ^P względem K _n H _{3-n} PO ₄	PA – kwas to	stonowy (phosph	onic acid);	P (NI - 1 ^P) : (I - 1						
$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	v – objętosc	wprowadzonego		(INVAL) I/IUD	К _n H _{3-n} PO ₄ ;					
 ^A ¹ Stężenie kwast rosionowego. c_{MPA} r c_{AAP} stężenia wprowadzonych roztworów t_nn_{3-n} O₄ i nas AA^P (twar), mMole_(v) – ilość milimoli AA^P i/lub K_nH_{3-n}PO₄ wyliczona na podstawie objętości wprowadzonych roztworów AA^P (Nval^P) i/lub K_nH_{3-n}PO₄; ^M mMole_(v) – ilość milimoli AA^P (Nval^P) i/lub K_nH_{3-n}PO₄ wyliczona na podstawie masy wprowadzonych roztworów Nval^P i/lub K_nH_{3-n}PO₄; ^R A – powierzchnie sygnału ³¹P z widm ³¹P NMR; ^R RA _{AAP} - powierzchnia sygnału AA^P (Nval^P), RA_{MPA} -powierzchnia sygnału K_nH_{3-n}PO₄; ^R A dla Pi-Nval^P [1:1] –powierzchnia sygnału ³¹P aminokwasu AA^P, wyliczona dla stosunku K_nH_{3-n}PO₄:Nval^P =1:1; ^R RA_{Pi} -powierzchnia sygnału ³¹P dla K_nH_{3-n}PO₄; ^P Pi/NVal^P – współczynnik korekcyjny powierzchni sygnału ³¹P dla Nval^P względem K_nH_{3-n}PO₄ 	Ca. – steženi	e kwasu fosfonow		vai jijiub k _n n	_{3-n} rO ₄ , Nowadzonych	roztworów K	H _a PO, i/lub	$\Delta \Delta^{P} (Nval^{P})$		
$ \begin{array}{l} \left(Nval^{P} \right) i/lub \ K_{n}H_{3-n}PO_{4}; \\ mMole_{(v)} - ilość milimoli \ AA^{P} \ (Nval^{P}) i/lub \ K_{n}H_{3-n}PO_{4} \ wyliczona na podstawie masy wprowadzonych roztworów \\ Nval^{P} \ i/lub \ K_{n}H_{3-n}PO_{4}; \\ RA - powierzchnie sygnału \ ^{31}P \ z \ widm \ ^{31}P \ NMR; \\ RA_{AAP} \ - powierzchnie sygnału \ AA^{P} \ (Nval^{P}), \ RA_{MPA} \ -powierzchnie sygnału \ K_{n}H_{3-n}PO_{4}; \\ RA \ dla \ Pi-Nval^{P} \ [1:1] \ -powierzchnie sygnału \ ^{31}P \ aminokwasu \ AA^{P}, \ wyliczona \ dla \ stosunku \ K_{n}H_{3-n}PO_{4}; \\ RA_{Pi} \ -powierzchnie \ sygnału \ ^{31}P \ dla \ K_{n}H_{3-n}PO_{4}; \\ RA_{Pi} \ -powierzchnie \ sygnału \ ^{31}P \ dla \ K_{n}H_{3-n}PO_{4}; \\ Pi/NVal^{P} \ - \ współczynnik \ korekcyjny \ powierzchnie \ sygnału \ ^{31}P \ dla \ Nval^{P} \ względem \ K_{n}H_{3-n}PO_{4} \end{array}$	mMole – ile	ość milimoli AA ^P i	/lub K_H ₂ _PO	A wyliczona na	nodstawie ol	hietości wprov	wadzonych ro:	ztworów AA ^P		
mMole _(v) – ilość milimoli AA ^P (Nval ^P) i/lub K _n H _{3-n} PO ₄ wyliczona na podstawie masy wprowadzonych roztworów Nval ^P i/lub K _n H _{3-n} PO ₄ ; RA – powierzchnie sygnału ³¹ P z widm ³¹ P NMR; RA _{AAP} - powierzchnia sygnału AA ^P (Nval ^P), RA _{MPA} -powierzchnia sygnału K _n H _{3-n} PO ₄ ; RA dla Pi-Nval ^P [1:1] –powierzchnia sygnału ³¹ P aminokwasu AA ^P , wyliczona dla stosunku K _n H _{3-n} PO ₄ :Nval ^P =1:1; RA _{Pi} -powierzchnia sygnału ³¹ P dla K _n H _{3-n} PO ₄ ; Pi/NVal ^P – współczynnik korekcyjny powierzchni sygnału ³¹ P dla Nval ^P względem K _n H _{3-n} PO ₄	(Nval ^P) i/lub	K₀H₃₋₀PO₄:		4						
Nval ^P i/lub K _n H _{3-n} PO ₄ ; RA – powierzchnie sygnału ³¹ P z widm ³¹ P NMR; RA _{AAP} - powierzchnia sygnału AA ^P (Nval ^P), RA _{MPA} -powierzchnia sygnału K _n H _{3-n} PO ₄ ; RA dla Pi-Nval ^P [1:1] –powierzchnia sygnału ³¹ P aminokwasu AA ^P , wyliczona dla stosunku K _n H _{3-n} PO ₄ :Nval ^P =1:1; RA _{Pi} -powierzchnia sygnału ³¹ P dla K _n H _{3-n} PO ₄ ; Pi/NVal ^P – współczynnik korekcyjny powierzchni sygnału ³¹ P dla Nval ^P względem K _n H _{3-n} PO ₄	mMole _(v) – il	ość milimoli AA ^P (Nval ^P) i/lub K	nH _{3-n} PO₄ wylic	zona na pods	tawie masy w	prowadzonyc	h roztworów		
RA – powierzchnie sygnału ³¹ P z widm ³¹ P NMR; RA _{AAP} - powierzchnia sygnału AA ^P (Nval ^P), RA _{MPA} -powierzchnia sygnału K _n H _{3-n} PO ₄ ; RA dla Pi-Nval ^P [1:1] –powierzchnia sygnału ³¹ P aminokwasu AA ^P , wyliczona dla stosunku K _n H _{3-n} PO ₄ :Nval ^P =1:1; RA _{Pi} -powierzchnia sygnału ³¹ P dla K _n H _{3-n} PO ₄ ; Pi/NVal ^P – współczynnik korekcyjny powierzchni sygnału ³¹ P dla Nval ^P względem K _n H _{3-n} PO ₄	Nval ^P i/lub K	_n H _{3-n} PO ₄ ;			·		,			
RA _{AAP} - powierzchnia sygnału AA ^P (Nval ^P), RA _{MPA} -powierzchnia sygnału K _n H _{3-n} PO ₄ ; RA dla Pi-Nval ^P [1:1] –powierzchnia sygnału ³¹ P aminokwasu AA ^P , wyliczona dla stosunku K _n H _{3-n} PO ₄ :Nval ^P =1:1; RA _{Pi} -powierzchnia sygnału ³¹ P dla K _n H _{3-n} PO ₄ ; Pi/NVal ^P – współczynnik korekcyjny powierzchni sygnału ³¹ P dla Nval ^P względem K _n H _{3-n} PO ₄	RA – powierz	zchnie sygnału ³¹ P	z widm ³¹ P N	MR;						
RA dla Pi-Nval ^r [1:1] –powierzchnia sygnału ³¹ P aminokwasu AA ^r , wyliczona dla stosunku K _n H _{3-n} PO ₄ :Nval ^P =1:1; RA _{Pi} -powierzchnia sygnału ³¹ P dla K _n H _{3-n} PO ₄ ; Pi/NVal ^P – współczynnik korekcyjny powierzchni sygnału ³¹ P dla Nval ^P względem K _n H _{3-n} PO ₄	RA _{AAP} - pow	ierzchnia sygnału	AA^{P} (Nval ^P), F	RA _{MPA} -powier	zchnia sygnału	u K _n H _{3-n} PO ₄ ;		2		
RA _{Pi} -powierzchnia sygnału ³⁴ P dla K _n H _{3-n} PO ₄ ; Pi/NVal ^P – współczynnik korekcyjny powierzchni sygnału ³¹ P dla Nval ^P względem K _n H _{3-n} PO ₄	RA dla Pi-Nva	al ^r [1:1] –powierz	chnia sygnału	³¹ P aminokwa	asu AA ^P , wylic:	zona dla stosu	nku K _n H _{3-n} PO ₄	:Nval ^P =1:1;		
PI/NVal – współczynnik korekcyjny powierzchni sygnału ²² P dla Nval Względem K _n H _{3-n} PO ₄	RA _{Pi} -powierz	zchnia sygnału ³¹ P	dla K _n H _{3-n} PO ₄	; 	1 					
	Pi/NVaľ – w	spółczynnik korek	cyjny powierz	chni sygnału "	P dla Nval' w	ızględem K _n H₃	-nPO ₄			

Tabela 4-16.2.1. Wyznaczenie stosunku powierzchni sygnałów ³¹ P dla pary K ₃ PO ₄ -Mal ^P										
	(2M KOF	1)								
Analiza	PA	Ma-F	P _i -Z-1	Ma-F	P _i -Z-2	Ma-F	P _i -Z-3			
układu		Mal ^P	Pi	Mal ^P	Pi	Mal ^P	Pi			
Mal ^P -PO ₄		0,081 M	0,20 M	0,081 M	0,20 M	0,081 M	0,20 M			
(Ma-P _i -Z)	V [ml]	0,05	0,1	0,1	0,1	0,2	0,1			
	mMole _(v)	0,00405	0,020	0,0081	0,020	0,0162	0,020			
	mM:mM _{st} (v/v)	0,2025	1	0,405	1	0,81	1			
	m [ø]	0.052	0.105	0.103	0.100	0.209	0.106			
	V (d=1.00)	0.052	0 105	0 103	0 100	0,209	0 106			
	mMole()	0.00416	0.02	0.00824	0.020	0,205	0.0212			
	mM:mM _{st} (m/m)	0,208	1	0,412	1	0,788	1			
Analiza	δ (P) [ppm]	24,89	5,19	21,82	5,21	21,82	5,21			
³¹ P NMR	RA	1	5,80	1	2,847	1	1,553			
	RA: Pi/Mal ^P [1:1] (v/v)	4,938	5,80	2,469	2,847	1,235	1.553			
	Pi/Mal [₽] (v/v)	1,1	.75	1,1	.57					
	Średnia w. Pi/Mal [₽]			1,1	.95					
	RA: Pi/Mal ^P [1:1] (m/m)	4,808	5,80	2,427	2,847	1,269	1,553			
	Pi/Mal [₽] (m/m)	1,2	.06	1,1	.73	1,2	24			
	Średnia w. Pi/ Mal ^P			1,2	201	·				
Średnia w	artości wsp.									
Pi/Mal ^P z o	bliczeń (<mark>v/v</mark>) i			1,1	.98					
(m	n/m)									
PA – kwas fosfonowy (phosphonic acid);										
V – objętość wprowadzonego roztworu AA ^P (Mal ^P) i/lub K ₃ PO ₄ ;										
m - masa wp	prowadzonego ro	ztworu AA ^P (N	1al ^P) i/lub K₃P	O ₄ ;			D			
C _{PA} – stężenie	e kwasu fosfonov	vego: C _{MPA} i C _A	_{AP} stężenia w	prowadzonych	roztworów K	₃ PO ₄ i/lub AA ^P	(Mal [°]);			
$ mMole_{(v)} - il_{(v)} - il_{$	ość milimoli AA ^r	i/lub K ₃ PO ₄ v	vyliczona na	podstawie obj	iętości wprov	vadzonych roz	tworów AA ^r			
$mMole_{(v)} - ilc$	Mal') i/lub K₃PO₄; nMole _w – ilość milimoli AA ^P (Mal ^P) i/lub K₃PO₄ wyliczona na podstawie masy wprowadzonych roztworów Mal ^P									

i/lub K₃PO₄; RA – powierzchnie sygnału ³¹P z widm ³¹P NMR: RA_{AAP} - powierzchnia sygnału AA^P (Mal^P), RA_{MPA}powierzchnia sygnału K₃PO₄;

RA dla Pi-Mal^P [1:1] – powierzchnia sygnału ³¹P aminokwasu AA^P, wyliczona dla stosunku K₃PO₄:Mal^P =1:1; RA_{Pi-}powierzchnia sygnału ³¹P dla K₃PO₄;

Pi/Mal^P – współczynnik korekcyjny powierzchni sygnału ³¹P dla Mal^P względem K_3PO_4

Tabela 4-16.2.2. Wyznaczenie stosunku powierzchni sygnałów ³¹ P dla pary K _n H _{3-n} PO ₄ -Mal ^P									
Analiza	מ ועוב ש <u>ן</u>	Ma-B		Ma-P	B_2	Ma-P	B_3		
układu	ΡΔ	Mal ^P	<u>р.</u>	Mal ^P	<u>р.</u>	Mal ^P	<u>р.</u>		
	.,,	0.081 M	0.20 M	0.081 M	0.20 M	0.081 M	0.20 M		
$(N_{10} - PO_{4})$	V [ml]	0,05	0,1	0,1	0,1	0,2	0,1		
(IVId-P _i -B)	mMole _(v)	0,00405	0,020	0,0081	0,020	0,0162	0,020		
	mM:mM _{sT} (v/v)	0,2025	1	0,405	1	0,81	1		
	m [g]	0,052	0,105	0,103	0,100	0,209	0,106		
	V (d=1.00)	0,052	0,105	0,103	0,100	0,209	0,106		
	mMole _(m)	0,00416	0,02	0,00824	0,020	0,0167	0,0212		
	mM:mM _{sT} (m/m)	0,208	1	0,412	1	0,788	1		
Analiza	δ (P) [ppm]	16,51	0,23	16,55	0,18	16,56	0,17		
³¹ P NMR	RA	0,152	1	0,311	1	0,575	1		
	RA: Pi/Mal ^P [1:1] (v/v)	0,751	1	0,768	1	0,710	1		
	Pi/Mal ^P (v/v)	1,3	1,332 1,302						
	Średnia w. Pi/Mal ^P	1,348±0,06							
	RA: Pi/Mal ^P [1:1] (m/m)	0,731	1	0,755	1	0,730	1		
	Pi/Mal ^P (m/m)	1,3	68	1,3	25	1,3	70		
	Średnia w. Pi/Mal [₽]			1,354	±0,03				
Średnia war Pi/ Nval ^P z o (m/m)	tości wsp. bliczeń (v/v) i	1,351							
PA – kwas fos V – objętość m - masa wp	PA – kwas fosfonowy (<i>phosphonic acid</i>); / – objętość wprowadzonego roztworu AA ^P (Mal ^P) i/lub K _n H _{3-n} PO ₄ ; n - masa wprowadzonego roztworu AA ^P (Mal ^P) i/lub K _n H _{3-n} PO ₄ ;								

 C_{PA} – stężenie kwasu fosfonowego: C_{MPA} i C_{AAP} stężenia wprowadzonych roztworów $K_nH_{3-n}PO_4$ i/lub AA^P (Mal^P); mMole_(v) – ilość milimoli AA^P i/lub $K_nH_{3-n}PO_4$ wyliczona na podstawie objętości wprowadzonych roztworów AA^P (Mal^{P}) i/lub K_nH_{3-n}PO₄;

 $mMole_{(v)}$ – ilość milimoli AA^{P} (Mal^P) i/lub K_nH_{3-n}PO₄ wyliczona na podstawie masy wprowadzonych roztworów $Mal^{P} i/lub K_{n}H_{3-n}PO_{4};$

RA – powierzchnie sygnału ³¹P z widm ³¹P NMR;

RA_{AAP} - powierzchnia sygnału AA^P (Mal^P), RA_{MPA} -powierzchnia sygnału K_nH_{3-n}PO₄; RA dla Pi-Mal^P [1:1] –powierzchnia sygnału ³¹P aminokwasu AA^P, wyliczona dla stosunku K_nH_{3-n}PO₄:Mal^P =1:1; RA_{Pi}-powierzchnia sygnału ³¹P dla K_nH_{3-n}PO₄;

Pi/Mal^P – współczynnik korekcyjny powierzchni sygnału ³¹P dla Mal^P względem K_nH_{3-n}PO₄

4.2.1.3. BADANIA NAD WYZNACZANIEM ROZPUSZCZALNOŚCI AMINOKWASÓW

FOSFONOWYCH

4.2.1.3.1. METODA KRYSTALIZACJI

4.2.1.3.1.1. BADANIA OPTYMALIZACYJNE

Dla zbadania wpływu czasu krystalizacji na stężenie nasyconego roztworu AA^P wybrano serię niższych homologów kwasów 1-aminoalkilofosfonowych (Gly^P, Ala^P, Val^P, Mala^P) które charakteryzują się stosunkowo wysokimi rozpuszczalnościami.

Roztwory AA^{P} do badań przygotowywano przez umieszczenie w reaktorkach mieszaniny odpowiednich kwasów 1-aminoalkilofosfonowe i wody w ilościach zestawionych w Tabeli 4-17. Suspensję ogrzewano do 80°C przy mieszaniu do rozpuszczenia (około 1 h), po czym pozostawiano do powolnego ostygnięcia do 30°C.

Tabela 4-17. Przygotowanie mieszanin do badań nad wpływem czasu krystalizacji na									
stężenie roztworu nasyconego AA ^F (naważki AA ^F)									
	Gly ^P		Ala ^P		Val ^P		Mala ^P		
	Gly ^P	H₂O	Ala ^P	H ₂ O	Val [₽]	H ₂ O	Mala ^P	H ₂ O	
Mol	[111]		[125]		[153]		[139]		
Stęż. AA ^{P /a}	0,54 M		0,8 M		0,3 M		0,1 M		
mg/ml ^{/b}	60, mg	1 ml	100 mg	1 ml	46 mg	1 ml	14 mg	1 ml	
mg/ml ^{/c}	75 mg		125 mg		58 mg		18 mg		
Osad ^{/d}	+++		+		+		++		
^a / wstępnie wyznaczona rozpuszczalność AA ^P ; ^{b/} masa wyliczona na podstawie rozpuszczalności AA ^P ; ^{c/} masa AA ^P odważona (rozp. × 1.25):									

^{d/}masa osadu wykrystalizowanego podczas ekspozycji 24h roztworów AA^P: **"+++"** duża; **"+"** widoczne kryształy

Z roztworów pobierano w odpowiednich odstępach czasu (24 h, 48 h, 72 h, 120 h) próbki, w których oznaczano AA^P na drodze miareczkowania potencjometrycznego. Wyniki oznaczeń zestawiono w Tabeli 4-18.

Tabela 4-18. Przeprowadzenie badań nad wyznaczaniem wpływu czasu krystalizacji na											
stęże	nie nasyconego roz	tworu AA ^P									
AA ^P	Gly [₽]	Gly ^P Ala ^P Val ^P									
ppm	10,8 ppm	13,8 ppm	12,30 ppm	16,4 ppm							
Czas		Stężeni	e [M] ^{/a}								
0 h ^{b/}	0,90	0,90 1,50 0,45 0,12									
24 h	0,59	0,90	0,26	0,084							
48 h	0,56	0,87	0,25	0,083							
72 h	0,57	0,86	0,24	0,082							
120 h	120 h 0,56 0,87 0,25 0,082										
^a /AA ^P oznaczano za pomocą metody miareczkowania potencjometrycznego; ^b /początkowe stężenie aminokwasu (1,25 × rozpuszczalność w 25°C)											

Dodatkowo, dla ilustracji przebiegu krystalizacji za pomocą ³¹P NMR, w odpowiednich odstępach czasu (24 h, 48, 72 h, 120 h) przyrządzono mieszaniny złożone z próbek AA^P i wzorca (MPA) wg klucza przedstawionego w Tabeli 4-19.

Tabela 4-19. Przeprowadzenie badań nad wyznaczaniem wpływu czasu krystalizacji na										
stężenie AA ^P – przygotowanie roztworu do analizy ³¹ P NMR										
	Składniki mieszaniny do badań w ³¹ P NMR									
Składniki	Kwasy fosfonowe Inne									
mieszaniny	MPA	Chyp		Val ^P	Mala ^P	КОН	EDTA			
	1 M	Giy	Ald	Val	IVIdid	2,5 M ^{/a}	0,02M			
Objętości 0,05 ml 0,05 ml 0,05 ml 0,1 ml 0,1 ml 0,1 ml 0,05 ml										
^{a/} Roztwór zawierał 0,25 mmola KOH w objętości 0,5ml próbki										

Dla każdego czasu ekspozycji dla odpowiedniej mieszaniny rejestrowano widmo ³¹P NMR.

4.2.1.3.1.2. WYZNACZANIE ROZPUSZCZALNOŚCI AA^P METODĄ KRYSTALIZACYJNĄ

Tabela 4-20. Przeprowadzenie badań nad wyznaczaniem rozpuszczalności AA ^P metodą										
	krystaliz	acyjną								
۸۸ ^P [mmol]	G	γ ^P	Ala ^P		Ha	Hal ^P		ral [₽]	Val ^P	
	[mM=111 mg]		[mM=125 mg]		[mM=1	[mM=139 mg]		.53 mg]	[mM=1	53 mg]
Stężenie ^{/a}	0,6	бM	0,9	M	1,0	M	0,6	δM	0,2	М
m ₁	111 mg×0,6 M 125 mg×0,9 M 139 mg×1 M 153 mg×0,6 M 153 mg×0,2 M									
[mg/1ml] ^{/b}	= 67	' mg	= 113 mg = 139 mg = 92 mg					= 92 mg		
m ₁ ×1,25 ^{/c}	83	mg	156	mg	173 mg		115	mg	68	mg
Próbki	G1	G2	A1	A2	H1	H2	Nv1	Nv2	V1	V2
AA ^P /1,0 ml ^{/d}	mg	mg	mg	mg	mg	mg	mg	mg	mg	mg
Odważki	76	78	114	128	150	154	114	114	70	70
Efekt ^{/e}	-	-	-	-	-	-	-		+	+
Dodano ^{/f}	22	30	26	14	30	35	26	28	-	-
Łączna masa próbki AA ^P 49 54 140 142 180 189 140 142						142	70	70		

^{a/} Orientacyjne stężenia molowe nasyconych roztworów AA^P:

 Gly^{P} -0,55 M, Ala^P=0,83 M;Hal^P= 0,96 M; Nval^P= 0,6 M; Val^P=0,2 M;

 $^{6/}$ m₁= AA^P rozpuszczony w 1 ml nasyconego roztworu; $^{c/}$ m₂= naważka AA^P do nasycenia 1,0 ml z 25% nadmiarem; $^{d/}$ Próbki AA^P: G1, G2,...etc. naważki Gly^P (1) i Gly^P(2), ..., etc.;

^{e/}Zaobserwowano pojawienie się kryształów/fazy stałej w roztworze: "+", nie zaobserwowano: "-";

^{f/}W przypadku niewystąpienia przesycenia dodano kolejną naważkę AA^P

Tabela 4-21. Przeprowadzenie badań nad wyznaczaniem rozpuszczalności AA^P metodą krystalizacyjną

	-									
AA ^P	Nle	eu ^P	lle	eu ^P	Le	u ^P	Tle	eu ^P	M	et ^P
[mmol]	167	mg	167 mg		167 mg		167 mg		185 mg	
Stężenie ^{/a}	0,2	M	0,1	0,12 M		0,12 M		0,1 M		. M
m ₁	167 mg	x0,2 M	167 mg	×0,12 M	167 mg×0,12 M 1		167 mg×0,10 M		185 mg×0,10 M	
[mg/1ml] ^{/b}	= 33,	4 mg	= 20,	0 mg	= 20,	0 mg	= 16,	7 mg	= 18,	5 mg
m ₁ ×1,25 ^{/c b}	42,0) mg	25,0) mg	25,0 mg		21 mg		23,0) mg
Próbki	Nle1	Nle2	lle1	lle2	Leu1	Leu2	Tl1	Tl2	Met1	Met2
AA ^P /1,0 ml ^{/d}	mg	mg	mg	mg	mg	mg	mg	mg	mg	mg
Odważki	45	47	26	28	27	25	23	21	23	25
Efekt ^{/e}	+	+	+	+	+	+	+	+	+	+
Dodano ^{/f}	-	-	-	-	-	-	-	-	-	-
Łączna masa próbki AA ^P	45	47	26	28	27	25	23	21	23	25

^{a/} Orientacyjne stężenia molowe nasyconych roztworów AA^P:

Nleu^P=0,2M; Ileu^P=0,12M; Leu^P=0,12 M; Tleu^P=0,1 M; Met^P=0,1 M;

 $^{b/}m_1$ = AA^P rozpuszczony w 1 ml nasyconego roztworu; $^{c/}m_2$ = naważka AA^P do nasycenia 1,0 ml z 25% nadmiarem;

^{d/} Próbki AA^P: Nle1, Nle2,... Met1, Met2, etc. naważki Nleu^P (1) i Nleu^P (2), ..., etc.;

^{e/}Zaobserwowano pojawienie się kryształów/fazy stałej w roztworze: "+", nie zaobserwowano: "-".;

^{f/}W przypadku niewystąpienia przesycenia dodano kolejną naważkę AA^P

4.2.1.3.1.3. WYZNACZANIE ROZPUSZCZALNOŚCI II- I III-RZĘDOWYCH AMINOKWASÓW FOSFONOWYCH

Do mini-reaktorka (Rys. 4-1.) wprowadzano 1 ml wody, dodawano porcję (ok. 100 mg) badanego aminokwasu fosfonowego (Tab. 4-22.). Reaktorek umieszczano na mieszadle magnetycznym wyposażonym w termostatowaną łaźnię wodną, i suspensję mieszano w temperaturze 80°C przez okres do 0,5 h. Po tym okresie, reaktorek wyjmowano z łaźni i przez okres 3 h pozostawiano w temperaturze pokojowej. W przypadku braku pojawienia się kryształów aminokwasu operację powtarzano, dodając porcje 5-20 mg AA^P.

Tabela 4-22.	Tabela 4-22. Przeprowadzenie badań nad wyznaczaniem rozpuszczalności II- i III-rzędowych									
ΑΑ	$H_{2}N - \left[-C - \frac{H_{2}}{H_{2}}\right]_{3}^{H} P(OH)_{2}$		$\begin{array}{c} O \\ Me-N-C-P(OH)_2 \\ H \\ Et \end{array}$		$\begin{array}{ccc} \text{Me} & \text{O} \\ & \text{H} & \text{II} \\ & \text{N} - \text{C} - \text{P}(\text{OH})_2 \\ & \text{Me} & \text{Et} \end{array}$		Et-N-C-P(OH) ₂ H H Me			
	3-H	ala ^P	Me-Hala [₽]		Me ₂ -	Hala [₽]	Et-N	Iala ^P		
Porcje AA ^{P/a}	Dodano [/]	Efekt ^{/b}	Dodano [/] ª	Efekt ^{/b}	Dodano [/]	Efekt ^{/b}	Dodano [/]	Efekt ^{/b}		
1	100 mg	+	100 mg	+	200 mg	+	100 mg	+		
2	100 mg	100 mg +		+	200 mg	+	20 mg	+		
3	100 mg	+	50 mg	+	200 mg	+	10 mg	+		
4	100 mg	+	20 mg	+	100 mg	+	5 mg	+		
5	20 mg	+	10 mg	+	100 mg	+	5 mg	-		
6	10 mg	+	5 mg	-	50 mg	+				
7	5 mg	-			50 mg	+				
8					50 mg	+				
9					50 mg	+				
10					5 mg	+				
Stężenie [%] ^{/c}	~3(0%	~2	2%	>5(0%	~1	2%		
^{a/} Kolejne porcje ^{b/} Efekt: "+" – hc	dodawaneg mogenizacja	o AA ^P ; a; "-" brak ho	omogenizacji	i, obecność f	azy stałej;					

^{c/}Przybliżone stężenie procentowe

4.2.1.3.2. METODA SONIKACYJNA

4.2.1.3.2.1. BADANIA OPTYMALIZACYJNE

4.2.1.3.2.1.1. WPŁYW CZASU SONIKACJI SUSPENSJI AA^P-H₂O NA ROZPUSZCZALNOŚĆ AMINOKWASÓW

Próbki Nleu^P, o masach ok. 20-30 mg, odważono do mini-reaktorków (Screw-top V-vials: Aldrich Z115061-1ml), dodano wodę (0,5 ml) (Tab. 4-19.), umieszczono dodatkowo dipol magnetyczny (spinvane - Aldrich Z115169), i po szczelnym zamknięciu/zakręceniu minireaktorki umieszczono w łaźni ultradźwiękowej. Sonikację przeprowadzono przez 2 h w temperaturze 25-30°C. Ze względu na rozgrzewanie wody w łaźni podczas sonikacji, zachodziła potrzeba zewnętrznego chłodzenia (torebka foliowa z lodem). Reaktorki wyjmowano z łaźni po czasie sonikacji zestawionych w Tabeli 4-23., roztwory/suspensje Nleu^P przenoszono do probówek Oppendorfa i poddawano odwirowaniu. Supernatant (0,1 ml) poddano potencjometrycznemu miareczkowaniu z udziałem mianowanego roztworu 1 M KOH.

Tabela 4-23. Wpływ czasu sonikacji na rozpuszczalność Nleu ^P										
Czas	0 ′	1 h	0 1	5 h	1	h	2 h			
sonikacji	0,.	L 11	0,5	511	Ľ		2 11			
Próbki	N 11	N 12	N 21	N 22	N 31	N 32	N 41	N 42		
mg	29	27	28	27	27	26	29	26		
Dodana	0.5 ml	0.5 ml	0.5 ml	0.5 ml	0.5 ml	0.5 ml	0.5 ml			
woda	0,5 ml									

Wyniki oznaczeń zestawiono w Tabeli 3-9.

4.2.1.3.2.1.2. WPŁYW ETAPU MIESZANIA SUSPENSJI AA^P-H₂O PO SONIKACJI NA ROZPUSZCZALNOŚĆ AMINOKWASÓW

Próbki Nleu^P, o masach ok. 20-30 mg, odważano do mini-reaktorków (Screw-top V-vials: Aldrich Z115061-1ml), dodawano wodę (0,5ml) (Tab. 4-23.), umieszczano dodatkowo dipol magnetyczny (spinvane - Aldrich Z115169), i po szczelnym zamknięciu/zakręceniu mini-reaktorki umieszczano w łaźni ultradźwiękowej. Sonikację przeprowadzano przez 0,5 h w

temperaturze 25-30°C. Reaktorki wyjmowano z łaźni umieszczano na mieszadle magnetycznym wyposażonym w termostatowaną łaźnię wodną i mieszano przez okres wskazany w Tabeli 4-24. Odpowiednie roztwory/suspensje Nleu^P przenoszono do probówek Oppendorfa i poddawano odwirowaniu. Supernatant (0,1 ml) poddawano potencjometrycznemu miareczkowaniu z udziałem mianowanego roztworu 1 M KOH.

Tabela 4-24. Wpływ czasu mieszania suspensji Nleu ^P -H ₂ O dla 0,5 h - sonikacji na												
rozpuszczalność Nleu ^P												
Czas mieszania	0,5	0,5 h 1 h 2 h 3 h										
Próbki ^{/a}	N 11	N 12	N 21	N 22	N 31	N 32	N 41	N 42				
mg	27	29	27	33	32	25	29	29				
Dodana woda	0,5 ml	27 29 27 33 32 25 29 29 0,5 ml 0,5 ml										

Wyniki oznaczeń przedstawiono w Tabeli 3-10.

4.2.1.1.3.2.2. WYZNACZANIE ROZPUSZCZALNOŚCI AMINOKWASÓW METODĄ SONIFIKACYJNĄ

Do reaktorków odważano kwasy 1-aminoalkilofosfonowe w ilościach zestawionych w Tabeli 4-25., dodawano wodę (1,0 ml) i przeprowadzano sonikację (25-30°C, 0,5 h).

Tabela 4-25.1. Przygotowanie roztworów do badań nad wyznaczaniem rozpuszczalności										
AA' metodą sonikacyjną										
۸ ۸ ^P [mmol]	G	Gly ^P		a ^P	Ha	al ^P	Nν	′al [₽]	Val ^P	
	[mM=111 mg]		[mM=125 mg]		[mM=1	[mM=139 mg]		.53 mg]	[mM=153 mg]	
m ₁	111 mg×0,6 M		125mg	×0,9 M	139 m	g×1 M	153 mg	s×0,6 M	153 mg	s×0,2 M
[mg/1ml]	= 67	′ mg	= 11	3 mg	= 13	9 mg	= 92	2 mg	= 92	2 mg
m₂ [mg/0,5 ml]	33,5	33,5 mg 57 mg 70 mg 46 mg 31 mg								
m ₃ = m ₂ ×1,1	37	mg	63 mg		77 mg		51 mg		34 mg	
Próbki	G1	G2	A1	A2	H1	H2	Nv1	Nv2	V1	V2
AA ^ℙ /0,5 ml	mg	mg	mg	mg	mg	mg	mg	mg	mg	mg
Odważki	44	36	64	58	75	78	55	54	37	37
Dodano*	-	-	14	11	14	14	-	-	-	-
Ogólnie	44	36	75	69	89	92	55	54	37	37
$m_1 - AA^P$ rozpus: $m_2 - AA^P$ rozpus: $m_3 - naważka A/Próbki AA^P: G1, Orientacyjne sto$	Ogoinie44367569899255543737 $m_1 - AA^P$ rozpuszczony w 1 ml nasyconego roztworu; $m_2 - AA^P$ rozpuszczony w 0,5 ml nasyconego roztworu; m_3 - naważka AA^P do nasycenia 0,5 ml z 10% nadmiarem Próbki AA^P : G1, G2,etc. naważki Gly P (1) i Gly P (2),, etc. Orientacyjne stężenia molowe nasyconych roztworów AA^P :									

Gly - 0,55 M, Ala - 0,83 M; Hal - 0,96 M; Nval - 0,6 M; Val - 0,2 M *W przypadku niewystąpienia przesycenia dodano kolejną naważkę AA^P

Tabela 4-25.2. Przygotowanie roztworów do badań nad wyznaczaniem rozpuszczalności AA ^P										
	.2. FIZYEU	howanie		1000 001	Jauan ne		aczanier	mozpus		
	Inelou	Ją SULIKo .P	u il	P		P		P	N.4	→ P
AA ^P [mmol]	Leu	۲ ۱	116	5.	INIE	2U	I IE	2U'		et
	[mM=16	57 mg]	[mM=1	.67 mg]	[mM=1	.67 mg]	[mM=1	.67 mg]	[mM=1	.85 mg]
m	167 mg×0.1 M		167 mg×0,13		167 mg×0,21		167 may 0 1 M		19E max() 1 M	
111 <u>1</u>	= 16.7 mg		М		N	Л	107 mg	,∧0,⊥ ivi ⊐	102 118	,^U,1 101
[mg/1mi]	= 16,7	= 16,7 mg		2 mg	= 35	5 mg	= 16,	/ mg	= 18,	,5mg
m ₂										
[mg/0,5	8,5 r	mg	11	mg	5 mg	8 mg/4 9 mg			ng	
ml]		C		C				0.		
m3=	9,5 r	mg	12	mg	19	mg	9,5	mg	9,9	mg
m ₂ ×1,1	/10	0	/1	13	/21		/1	10	/1	1
Próbki	L1	L2	11	12	NI1	NI2	Tl1	Tl2	M1	M2
AA [₽] /0,5 ml	16	16	14	14	24	27	13	15	16	14
m ₁ - AA ^P rozpu	iszczony w	1 ml nasy	conego ro	ztworu;						
m ₂ - AA ^P rozpu	uszczony w	0,5 ml nas	syconego i	roztworu;						
m ₃ - naważka AA ^P do nasycenia 0,5 ml z 10% nadmiarem;										
Próbki AA ^P : L1, L2,etc. naważki Leu ^P (#1) i Leu ^P (#2),, etc.										
Orientacyjne s	Orientacyjne stężenia molowe nasyconych roztworów AA ^F :									
Leu ^P - 0,12 M; Ile ^P - 0,12 M; Nleu ^P - 0,2 M; Tleu ^P - 0,1 M; Met ^P - 0,1 M										

Wyniki oznaczeń przedstawiono w Tabeli 3-11.

4.2.1.1.4.WYZNACZANIE ROZPUSZCZALNOŚCI AMINOKWASÓW AA^P W UKŁADACH $AA^{P}-H_{2}O-ROH$

Do zaopatrzonych w dipole magnetyczne reaktorków odważono kwasy 1aminoalkilofosfonowe w ilościach zestawionych w Tabeli 4-26., dodano odpowiedni roztwór iPrOH-H₂O (1,0 ml) i mieszaniny suspendowano w łaźni ultradźwiękowej w temp. 25-30°C w czasie 0,5 h. Suspensje mieszano w temperaturze ok. 30°C w czasie 1 h, po czym przenoszono do probówek Oppendorfa i odwirowywano. Po odwirowaniu probówki termostatowano w temp. 25°C w czasie 48 h i poddawano analizie.

Tabela 4-26. Przygotowanie suspensji do badań rozpuszczalności AA ^P w układach										
	AA ^P -H₂O-iPrOH									
AA ^P	G	У ^Р	Ala ^P		Hala ^P		Nval ^P		Val [₽]	
[milimol]	[111	mg]	[125	mg]	[139	mg]	[92	mg]	[30	mg]
Rozp. AA ^P	0,6	M	0,9	M	1	М	0,6	бМ	0,2	M
W H ₂ O	,		,				,		,	
Rozp. AA ^r	111mg	×0,6 M	125mg	×0,9 M	139m	g×1 M	153mg	×0,6 M	153mg	×0,2 M
[mg/ml]	= 67	' mg	= 11	3mg	= 13	9mg	= 92	2mg	= 31	lmg
iPrOH-H ₂ O ^{/a}			P	Próbki AA	\ ^P /1ml ro	ztworu i	PrOH-H₂	0		
10.00	G	У ^Р	Al	a ^P	На	la ^P	Nv	'al ^P	Val [₽]	
10.90	G11	G12	A11	A12	H11	H12	Nv11	Nv12	V11	V12
(1 ml)	70	73	116	116	138	140	91	91	42	37
25:75	G2 [3	0 mg]	A2 [50 mg]		H2 [60 mg]		Nv2 [40 mg]		V2 [20mg]	
	G21	G22	A21	A22	H21	H22	Nv21	Nv22	V21	V22
(1 ml)	43	41	65	69	70	71	52	53	31	29
50:50	G3 [1	1 mg]	A3 [1	3 mg]	H3 [1	4 mg]	Nv3 [1	L0 mg]	V3 [1	0mg]
	G31	G32	A31	A32	H31	H32	Nv31	Nv32	V31	V32
(1 ml)	27	29	34	34	39	42	33	29	20	20
75:25	G4 [1	1 mg]	A4 [1	3 mg]	H4 [1	4 mg]	Nv4 [1	L0 mg]	V4 [1	0mg]
	G41	G42	A41	A42	H41	H42	Nv41	Nv42	V41	V42
(1 ml)	14	17	21	22	19	18	23	20	13	14
^a /Odpowiednie	układy wo	da-izopro	panol otr	zymano p	rzez zmies	zanie obu	i rozpuszc	zalników	w podany	ch
stosunkach obje	ętościowy	ch		-						

4.2.1.1.5. OZNACZANIE STĘŻEŃ KWASÓW 1-AMINOALKILOFOSFONOWYCH W UKŁADACH AA^P-H₂O-iPrOH

Do wyznaczenia stężeń kwasów 1-aminoalkilofosfonowych w układach AA^P-H₂O-iPrOH zastosowano metodę ³¹P-NMR-ową.

Zasada metody

Metoda polega na sporządzeniu roztworu do analizy przez zmieszanie w odpowiednim stosunku objętościowym roztworu AA^P o nieznanym stężeniu (do oznaczenia) i mianowanego roztworu standardu. Wzór do wyznaczania stężenia aminokwasu na podstawie widma ³¹P NMR mieszaniny AA^P (o nieznanym stężeniu) i standardu (o znanym stężeniu) (Równanie 4-1.) wyprowadzono w rozdziale Badania Własne (Tab. 3-7.).

Równanie 4-1. Algorytm do wyliczania stężenia AA^P z pomiarów ³¹P-NMR-owych

$$C_{AAP} = \frac{C_{ST} \times k \times RA_{AAP}}{RA_{ST}} \quad x \quad \frac{V_{ST}}{V_{AAP}}$$

C_{ST} - stężenie standardu (MPA, K₃PO₄);

 CA_{AP} - stężenie standardu AA^{P} ;

RA_{sT} - powierzchnia względna sygnału ³¹P standardu (MPA, K₃PO₄);

RA_{AAP} - powierzchnia względna sygnału ³¹P aminokwasu (AA^P);

k - stosunek powierzchnia względnej sygnału ³¹P standardu do powierzchni względnej sygnału ³¹P aminokwasu dla równomolowych stężeń standardu i aminokwasu w próbce;

V_{ST}/V_{AAP} - stosunek objętości roztworu standardu i objętości roztworu aminokwasu w próbce NMR.

W charakterze standardu wykorzystano 0,56 M roztwór kwasu metylofosfonowego (MPA). Przygotowanie roztworów do analizy przeprowadzono przez zmieszanie roztworów AA^P nasyconych w odpowiednim układzie iPrOH-H₂O, dodanie roztworów KOH 10 M, EDTA 0,02 M i D₂O dla "lock'u" w proporcjach zestawionych w Tabeli 4-27.

Tabe	Tabela 4-27. Przygotowanie roztworów do analizy ³¹ P NMR										
Ri	iPrOH- H ₂ O ^{/a}	AA [₽] -ii	V ^{/b}	MPA 0,56 M	Gly [₽]	Ala [₽]	Hal [₽]	Val [₽]	КОН 10 М	EDTA 0,02 M	D ₂ O
R1	10:90	(AA ^P 12)	ml	0,050	0,050	0,050	0,050	0,100	0,10	0,050	0,050
R2	25:75	(AA ^P 22)	ml	0,050	0,050	0,050	0,050	0,100	0,10	0,050	0,050
R3	50:50	(AA ^P 32)	ml	0,050	0,100	0,100	0,100	0,100	0,10	0,050	0,050
R4	75:25	(AA ^P 42)	ml	0,050	0,100	0,100	0,100	0,100	0,10	0,050	0,050
^{/a/} iPr	OH-H₂O (v	/v); ^{/b/} objęto	ości po	obieranycł	n próbek o	dmierzan	o strzykaw	vką Hamilt	ona poj. O	,100 ml	

Wyniki badań, w postaci numerycznego zapisu widm ³¹P NMR analizowanych mieszanin MPA-AA^P (MPA + Gly^P + Ala^P + Hal^P + Val^P), przedstawiono w Tabeli 4-28.

Tabela	4-28. Analiza w	idm ³¹ P NM	R układów A	A ^P -iPrOH-H ₂	20				
iPrOH	AA ^{P/a}	Ala ^P	Hala ^P	Val [₽]	MPA	Gly [₽]	Pi ^{/b}		
	ppm	22,27	21,68	21,12	20,62	19,23	5,56		
10%	RA	33,35	39,71	15,38	48,67	12,90	1		
	RA_{AAP}/RA_{AMP}	0,685	0,816	0,316	1	0,265			
	AA ^P	Ala ^P	Hala [₽]	Val ^P	MPA	Gly [₽]	Pi		
259/	ppm	22,28	21,68	21,12	20,54	19,25	5,56		
23%	RA	15,52	18,25	10,26	52,35	10,01	1		
	RA_{AAP}/RA_{MPA}	0,296	0,349	0,196	1	0,191			
	AA ^P	Ala ^P	Hala ^P	Val ^P	MPA	Gly [₽]	Pi		
E0%	ppm	22,32	21,70	21,11	20,57	19,30	5,79		
50%	RA	9,27	11,66	3,05	59,58	4,75	1		
	RA_{AAP}/RA_{MPA}	0,156	0,200	0,051	1	0,080			
	AA ^P	Ala ^P	Hala [₽]	Val ^P	MPA	Gly ^P	Pi		
	ppm	22,33	21,70	21,11	20,57	19,30	5,79		
75%	RA	1,32	2,70	-	71,85	0,533	1		
	RA_{AAP}/RA_{MPA}	0,018	0,038	< 0,01 ^{/c}	1	0,007			
^{a/} roztwor ^{b/} dodatko ^{c/} powier	^a /roztwory mieszanin MPA-AA ^P alkalizowano do pH ok. 10; ^{b/} dodatkowy standard do umieszczania skali przesunięć AA ^P ; ^{c/} powierzchnie Val ^P oszacowano								

Wyliczenia rozpuszczalności AA^P w 5-składnikowych układach MPA-AA^P(Gly^P/Ala^P/Hala^P/ Val^P)-H₂O-iPrOH opisanych w Tabeli 4-28., w oparciu o algorytm opisany za pomocą Równania 4-1., zestawiono w Tabeli 4-29.

Tabela 4	1-29. Wyznaczanie r	ozpuszczalr	ności AA ^P w 5-:	składnikowyc	h układach A	A ^P -H₂O-iPrOH			
		C _{ST}	x k x RA _{AAP}	V _{ST}					
	C	AAP=	RA _{ST}	X V _{AAP}					
	AA ^P	MPA	Glv ^P	Ala ^P	Hala ^P	Val ^P			
	mag	20.62	19.23	22.27	21.68	21.12			
	C _{ST}	0.56 M		/		/			
AA ^P	V _{ST} /V _{AAP}	1	1	1	1	2			
Wsp.	k	1	1,27	1,31	1,08	0,94			
	C _{ST} × k		0,711	0,734	0,588	0,526			
	$C_{ST} \times k \times V_{ST}/V_{AAP}$		0,711	0,734	0,588	0,263			
iPrOH	AA ^P	MPA	Gly [₽]	Ala ^P	Hala ^P	Val ^P			
10%	RA _{AAP} /RA _{AMP}		0,265	0,685	0,816	0,316			
	$C_{ST} \times k \times V_{ST}/V_{AAP}$		0,711	0,734	0,588	0,263			
	C ^{AAP} [M]		0,188 M	0,503 M	0,480 M	0,083 M			
iPrOH	AA ^P	MPA	Gly ^P	Ala ^P	Hala ^P	Val [₽]			
25%	$R = RA_{AAP}/RA_{AMP}$		0,191	0,296	0,349	0,196			
	$C_{ST} \times k \times V_{ST}/V_{AAP}$		0,711	0,734	0,588	0,263			
	C ^{AAP} [M]		0,136 M	0,217 M	0,205 M	0,051 M			
iPrOH	AA ^P	MPA	Gly [₽]	Ala ^P	Hala [₽]	Val ^P			
50%	$R = RA_{AAP}/RA_{AMP}$		0,080	0,156	0,200	0,051			
	$C_{ST} \times k \times V_{ST}/V_{AAP}$		0,711	0,734	0,588	0,263			
	C ^{AAP} [M]		0,057 M	0,115 M	0,118 M	0,013 M			
iPrOH	AA ^P	MPA	Gly [₽]	Ala ^P	Hala ^P	Val ^P			
75%	$R = RA_{AAP}/RA_{AMP}$		0,007	0,018	0,038	< 0,01 ^{/b}			
	$C_{ST} \times k \times V_{ST}/V_{AAP}$		0,711	0,734	0,588	0,263			
	C ^{AAP} [M]		0,005 M	0,013 M	0,022 M	0,003 M			
k – wspó ^{/b/} powie	k – współczynnik korelacyjny powierzchni sygnałów ³¹ P widma ³¹ P NMR dla pary AA ^P -MPA; / ^{b/} powierzchnię Val ^P oszacowano								

4.2.2. WIDMA ABSORPCYJNE KWASÓW AMINOALKILOFOSFONOWYCH

4.2.2.1. SPEKTROSKOPIA UV I IR

4.2.2.1.1. ANALIZA W UV

W badaniach wykorzystano uniwersalny spektrometr Spektrometr UV-VIS JASCO V-550 (Rys. 4-2.) ^[343].

Rysunek 4-2. Spektrofotometr UV-VIS V-550 Jasco

Jasco V-550 to uniwersalny, dwuwiązkowy spektrofotometr UV-VIS pracujący w zakresie długości fal od 190 do 1100 nm, ze stałą szczeliną 1,5 nm.

Podstawowe dane techniczne:

- zakres długości falowej: 190-1100 nm;
- powtarzalność dł. fali: 0,1 nm;
- dokładność długości falowej: 0,2 nm (przy 656,1 nm);
- szerokość spektralna: 1,5 nm;
- szybkość skanowania: 10-8000 nm/min;
- światło rozproszone: 0,02 % przy 340 nm.

Roztwory AA^P do badań UV

0,1 M wodne roztwory 1-aminoalkilofosfonowych (Gly^P, 3-Hala^P) otrzymano przez rozpuszczenie 0,5 mmoli aminokwasów (Gly^P: 65 mg, 3-Hala^P: 70 mg) w kolbkach miarowych (5 ml).

0,001 M wodne roztwory kwasów 1-aminoaralalkilofosfonowych w 0,1 M NaOH i 0,1 M HCl otrzymano przez rozcieńczenie w stosunku 1:10 roztworów 0,01 M otrzymanych wg. procedury zamieszczonej w Tabeli 4-30.

Tabela 4-30. Roztwory 0,01 M AA ^P w 0,1 M KOH i w 0,1 M HCl								
	Roztwory	7 0,01 M AA ^P w 0	,1М КОН	Roztwory 0,01 M AA ^P w 0,1 M HCl				
AA ^P	Pgly ^P	O ₂ N-Pgly ^P	y ^P 1-NphPgly ^P Pgly ^P O ₂ N-Pgly ^P 1-NphP _§					
AA ^P [MM]	[187]	[232,1]	[238]	[187]	[232,1]	[238]		
/0,1 mmol	/18,7 mg	/23,2 mg	/23,8 mg	/18,7 mg	/23,2 mg	/23,8 mg		
0,1 M KOH	10 ml	10 ml	10 ml	10 ml	10 ml	10 ml		
0,1 M HCl	10 ml	10 ml	10 ml	10 ml	10 ml	10 ml		

4.2.2.1.2. ANALIZA W PODCZERWIENI

W badaniach wykorzystano uniwersalny spektrometr firmy Jasco seria 6000 z przystawką mikroskopową Irtron- μ (Rys. 4-3.)^[344].

Rysunek 4-3. Spektrometr JASCO FT/IR serii 6000

Podstawowe dane techniczne:

- rozdzielczość 0,07 cm⁻¹;
- stosunek sygnału do szumu 50000:1;
- źródło światła: FT/IR 6000 wykorzystuje ceramiczne źródło światła o wysokiej intensywności (temperatura pracy 1350°C) oraz emisji o charakterystyce ciała czarnego;
- optyka: wiązka ze źródła światła jest kierowana poprzez zwierciadło paraboliczne bezpośrednio na interferometr, funkcja Rapid Scan pozwala na uzyskanie 20 widm w ciągu sekundy;
- interferometr: kompaktowy interferometr Michelsona pracujący pod kątem 28°, zamontowany wraz z optyką KBr w obudowie termostatowanej;

- detektor: izolowany termicznie detektor DLATGS oraz eliptyczne zwierciadło skupiające;
- przystawka mikroskopowa Irtron-μ do spektrometrów Jasco FTIR.

Procedura przygotowania próbek do pomiarów na spektrometrze FTIR

[1] Proszek bromku potasu przechowywano w suszarce w temperaturze 50°C aby zapobiec jego zawilgoceniu. Kryształy KBr są nieaktywne w zakresie podczerwieni (do 400 cm⁻¹), wiązka promieniowania oddziałuje jedynie z cząsteczkami badanej substancji.

[2] Badaną próbkę mieszano z bromkiem potasu w proporcji 0,1% - 2% próbki w stosunku do KBr. Aby uzyskać dokładne wymieszanie stosowano moździerz agatowy w którym poprzez ucieranie uzyskano jednorodne rozprowadzenie oznaczanej substancji.

[3] Mieszaninę: suchego, sproszkowanego KBr (ok. 150 mg) z zawiesiną badanego związku (ok. 2 mg), prasowano pod ciśnieniem (z użyciem tabletkarki firmy Specac z odsysaniem powietrza) tworząc krystaliczne pastylki o grubości ułamka milimetra (Rys. 4-4.).

Rysunek 4-4. Etapy procedury przygotowania próbek do pomiarów na spektrometrze FTIR

4.2.2.2. SPEKTROSKOPIA NMR

4.2.2.2.1. SPEKTROSKOPIA ³¹P-NMR

Przygotowanie roztworów

• 2,5 M roztwór kwasu chlorowodorowego

Do kolby miarowej (50 ml) wlano 12,5 ml 10 M roztwór kwasu solnego (125 mmola), i uzupełniono do objętości 50 ml wodą.

• 2,5 M roztwór wodorotlenku potasowego

Do kolby stożkowej (50 ml) odważono KOH 7,0 g (0,125 mmola), dolewano wody 25 ml, i po ostygnięciu, przeniesiono roztwór do kolby miarowej (50 ml). Roztwór rozcieńczono do kreski.

• 2,5 M roztwór buforowy octan/kwas octowy

Do kolby stożkowej (50 ml) odważono KOH 7,0 g (0,125 mmola), dolano wody 25 ml, i po rozpuszczeniu dodano kwas octowy (125 mmole, 7,5 g). Po ostygnięciu przeniesiono roztwór do kolby miarowej (50 ml) i rozcieńczono wodą do kreski miarowej.

Do rejestracji widm używano wodne roztwory AA^P o stężeniach 0,2 M do 0,4 M, otrzymane przez rozpuszczenie 0,1 do 0,2 mmola AA^P w 0,6 ml roztworu, otrzymanego przez zmieszanie 0,4 ml wyjściowych 2,5 M roztworów (HCl, KOH, bufor) (Tab. 4-31.).

Tabela 4-31. Przygotowanie wyjściowych roztworów do rejestracji widm ³¹ P NMR									
	2 M HCl (D)		2 M AcONa/AcOH (D)			2 M KOH (D)			
HCI	D ₂ O	EDTA	Bufor	D_2O	EDTA	КОН	D ₂ O	EDTA	
2,5M		0,02 M	2,5 M		0,02 M	2,5 M		0,02 M	
0,4 ml	0,05 ml	0,05 ml	0,4 ml	0,05 ml	0,05 ml	0,4 ml 0,05 ml 0,05 ml			
0,5 ml 0,5 ml 0,5 ml									
2 M HCI (D)	, 2 M AcONa	/AcOH (D) i	2 M KOH (D)	- roztwory a	zawierające 1	10% D ₂ O – dl	a "locku"		

Do wyznaczenia przesunięć chemicznych badanych kwasów aminoalkilofosfonowych (Tab. 3-16.) wykorzystano roztwory zawierające dwa wzorce wewnętrzne – kwas metylofosfonowy (MPA) i kwas/sól kwasu fosforowego (Tab. 4-32.).

Tabela 4-32. Przygotowanie wyjściowych roztworów ze wzorcami do rejestracji widm ³¹ P NMR									
	2 M* HCl		2 M* AcONa/AcOH			2 M* KOH			
HCI (D)	MPA	KH_2PO_4	Bufor(D)	MPA	KH_2PO_4	KOH (D)	MPA	KH ₂ PO ₄	
2,0 M	[96,1]	[136,1]	2,0 M	[96,1]	[136,1]	2,0 M	[96,1]	[136,1]	
	0,05 do	0,05 do		0,05 do	0,05 do		0,05 do	0,05 do	
0,5 ml	0,1	0,1	0,5 ml	0,1	0,1	0,5 ml	0,1	0,1	
	mmola	mmola		mmola	mmola		mmola	mmola	

Skład roztworów wykorzystanych do rejestracji widm ³¹P NMR w trybie z odsprzęganiem oddziaływań P-H (PD) i bez odsprzęgania (NPD) przedstawione są w Tabeli 4-33.

Tabela 4-33. Przygotowanie roztworu do widm ³¹P NMR mieszaniny kwasu metylofosfonowego (MPA), fosfonoglicyny (Gly^P) i fosforanu w 1,0 M KOH (D₂O) w trybie z odsprzęganiem (PD) i bez odsprzęgania (NPD)

	Związki tostoru		2,0 М КОН			
MPA	Gly [₽]	KH ₂ PO ₄	2,4 M KOH	0,02 M	D ₂ O	
[96,1]	[111,1]	[136,1]		EDTA		
0,0104 g	0,0120 g	0,0130 g	0,4 ml	0,05 ml	0,05 ml	
0,108 mmoli	0,108 mmoli	0,096 mmoli				

4.2.2.2.2. SPEKTROSKOPIA ¹H-NMR I ¹³C-NMR

Roztwory kwasów fosfonowych w układzie TFA-CDCl₃ otrzymano przez rozpuszczenie 0,2 mmola kwasu fosfonowego AA^P (Tab. 4-34.) w 0,6 ml TFA i rozcieńczenie roztworu z 0,4 ml CDCl₃.

Tabe	Tabela 4-34. Przygotowanie roztworów kwasów fosfonowych w TFA-CDCl ₃								
Kwasy Fosfonowe									
Ň	WdS	MPA	Gly [₽]	Ala ^P	2-Ala [₽]	3-Hala ^P	4-Nval ^P		
Masa Molowa 96,1 111,1 125 125,1 139,1 153						153,1			
lloćć	mg ^{/a}	21	21	25	25	27	30		
nosc	llosc mmoli ^{/b} 0,22 0,19 0,20 0,20 0,19 0,195								
	^{a/} ±0,5 mg; ^{b/} ±0,005 mmola								

Roztwory kwasów fosfonowych w D_2O otrzymano przez rozpuszczenie 0,2 mmola kwasu fosfonowego AA^P w 0,5 ml D_2O (99,9 % D) (Tab. 4-35.).
Tabela 4-35. Przygotowanie roztworów kwasów fosfonowych w D ₂ O												
Kwasy Fosfonowe												
MPA Gly ^P Ala ^P 2-Ala ^P 3-Hala ^P 4-Nval ^P												
Masa	Molowa	96,1	111,1	125	125,1	139,1	153,1					
lloćć	mg ^{/a}	20	21	24	26	28	29					
nosc	llosc mmoli ^{/b} 0,21 0,19 0,19 0,21 0,20 0,19											
^{a/} ±0,5 mg; ^{b/} ±0,005 mmola												

Roztwory kwasów fosfonowych w układzie H_2O-D_2O (9:1) otrzymano przez rozpuszczenie 0,2 mmola kwasu fosfonowego AA^P w 0,6 ml H_2O-D_2O (9:1) (Tab. 4-36.).

Tabe	Tabela 4-36. Przygotowanie roztworów kwasów fosfonowych w H ₂ O-D ₂ O (9:1)											
Kwasy Fosfonowe												
MPA Gly^{P} Ala^{P} $2-Ala^{P}$ $3-Hala^{P}$ $4-Nval^{P}$												
Masa	Molowa	96,1	111,1	125	125,1	139,1	153,1					
lloćć	mg ^{/a}	19	22	26	24	29	29					
nosc	llosc mmoli ^{/b} 0,20 0,20 0,21 0,19 0,21 0,19											
^{a/} ±0,5 mg; ^{b/} ±0,005 mmola												

4.2.3. BADANIA TERMOGRAWIMETRYCZNE KWASÓW AMINOALKILOFOSFONOWYCH

Do badań termograwimetrycznych kwasów aminoalkilofosfonowych wykorzystano aparat Hi-Res TGA 2950 Thermogravimetric Analyzer firmy TA Instruments.

Krzywe TGA zostały zarejestrowane w Centrum Badań Molekularnych i Makromolekularnych w Łodzi, Polskiej Akademii Nauk (operator: Sylwia Gmach).

Analizer TGA 2950 przedstawiony jest na Rysunku 4-5.

Cechy analizera TGA 2950^[347]:

- pionowy system wagowy o pojemności 1,5 mg, czułości 0,1 mg;
- zakresie reżimu temperaturowego od temp. pokojowej do 1000°C;
- pojedyncza termopara umieszczona blisko próbki dla kontroli pieca i monitorowania temperatury próbki;
- horyzontalny system przepłukiwania gazem, zapewnia szybkie usunięcie produktów termolizy próbki związku eliminując przebieg niepożądanych reakcji rekombinacji, dzięki czemu nie obserwuje się poszerzenia sygnałów w eksperymentach HR;
- gaz przemywający gazy obojętne (N₂, He, Ar), rekomendowany hel;
- wysoka czułość wagi, kontrola szybkości ogrzewania jest powiązana z ubytkami masy próbki, zdolność rejestracji małych zmian masy jest ważna dla optymalnych warunków kontroli.

Wykorzystany analizer może pracować wg. czterech trybów (*HI-RESTM TGA Algorithms*) mogących pracować niezależnie lub w sprzężeniu:

- stała szybkość ogrzewania próbki (Constant Heating Rate Mode) konwencjonalny typ TGA;
- zmienna szybkość ogrzewania próbki (*Dynamic Rate Mode*) np. szybkie ogrzewanie próbki w obszarach których nie zachodzi termoliza;
- tryb stałej szybkości reakcji (*Constant Reaction Rate Mode*) zmienia temperaturę pieca dla zachowania stałości wybranej szybkości zmiany masy (%/minuta);
- tryb częściowo izotermalny (Stepwise Isothermal Mode) ogrzewanie ze stałym wzrostem do początku termolizy, od tego momentu przemiana izotermalna; sekwencja nagrzewań i izoterm jest powtarzana dla każdej rejestrowanej zmiany masy próbki.

Zasada pomiaru właściwości termograwimetrycznych

Pomiar właściwości termograwimetrycznych polegał na rejestracji zmian masy badanej substancji w zależności od zmian temperatur lub upływu czasu. Próbkę odważa się do naczynka (1-5 mg) i umieszcza się w piecyku, który jest połączony z termowagą. Próbkę ogrzewa się do zadanej, monitorowanej przy pomocy termopary, temperatury. Układ rejestrujący zapisuje zmianę masy względem zmiany temperatury: dm/dT (lub czasu: dm/dt). Na krzywej termograwimetrycznej wyróżnia się obszar plateau (nie zachodzi zmiana masy) oraz obszar, w którym masa się zmienia na skutek wydzielania lotnych składników próbki. Na termogramie obok krzywych TG, wykreśla się również różnicową krzywą termograwimetryczną (DTG), która jest pierwszą pochodną krzywej TG. Na krzywej TGA obserwuje się ekstrema (maksima i minima), które odpowiadają zmianom masy analizowanej próbki.

4.2.4. BADANIA NAD PIROLIZĄ KWASÓW AMINOALKILOFOSFONOWYCH 4.2.4.1. METODA BADAŃ

Do badań pirolizy kwasów aminoalkilofosfonowych została wykorzystana technika chromatografii gazowej z detekcją mas, chromatograf GC-MS wyposażony był w pirolizer (Py-GC-MS) ^[348].

Schemat budowy aparatu przedstawia Rysunek 4-6.

Technika Py-GC-MS umożliwia badanie lotnych związków chemicznych pochodzących bezpośrednio z pirolizy. Związki mogą być analizowane w stałej temperaturze lub z zaprogramowanym wzrostem temperatury pirolizy.

Badania prowadzono na chromatografie gazowym firmy Shimadzu (Japonia) model: GC-17A zaopatrzonym w detektor selektywności masy ^[348]. Kolumna chromatograficzna UA5-30M-025F wykorzystywana w badaniach posiadała 30 m długości, 0,25 mm średnicy, 0,25 um grubości ścianek, max. temperatura pracy to ok. 360⁰C.

Badane próbki nie były poddawane wstępnej obróbce (np. ekstrakcji, oczyszczaniu).

Parametry badań chromatografu gazowego

Analizę chromatograficzną (GC) prowadzono w następujących warunkach:

- temperatura dozownika: 300^oC;
- temperatura interfejsu: 300^oC;
- program wzrostu temperatury kolumny: od 105°C (1 min.) następował wzrost o 3°C/min do 150°C, następnie wzrost o 11°C/min do 320°C (6 min.).

Całkowity czas programu temperaturowego to 37,45 min.

Rysunek 4-7. przedstawia szczegółowe dane dotyczące stosowanej metody oznaczania produktów pirolizy badanych związków.

Parametry badań detektora ms

Badania przeprowadzono w trybie *Scan* pracy derektora MS. W trybie scan wybrano zakres szukanych mas jonów produktów pirolizy od 33 do 350 m/z (Rys. 4-8.).

🔟 GC 🚭 MS					
GCMS-QP5000					
Acquisition Mode : Scan	▼ <u>D</u> e	etector Voltage :	C Absolute	 Relation 	ive to the Tuning Resu
Micro Scan Width : 0	u		1.2	kV	
Interface <u>T</u> emp. : 300	°C T <u>h</u>	reshold :	1000		
Solvent Cut Time : 0	min Int	e <u>r</u> val :	0.655	sec	
☑ <u>U</u> se MS Program <u>Set</u> .		Program Time :	37.45	min	
Start Time (min)	End Time (mi	n) 🛛 Start m	/z End	i m/z	Scan Speed
1 0.00	37.0	0 33.0)0 3	350.00	500

Rysunek 4-8. Parametry programu detektora mas metody oznaczania produktów pirolizy

Parametry badań pirolizera

Pirolizę badanych związków przeprowadzono w stałej temperaturze: 400⁰C, przez 2 minuty. Temperatura interfejsu ustawiono na 300⁰C (Rys. 4-9.).

Single-Shot Analysis	START
Pyrolyzer	Monitor
□ Furnace	9
Pyrolysis (°C) Pyrolysis (min) 400 2.00	
□ Interface Upper Temp. 300 °C	Furnace
Accessories	Interface
☐ Selective Sampler	

Rysunek 4-9. Parametry pracy oraz schemat budowy pirolizera układu Py-GC-MS

Po wprowadzeniu próbki do komory urządzenia następował proces pirolizy w 400⁰C trwający 2 minuty, po tym czasie próbka zostawała usuwana ze strefy grzejnej a lotne związki mieszając się z gazem nośnym (hel) trafiały do kolumny chromatograficznej. Reprezentatywny chromatograf Py-GC-MS, wyciąg z analizy MS dominującego piku wraz z identyfikacją na podstawie biblioteki MS przedstawiono na Rysunku 4-10.

Zredukowane widmo MS produktów pirolizy Me-Pgly^P przedstawiono w Tabeli 4-37.

Tab	Tabela 4-37. Wyniki analizy GC-MS lotnych produktów pirolizy Me-Pgly ^P (400°C, 4 min.)												
Nr		GC		Zred	ukowar	ne widm ۱	ia MS-E Me-Pgly	l produ	któw pi	rolizy	I	dentyfikacja	
	RT	А	RA				m/z [%]				MM	Struktura	
1	1,820	18	0,5	m/z	34						34/	PH₃	
				[%]	100						PH₃		
	Dane z B	iblioteki		m/z	34	32	32						
	MS-EI			[%]	100	32	32						
2	2,188	10	0,3	m/z	92	91	65	51	39		92/		
				[%]	45	75	48	48	100		C ₇ H ₈	« »—	
	Dane z B	Biblioteki	1	m/z	92	91	65	51	39		-		
	MS-EI			[%]	78	100	12	8	10				
3	3,001	131	3,8	m/z	106	78	77	58	38		106/		
				[%]	30	15	38	100	40		C ₇ H ₆ O	$\langle \rangle$	
	Dane z B	Biblioteki		m/z	106	105	78	77	51	50			
	MS-EI			[%]	94	94	18	100	38	20			
4	3,662	18	0,5	m/z	51	45	41	38			51		
				[%]	100	75	90	80					
	3,738	3458	95,1	m/z	119	118	104	91	77	42	118/		
				[%]	27	70	5	22	35	100	C ₈ H ₉ N		
	Dane z B	Biblioteki		m/z	119	118	103	91	77	42		<u> </u>	
	MS-EI			[%]	52	100	5	18	35	48			
Σ		3635	100,2					•	1				
GC: A (A RA l	GC: RT - czas retencji [min]; A (Ax10 ³) - powierzchnia sygnału na chromatogramie; RA [%] - względna powierzchnia sygnału na chromatogramie:												
				,			0						

RA [%] - względna powierzchnia sygnału na chro MM - masa cząsteczkowa vs. wzór sumaryczny

4.2.4.2. BADANIA NAD PIROLIZĄ KWASÓW AMINOALKILOFOSFONOWYCH

Pomiary powtarzane były standardowo dwukrotnie, w przypadkach analiz kontrowersyjnych trzykrotnie. Reprezentatywne chromatogramy przedstawiono w Tabelach: 4-38. - 4-60.

Tabela 4-38. Wyniki analizy GC-MS lotnych produktów pirolizy Gly ^P [400°C; 2 min]												
		GC		Zred	ukowar	ne widn	າa MS-E	I produl	któw pi	rolizy	Iden	tyfikacja
Nr.		1					Gly					
	RT	Α	RA				m/z [%]]			MM	Struktura
	1 0 4 7	020	04	m/z	59	58	46	44				CH3
	1,842	828	94	[%]	12	17	9	100			59/	O _、 ∠CH₂ N
			C ₂ H ₅ NO	CH3								
1	Dane			HC _N OH								
		MS-EI		m/z	58	57	43	42	28	15	58/	
				[%]	32	5	70	12	28	100	$C_2H_6N_2$	
	1 001	E 2	6	m/z	92	77	62	49	47			
2	2,002	52	0	[%]	30	75	15	33	95		92/	
Z	Dane	z Bibli	oteki	m/z	92	77	61	49	47		C₃H₀PO	IVIE ₃ PO
		MS-EI		[%]	60	95	10	25	20			
Σ		880	100									
GC: F	GC: RT - czas retencji [min];											
A (Ax10 ³) - powierzchnia piku na chromatogramie;												
RA [%] - względna powierzchnia piku na chromatogramie;												
MM	- masa cz	asteczk	owa vs.	wzór sui	maryczn	v						

Tabela 4-39. Wyniki analizy GC-MS lotnych produktów pirolizy t-Bu-Gly ^P [400°C; 2 min]													
Nr.		GC		Zree	dukowa	ne widn	ha MS-El	l produk	tów piro	olizy	Ide	ntyfikacja	
		1				1	:-Bu-Gly	F					
	RT	А	RA				m/z [%]				MM	Struktura	
1	2,059	949	59	m/z	56	55	50	45	41	39	56/		
				[%]	21	8	6	5	83	100	C ₄ H ₈		
	Dane	e z Biblio	teki	m/z	57	56	55	50	41	28			
		MS-EI		[%]	4	62	18	5	90	100			
			\sim										
				[%]	50	20	10	100	40				
				m/z	56	55	50	41	39			\sim	
				[%]	45	19	5	100	30				
				m/z	56	55	50	41	40	39		/	
				[%]	50	15	5	100	16	45		$=\langle$	
2	2,091	653	41	m/z	68	67	59	58	42	39	67/		
				[%]	1,7	1,9	4	100	41	25	C_4H_5N		
	Dane	e z Biblio [.]	teki	m/z	58	57	43	39	29			C_4H_{10}	
		MS-EI		[%]	12	4	100	15	45				
				m/z	68	67	66	52	41	39	_		
				[%]	4	100	8	4	62	70		ZT	
Σ	Σ 1602 100												
GC:	GC: RT – czas retencji [min]; A (Ax10 ³) – powierzchnia piku na chromatogramie; RA [%] – względna												
pow	ierzchnia p	iku na cl	nromato	gramie. N	۰ MM - ma	asa cząst	eczkow	a vs. wz	ór suma	ryczny	-		

Tab	Tabela 4-40. Wyniki analizy GC-MS lotnych produktów pirolizy Ala ^P [400°C; 2 min]											
Nr.		GC		Zrec	lukowar	ne widm	a MS-EI Ala ^P	produk	tów piro	olizy	Id	entyfikacja
	RT	А	RA ^{/b}				m/z [%]				MM	Struktura
	1 744	1721	00	m/z	57	56	51	45	42	41		\wedge
	1,744	1/51	00	[%]	10	100	11	16	55	99		× ∧N'
				m/z	57	56	42	30	28		57/	
[%] 45 20 10 45 100												└ _{NH}
1 Dane z Biblioteki m/z 57 56 42 30 28												∧ ∠NH
	Dane	MS-EI	LEKI	[%]	35	26	100	15	26			
				m/z	58	57	43	42	28	15	58/	\
				[%]	32	5	70	12	28	100	$C_2H_6N_2$	N=N
	2 1 2 1	227	12	m/z	121	106	94	77	65	39	121/	
	5,151	227	12	[%]	25	38	18	18	25	100	$C_8H_{13}N$	
2	Dane	z Biblio	teki	m/z	121	120	106	93	80	65		\bigwedge
		MS-EI		[%]	75	100	10	18	10	8		
Σ	Σ 1958 100											
GC: piku	GC: RT - czas retencji [min]; A (Ax10 ³) - powierzchnia piku na chromatogramie; RA [%] - względna powierzchnia piku na chromatogramie. MM - masa cząsteczkowa vs. wzór sumaryczny											

Tabe	ela 4-41	. Wyn	iki ana	lizy G	C-MS l	otnych	Hala ^P [4	00°C; 2 ۱	min]			
Nr.		GC		Zre	dukowa	ane wid	ma MS-E	l produl	któw pir	rolizy	Id	entyfikacja
		• /a					Hala	,				C 1 1 1
1	RI	A'	RA	m/7	гo	67	m/z [%	24	22		MM	Struktura
1	2,04	134	11	[0/]	30	57	4 2	54	33			
	0			[/0] m/z	58	57	43	100	29 29			
				[%]	12	л	100	38	<u>2</u> 3 42		58/	
				[/0]	58		100	42	72		C_4H_{10}	\ \
	Dane	z Biblic	oteki	m/z		57	43	42	27			
		MS-EI		[%]	4	4	100	38	28			/
				m/z	58	57	39	29	28		58/ C₂H₅O	
				[%]	45	10	5	38	100		-3. 0-	0
2	2 100	F 0	4.0	m/z	84	69	55	39				
	2,199	58	4,9	[%]	10	23	23	100			84/	
	Dane	z Biblio	oteki	m/z	84	69	56	41	39		C_6H_{12}	
		MS-EI		[%]	70	22	100	68	28			
3				m/z	85	84	70	67	56	41		
	2,286	341	29	[%]	2	6	40	10	18	100	85/	
		•		m/z	85	84	70	57	56	44	$C_5H_{11}N$	
	Dane	z Biblic	oteki	[%]	52	100	15	48	48	35		
		MS-EI		m/z	71	70	56	55	42		70/	\frown
				[%]	3	30	2	33	100		C_5H_{10}	
4	2.000	44 3,7		m/z	122	107	91	79	65	39	122	
	2,969	44	3,7	[%]	27	62	81	49	29	100	122	
5	2 1 6 4	0.4	7 1	m/z	112	99	84	70	58	41		
	5,104	04	7,1	[%]	8	26	4	74	12	100		
				m/z	112	97	83	67	55	27		
				[%]	15	5	100	5	65	58		0 ⁶ 0 ⁶ C ₂ H ₅
				m/z	112	97	69	54	43	26		
	Dane	z Biblic	otoki	[%]	12	100	95	20	90	18		0~0~
	Dane	MS-EI	JUCKI	m/z	113	112	97	69	55	41	4427	
				[%]	10	54	30	100	10	90	112/ CcHaOa	o Lo Lo
				m/z	113	112	83	55	39	27	0611802	\ /
				[%]	5	40	55	100	27	25		
6				m/z	112	106	91	82	70	41		
	3,250	55	4,7	[%]	15	5	8,8	9,1	55	100		
	Dane	z Biblic	oteki									
	MS-EI	zebran piku 5	e dla		Р	atrz dar	ie dia sy	gnatu nr	. 6.			
7	3 702	62	5.2	m/z	110	94	82	67	55	41	110	
	5,192	02	5,5	[%]	7,5	17	20	18	48	100	110	
8	4,139	21	1.8	m/z	124	96	93	68	62	44	124	
	,		_, _	[%]	67	14	27	8.2	100	26	•	
9	4,832	28	2,4	m/z	124	80	68	62	55	39	124	
1		1		[%]	22	19	28	18	24	100		

Tabe	Tabela 4-41. (cd.) Wyniki analizy GC-MS lotnych produktów pirolizy Hala ^P [400°C; 2 min] Zredukowane widma MS-EL produktów pirolizy												
Nr.		GC		Zre	dukowa	ane widi	ma MS-E Hala ^P	I produl	któw pir	olizy	Id	entyfikacja	
	RT	A ^{/a}	RA				m/z [%]			MM	Struktura	
	F 01C	102		m/z	135	134	107	93	79	63			
	5,010	102	8,9	[%]	39	63	20	10	18	11			
				m/z	135	134	118	91	58	42			
				[%]	40	25	5	45	100	20			
10	10 m/z 135 118 106 91 77 65										135/		
	Dane	z Biblic MS-EI	6	C ₉ H ₁₃ N	$\begin{pmatrix} & & \\ & $								
m/z 135 121 120 103 93 77													
				[%]	25	10	100	3	10	12		\∕ Ĥ ∖	
11	E 920	21	10	m/z	127	112	98	83	71	40	127		
11	5,829	21	1,0	[%]	61	100	27	26	23	87	127		
12	6 284	1/	1.2	m/z	112	57	41				112		
12	0,204	14	1,2	[%]	100	44	100				112		
	6 605	214	10	m/z	135	134	120	107	93	39			
	0,095	214	10	[%]	50	19	38	16	18	100			
				m/z	135	118	106	91	77	65			
				[%]	18	3	100	3	22	6		H^{-1}	
13	Dana	- Diblia		m/z	135	121	120	103	93	77	135/ CoH42N		
	Dane	MS-EI	лекі	[%]	25	10	100	3	10	12		\/ Ĥ ∖	
				m/z	135	132	118	105	91	44			
				[%]	4	4	4	4	8	100		()+(C+2)	
Σ 1178 99,8 A ^{/a} : A x 10 ⁴													
GC: RT - czas retencji [min];													
A (A)	(10°) - pc	wierzc	hnia pik	u na ch	romato	gramie;	C.						
	RA [%] - względna powierzchnia piku na chromatografie.												
	- 111838 UZ	ąsieczk			undi yC	211y							

Tabela 4-42. Wyniki analizy GC-MS lotnych produktów pirolizy Me-Hala ^P [400°C; 2 min]												
Nr		GC		Zredu	ikowane	e widma M	a MS-El Ie-Hala ^P	produkt	ów pir	olizy	Iden	tyfikacja
	RT	Α	RA			n	n/z [%]				MM	Struktura
				m/z	58	45	34					
	1,961	157	2,2	[%]	3	19	100					
				m/z	59	58	39	29			58/	$\hat{\rho}$
1	[%] 12 85 05 100											
	Dane	Z BIDIIOTO MS-FI	екі	m/z	45	44	43	28			45/	\
				C₂H ₆ N	N-H							
	2.026	42		∕~∕¢ ^N ∖								
	2,026	4694	66.	[%]	6	4	2	2	3	100	71/	
2	Dane	z Bibliote	eki	m/z	71	70	68	56	44	28	C_4H_9N	H N
	2 41.0	MS-EI		[%]	40	40	10	20	100	70		// ~ 、
2	2 207	124	1.0	m/z	86	58	44	39			96	
5	2,297	134	1,9	[%]	13	36	100	34			80	
	<u>רכ ר</u>	177	25	m/z	71	70	68	57	42		71/	
л	2,373	1//	2,5	[%]	20	4	6,4	4,4	100		71/ C.H.N	₩ N
4	Dane	z Bibliote	eki	m/z	71	70	68	56	44	28	C41191N	
		MS-EI	T	[%]	40	40	10	20	100	70		
5	2 4 4 9	80	11	m/z	50	45	44				50	
5	2,443	00		[%]	14	15	100				50	
6	2.524	98	1.4	m/z	84	56	44	42			84	
	_,		_,.	[%]	13	36	76	100			01	
-	2 (22	1700	25	m/z	111	110	96	82	68	42	111/00	
/	2,622	1766	25	[%]	3	3	30	11	13	100	111/96	Н
Σ		7106	100									
GC:	GC:											
RT - c	zas retenc	ji [min];										

A (Ax10[°]) - powierzchnia piku na chromatogramie; RA [%] - względna powierzchnia piku na chromatogramie.

Tabe	Tabela 4-43. Wyniki analizy GC-MS lotnych produktów pirolizy Et-Hala ^P [400°C; 2 min]												
Nr.		GC		Z	reduko	wane w piro	/idma N lizv Et-I	/IS-EI pr Hala ^P	oduktć	ŚW	Ide	entyfikacja	
	RT	Α	RA			m	/z vs. [%]			MM	Struktura	
	2,080	63	3,0	m/ z	58	44	34						
1				[%]	7	15	100				58/	$\sim .0$	
L	Dane	e z Bibliot	eki	m/ z	59	58	39	29			C₃H ₆ O		
		IVI3-LI		[%]	12	85	5	100					
	2,199	1680	81.	m/ z	85	84	70	56	54	42		Et-CH=N-Et	
2				[%]	8,5	3	41	100	14	70	85/		
2	Dane	e z Bibliot	eki	m/ z	84	70	57	54	42		$C_5H_{11}N$	∕~∕¢N∖	
		IVI3-LI		[%]	5	15	45	5	100				
3	2,557	25	1,2	m/ z	98	70	58	41					
				[%]	10	10	16	100					
4	2,698	77	3,7	m/ z	100	98	85	70	56	41	100/	C ₃ H ₅ -N(Me)-Et	
				[%]	49	6,8	70	86	99	100	C ₆ 11 ₁₃ 1		
5	2,947	16	0,8	m/ z	110	98	82	70	56	41			
				[%]	16	30	11	25	41	100			
6	3,088	235	11.	m/ z	125	124	110	96	82	41	124/125/		
				[%]	3	3	49	54	30	100	C8H15IN		
7	4,149	16	0,8	m/ z	124	100	62	40			124		
~	[%] 38 35 100 60												
		2096	100										
RT - c	zas reter	ncji [min]	;										

A (Ax10³) - powierzchnia piku na chromatogramie; RA [%] - względna powierzchnia piku na chromatogramie.

Tab	ela 4-44	1. Wyni	ki anal	izy GC-	MS lot	nych p	rodukto	ów piro	lizy Me	e ₂ -Hala ^P [4	00°C; 2 min]
		GC		Zrec	lukowa	ne widn	na MS-E	I produ	któw	1	dentyfikacia
Nr.			r		p	oirolizy N	⁄Ie₂-Hal	ar			achtymacja
	RT	Α	RA			m/:	z [%]			MM	Struktura
	2 050	1 4 4	2.0	m/z	59	58	44	39			
1	2,059	144	2,0	[%]	10	100	33	100		59/	MeaN
-	Dane	e z Biblio	teki	m/z	59	58	42	30		C₃H ₉ N	IVIC3IV
		MS-EI		[%]	69	100	26	32			
				m/z	87	70	58	42	39		
2	2,134	3467	47	[%]	4	2	100	49	16	87/	∧ .NMe.
2	Dane	e z Biblio	teki	m/z	87	71	58	42	30	$C_5H_{13}N$	
		MS-EI		[%]	8	2	100	10	10		
	2 4 0 0	2242	24	m/z	85	84	70	58	42		
	2,199	2312	31	[%]	12	8	12	38	100	85/	
3	Dane	e z Biblio	oteki	m/z	85	84	70	58	42	$C_5H_{11}N$	∧ .NMe.
		MS-EI		[%]	40	22	10	100	40		
_				m/z	98	84	71	58	42	98/	\sim
4	2,524	594	8,1	[%]	11	6	18	60	100	$C_5H_{10}N_2$	Me ₂ N [×] NH
	2 6 2 2	227	16	m/z	127	112	98	82	58		
5	2,033	337	4,0	[%]	2	3	8	5	100	127/	\sim N
5	Dane	e z Biblio	teki	m/z	127	112	98	82	58	$C_8H_{17}N$	
		MS-EI		[%]	5	5	5	5	100		
6	2 2 2 7	402	C7	m/z	125	110	96	81	42	125	
0	3,337	492	6,7	[%]	19	15	31	15	100	125	
Σ		7346	99,5								
GC: I	RT - czas	retencji	[min]; A	(Ax10 ³) - powie	erzchnia	piku na	chromat	ogramie	; RA [%] - w	zględna powierzchnia
piku	na chron	natograr	nie. MN	1 - masa	cząstecz	zkowa vs	. wzór sı	umarycz	ny		

Tabe	ela 4-45	5. Wyni	ki anal	izy GC-l	MS lotr	nych pro	oduktó	<i>w</i> piroli	zy 2-Ala	a ^P [400 [°]	[°] C; 2 min]	
Nr.		$\mathrm{GC}^{/\mathrm{a}}$		Zr	edukowa	ane widn	na MS-EI 2-Ala ^P	produkt	Olizy 2-Ala ^P [400°C uktów pirolizy 1 39 100 39 100 39 0 40 39 0 40 39 0 100 39 0 40 39 0 16 45 5 51 39 0 16 45 5 51 39 0 16 45 5 51 39 21 100 5 92 3 41 0 26 0 26 0 26 0 26 0 26	Ider	ntyfikacja	
	RT	А	RA				m/z [%]				MM	Struktura
	2.22	6750	50	m/z	56	55	50	41	39			
	2,32	6758	58	[%]	20	25	10	85	100			
		•		m/z	56	55	50	41	39			~ ~
				[%]	50	20	10	100	40			
1		D 'L I'		m/z	56	55	50	41	39		56/	~ //
	Dane	e z Bidlic	отекі	[%]	45	19	5	100	30		C_4H_8	
		IVISEI		m/z	56	55	50	41	40	39		/
				[%]	50	15	5	100	16	45		
				m/z	93	91	80	65	51	39	Ide MM 56/ C₄H ₈ 93/ C₄H ₃ N ₃	
	2,86	4990	42	[%]	20	34	20	23	21	100		
				m/z	94	93	78	66				N
				[%]	15	100	4	92			93/ C.H.N.	L _{⊂N} ∕−CN
				m/z	94	93	78	67	66		C41131 1 3	
2	Dane	e z Biblic MSEI	oteki	[%]	15	100	4	8	92			L _{_N} ≫−CN
				m/z	94	93	66	53	41			HZ
				[%]	12	100	42	20	26			L → CN
Σ		11748										
GC: R	T - czas i	retencji	[min]; A	(Ax10 ⁴)	- powier	zchnia p	iku na ch	romatog	gramie; R	RA [%] - v	vzględna po	owierzchnia
piku	na chron	natograr	nie. MN	1 - masa (ząsteczl	kowa vs.	wzór sur	naryczny	/			

Tabe	ela 4-46.	Wyniki	analizy	GC-MS	lotnyc	h prod	uktów	pirolizy	[,] 3-Hala ^P [400	0°C; 2 min]
Nr.		GC		Zred	ukowar	ie widm	a MS-E 3-Hala ^P	l produl	któw pirolizy	Iden	tyfikacja
	RT	Α	RA			I	m/z [%]			MM	Struktura
	1.07		100	m/z	42	41	40	39			
	1,97		100	[%]	56	81	29	100			
1				m/z	42	41	40	39		42/	
T	Dana			[%]	100	90	30	70		C_3H_6	
	Dane z	BIDIIOLE	KI IVISEI	m/z	42	42	40	39			_//
				[%]	70	100	29	70			
GC: R	T - czas re	etencji [m	nin]; A (Ax	(10 ³) - po	owierzch	nia piku	na chro	matogra	imie; RA [%] - v	vzględna po	wierzchnia
piku ı	na chrom	atografie;	; MM - ma	asa cząst	eczkowa	a vs. wzó	r sumar	yczny			

Tabe	ela 4-47.	Wynik	i analizy	GC-M	S lotny	ch prod	duktów	v piroliz	y 4-Nv	ala ^P [40	00°C; 2 m	in]
Nr.		GC		Zredu	ukowan	e widm	a MS-E	I produl	któw pi	rolizy	Identyfil	kacja
						4	4-Nvala	Р				
	RT	А	RA				m/z [%]]			MM	Struktura
1	2 502		100	m/z	56	55	50	41	40	39	ГC	
	2,503		100	[%]	38	16	8.3	97	16	100	50	
	m/z 56 55 50 41 40 3											/
				[%]	50	15	5	100	16	45		
	_			m/z	56	55	50	41	40	39]	~//
	Dane	z Biblio	oteki	[%]	45	19	5	100	5	30	56/	
		MS-EI		m/z	56	55	50	41	39		C_4H_8	~ /
				[%]	50	20	10	100	40			
				m/z	57	56	55	28				
				[%]	4	62	19	100			1	
GC: R chror	T - czas rei natogramu	tencji [n u; MM -	nin]; A(A masa cza	vx10 ³) - p steczkov	owierzo wa vs. w	hnia chr zór sum	omatog aryczny	ramu; RA	4 [%] - w	/zględna	powierzch	inia

Tab	ela 4-48.	Wynik	i analizy	GC-M	S-EI lot	nych p	rodukt	ów pir	olizy M	lala ^P [4	100°C; 2	min]	
Nr.		GC		Zredukowane widma MS-EI produktów pirolizy Mala ^P Identyfikacja									
	RT	А	RA			r	n/z [%]				MM	Struktura	
	4 766			m/z	57	43	42	41	40	39	57/	CH ₃	
1	1,766		>95	[%]	5	5	100	12	11	9	C ₃ H ₇ N		
GC: F	RT - czas re	tencji [n	nin]; A (A	x10 ³) - p	owierzo	chnia pik	u na chr	omatog	ramie; F	RA [%] -	względna	powierzchnia	
piku	na chroma	tografie	; MM - m	nasa cząs	teczkow	va vs. wz	ór suma	ryczny					

Tab	ela 4-49.	Wyniki	analizy	GC-M	S lotny	ch proo	duktów	, piroliz	y Et-M	ala ^P [400	°C; 2 min]
Nr.		GC		Zred	ukowar I	ne widn pirolizy	na MS-E Et-Mala	l produ P	któw	lo	lentyfikacja
	RT	Α	RA			m/z	z [%]			MM	Struktura
	1 004	1270	15	m/z	58	44	43	39			
	1,994	1270	12	[%]	11	39	100	9			
				m/z	58	57	43	42	29	58/	~ /
1	Dane	z Ribliot	oki	[%]	12	4	100	38	42	C4H40	
	Dane	MS-EI		m/z	58	57	43	42	27	C 41110	
				[%]	4	4	100	38	28		
2	2 1 2 4	6201	75	m/z	85	70	55	42	39	85/	CH_3
2	2,154	0201	75	[%]	3.	21	7,6	100	27	$C_5H_{11}N$	CH3
2	2 960	904	0 5	m/z	110	96	82	70	42		
5	2,800	804	9,5	[%]	11	17	24	9	100		$C_8 \Pi_{14} / C_6 \Pi_{10} N_2$
Σ		20203	99 <i>,</i> 5								
GC: F RA [9 MM	RT - czas re %] - wzglęc - masa cza	etencji [mi dna powie isteczkow	in]; A (A rzchnia a vs. wzć	x10 ³) - p piku na ór sumai	owierzc chromat rvczny	hnia pik ogramie	u na chr ;	omatogi	ramie ;		

Tabe	ela 4-50.	Wyniki	analiz	y GC-M	S lotn	ych pr	rodukt	ów pir	olizy 1-	ACH-1	L-P [400°C	; 2 min]
Nr.		GC		Zre	dukow	ane w	vidma N pirolizy -ACH-1	/IS-EI рі / -Р	roduktó	ów	Iden	tyfikacja
	RT	Α	RA			m	/z vs.	[%]			MM	Struktura
	1.000	1650	45	m/z	45	44	38	37	36		45	
1	1,669	1653	45	[%]	1	7	29	15	100		45	
1	Dane	z Bibliot	eki	m/z	45	44	43	28			45/	
		MS-EI		[%]	64	100	10	18			C_2H_7N	IVIe2INH
	1 744	210	5.0	m/z	61	60	45	43	41	36		
	1,744	210	5,9	[%]	7.	18	85	100	18	76		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
2	Dane	e z Bibliot	eki	[%]	100	25	92	15	8	30	61/ C ₂ H ₇ NO	O-N H
	2 4.10	MS-EI		m/z	61	60	45	43	42	28		
				[%]	80	91	3	30	100	20		N-OH /
	1.000	227	0.1	m/z	82	80	79	67	54	39		
	1,896	337	9,1	[%]	14	7	8	48	31	100	82/	
3	Dane	z Bibliot	eki	m/z	82	81	79	67	54	39	C_6H_{10}	
		MS-EI		[%]	35	10	10	100	68	45		\checkmark
	2 402	1200	27	m/z	98	70	69	55	42	39		
	2,492	1388	37	[%]	10	8	8	56	86	100		
				m/z	98	83	79	69	55	42	0.8 /	
4	Dane	e z Bibliot	eki	[%]	46	10	20	26	100	60	98/ C ₆ H ₁₀ O	
		MS-EI		m/z	98	97	83	70	55	39		
				[%]	30	36	45	100	38	42		
-	44.604	420	2.2	m/z	44							
5	14,604	120	3,2	[%]	100						44	
Σ		3716	100									
GC: R	T - czas re	etencji [m	nin]; A(Ax10 ³) - J	powierz	zchnia j	piku na	chroma	togrami	e;		
RA [%	6] - wzglęc	Ina powi	erzchnia	i piku na	chroma	atograr	nie;					
	· masa czą	steczkow	ia vs. wi	zor suma	ryczny							

4.2.4.3. BADANIA NAD PIROLIZĄ KWASÓW AMINOARALKILOFOSFONOWYCH

Tab	ela 4-51.	Wynik	i analiz	zy GC-I	MS lotr	nych pr	rodukt	ów pir	olizy P	he ^P [40	00°C; 2 m	in]
Nr		GC		Zr	edukov	vane wi	idma N	IS-EI pr	oduktó	ŚW	Ide	ntyfikacja
		∧/a	D۸			pir	011ZY Pr				N 4 N 4	Struktura
		A	КA		44	12	11/2 [%]	26	24	22	IVIIVI	Struktura
	2,080	227	7,4	m/z [%]	44 11	42 11	38 33	36 11	34 100	33 44	44/	—/
1	Dane	z Bibliot	eki	m/z	44	43	42	29			C₂H₄O	0
	Durie	MS-EI	en	[%]	66	16	13	100			021.40	\bigtriangleup
				m/z	47	45	40	34				
2	2,188	31	1,0	[%]	19	100	18	14			47	
				m/z	94	92	91	65	63	39		
	2,427	602	19	[%]	6	33	100	31	35	96	92/	
				m/7	92	91	77	65	51	39	C_7H_8	~
3				111/2	52	51		05	51	35	lub	
5	Dane	z Bibliot	eki	[%]	47	100	3	20	7	18	94/	
		MS-EI		m/z	94	91	79	77	65	39	C_7H_{10}	
				[%]	60	41	100	68	12	20		
	2 01 4	240	0.0	m/z	104	78	75	63	51	33	104/	
4	2,914	248	8,0	[%]	92	99	59	33	100	88	104/	
4	Dane	z Bibliot	eki	m/z	104	103	78	76	63	51	C8⊓8	
		MS-EI		[%]	100	40	35	18	5	18		
E	2 000	70	26	m/z	157	50	47	44	40		157	
5	5,066	/8	2,0	[%]	15	13	100	11	16		157	
6	2 240	02	20	m/z	93	66	40	39			02	
0	5,540	65	2,0	[%]	52	42	50	100			95	
	2 05 4	175	ΕO	m/z	92	91	65	63	51	44		
_	5,954	1/5	5,9	[%]	56	100	75	69	39	59	92/	
/	Dane	z Bibliot	eki	m/z	92	91	65	51		39	C_7H_8	<u> </u>
		MS-EI	-	[%]	78	100	12	8		10		
0	1 102	20	0.0	m/z	62						67	
0	4,195	20	0,9	[%]	100						02	
0	15 700	220	7 4	m/z	39						20	
9	15,709	229	7,4	[%]	100						29	
10	10 425	77	0.0	m/z	44						44	
10	19,435	27	0,9	[%]	100						44	
11	21 017	24	1 1	m/z	44						4.4	
11	21,017	34	1,1	[%]	100						44	
	27 24 4	050	27	m/z	103	102	44	40	39		402/	
12	27,214	852	27	[%]	10	92	99	100	33		102/	
12	Dane	z Bibliot	eki	m/z	103	102	76	50	39		C_8H_6	``
		MS-EI		[%]	10	100	20	10	4			
40	24.4.5	70		m/z	44							
13	31,114	/6	2,4	[%]	100						44	
	24 700	24		m/z	73	45	44				70	
14	31,796	31		[%]	81	100	88				73	

Tab	ela 4-51	(cd). W	'yniki a	nalizy	GC-MS	lotny	ch pro	duktóv	v piro	lizy Pho	e ^P [400°C;	2 min]
Nr.		GC		Zr	edukow	/ane w	idma N	1S-El pr	odukto	ów	Ide	ntyfikacja
					pirolizy Phe ^P							
		A ^{/a}	RA			r	n/z [%]]			MM	Struktura
15	22 175	202	10	m/z	207	45	41				207	
	32,175	383	12	[%]	100	50	53				207	
Σ		3104	99					A/3	: A x 10) ³		
GC: F	RT - czas re	etencji [n	nin]; A	(A x 10 ³)) - powie	erzchnia	i piku na	a chrom	atograr	nie;		
RA [9	%] - wzglęc	lna pow	ierzchni	a piku n	a chrom	atograf	ie;					
ММ	- masa czą	steczkov	wa vs. w	zór sum	naryczny	;						
^{a/} Pik	o nodobni	ei fragm	entacii r	sheizor	czas rete	encii 3 A	529 min					

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
Nr.		GC		Zr	edukov	wane w pir	idma N olizy P៖	/IS-EI pr gly [₽]	roduktó	w	Ide	entyfikacja
	RT	Α	RA				m/z [%]			MM	Struktura
1	1 744	01	1 1	m/z	46	45	44	43	34	33		
	1,744	01	1,1	[%]	14	17	19	35	100	34		
	2 112	110	17	m/z	92	91	78	77	63	39		
2	2,115	119	1,7	[%]	35	38	23	15	35	100	92/	
2	Dane	z Bibliot	eki	m/z	92	91	65	51	39		C_7H_8	\searrow
		MS-EI		[%]	78	100	12	8	10			
	2 958	471	6.6	m/z	106	79	77	52	51	50	106/	
2	2,938	471	0,0	[%]	19	9.6	44	16	100	75	C ₇ H ₆ O	
3	Dane	z Bibliot	eki:	m/z	106	105	78	77	51	50		, ,C=0 H=0
		MS-EI		[%]	94	94	18	100	38	20		
	2 1 4 2	410	F 7	m/z	103	77	76	61	50	39		
	3,142	410	5,7	[%]	72	17	53	17	100	40	103/	
4	Dane	z Bibliot	.eki	m/z	103	88	76	61	50	39	C_7H_5N	«СN
		MS-EI		[%]	100	2	38	17	18	5		
_	2 42 4	124	1.00	m/z	77	75	63	52	51	50		
5	3,434	131	1,80	[%]	31	26	19	20	100	66	//	
	2 6 2 0	100	1 Г	m/z	91	51	41	40		42	91/	
	5,029	108	1,5	[%]	100	59	60	89		47	C_7H_7	
6	Dane	z Bibliot	eki	m/z	92	91	77	65	51	39		
		MS-EI		[%]	47	100	3	20	7	18		
_				m/z	62	44					63	
/	3,889	30	0,4	[%]	64]	100					62	
o a/		5046		m/z	91	77	65	51	41	39	91/	
8″	24,527	5816	81	[%]	97	58	70	85	42	100	C_7H_7	C_7H_7
Σ		7166	100									
h			•	2.								

GC: RT - czas retencji [min]; A (Ax10³) - powierzchnia piku na chromatogramie;

RA [%] - względna powierzchnia piku na chromatogramie;

MM - masa cząsteczkowa vs. wzór sumaryczny;

^{a/}Pik o podobnej fragmentacji posiada czas retencji 3,629 min

Tab	ela 4-53.	Wyniki	analizy	GC-M	S lotny	ch pro	duktów	v piroliz	zy o-M	ePgly ^P	[400°C;	2 min]
Nr.		GC		Zredu	ıkowan	e widm o [.]	a MS-E -MePgl	l produ y ^P	któw p	irolizy	Ide	ntyfikacja
	RT	Α	RA				m/z [%]				MM	Struktura
1	1 074	15	0.5	m/z	46	45	43	34				
T	1,874	15	0,5	[%]	8	27	10	100				
	2,329 70 2,1 m/z 92 91 65 63 51											
2	2,329 70 2,1 [%] 58 70 29 46 35 10											
2	Dane	e z Bibliot	eki	m/z	92	91	65	51		39	C ₇ H ₈	<u>`_</u>)
		MS-EI		[%]	78	100	12	8		10		
MS-EI [%] 78 100 12 8 10 m/z 106 92 91 78 65 39												
2	2,687	38	1,2	[%]	41	15	100	19	23	76	106/	CH ₃
3	Dane	e z Bibliot	eki	m/z	107	106	105	92	91	77	C_8H_{10}	СН3
		MS-EI		[%]	6	64	28	8	100	12		
	4 00 4	747	22	m/z	120	117	91	89	65	39		
4	4,084	/4/	23	[%]	7	32	23	29	26	100	120/	
4	Dane	e z Bibliot	eki	m/z	120	119	92	91	65	39	C ₈ H ₈ O	C=0
		MS-EI		[%]	78	92	10	100	28	20		
				m/z	119	118	104	91	65	39	119/	CH ₃
5	5,059	29	0,9	[%]	47	34	26	71	41	100	C ₈ H ₉ N	C=NH
6				m/z	63	44	40					
6	5,211	21	0,6	[%]	77	62	100					
	24.022	2256	70	m/z	104	103	91	75	65	39		
	24,023	2356	/2	[%]	34	49	32	30	74	100	104/	
7	Dane	e z Bibliot	eki	m/z	104	103	78	63	51	39	C ₈ H ₈	
		MS-EI		[%]	100	60	82	10	48	30		
Σ		3276	100,3									
GC: F	RT - czas re	tencji [m	in]; A (A	х10 ³) - р	owierzo	hnia pik	u na chi	romatog	ramie;			
RA [9	%] - wzglęc	ina powie	erzchnia	piku na (chromat	ografie;						
	- illasa czą	SLECZKOW	a vs. w20	n sundi	yczny							

Tab	ela 4-54.	Wyniki	analizy	/ GC-N	1S lotn	ych pr	odukto	ów pir	olizy n	n-MeP	gly ^P [40	0°C; 2 min]
	Produktion of the second sec	ów	lc	lentyfikacja								
Nr.	DT	•	DA			piroliz	y <i>m</i> -IVI6	ePgly				
	RI	A	KA		45	r	n/z [%]				ININ	Struktura
	1,939	298	1,3	m/z	45	44 5	34					
1	Dana			[/0] m/z	3/1	33	31				34	
	Dane	MS-FI	eki	[%]	100	32	32					PH_3
				m/z	106	92	91	78	65	39		
	2,644	287	1,3	[%]	31	23	100	13	21	92	106/	CH _a
2	Dane	z Bibliote	eki	m/z	106	105	91	77	65	39	C_8H_{10}	\rightarrow , ,
		MS-EI		[%]	70	30	100	12	10	20		H₃C
				m/z	121	120	119	91	65	39		
2	4,139	2532	12	[%]	5,7	29	29	62	48	100	121/	✓ → c=o
3	Dane	z Bibliote	eki	m/z	120	119	91	89	65	39	C ₈ H ₈ O	
		MS-EI		[%]	88	92	100	10	28	18		H ₃ C
	4 4 2 0	1620	74	m/z	117	116	90	89	63	39	117/	
л	4,420	1029	7,4	[%]	52	39	40	25	64	100	C_8H_7N	
4	Dane	e z Bibliote	eki	m/z	117	116	90	89	63	39		
		MS-EI		[%]	100	60	35	20	10	12		П ₃ С
5	1 918	355	16	m/z	120	119	118	92	91	39	120	
5	4,510	555	1,0	[%]	23	52	54	19	46	100	120	
6	5 081	337	15	m/z	118	105	91	89	78	39	118	
0	5,001	557	1,5	[%]	32	63	42	34	33	100	110	
				m/z	106	105	91	89	77	63		
	24,094	16668	75	[%]	68	77	68	50	100	81	106/	
7 ^{/a}				[/0]	00	,,	00	50	100	01	C_8H_{10}	
	Dane	e z Bibliote	eki	m/z	106	105	91	77	65	39		<pre></pre>
		MS-EI		[%]	70	30	100	12	10	20		H ₃ C
Σ		22106	99,6									
GC: F	RT - czas re	etencji [mi	in]; A (A	4x10 ³) -	powier	zchnia p	oiku na o	chroma	togram	ie;		
RA [%	6] - wzglęc	Ina powie	rzchnia	piku na	chrom	atogran	nie;					
IVIN	- masa czą	steczkow	a vs. wz	or suma	aryczny	;						

^{a/}Pik o podobnej fragmentacji posiada czas retencji 2,644 min

Tab	Tabela 4-55.1. Wyniki analizy GC-MS lotnych produktów pirolizy p-MePgly ^P [400°C;15sec.] Zredukowane widma MS-El produktów											
Nr.		GC		Zre	dukow	ane w piroliz	idma N zy <i>p</i> -Mo	/IS-EI p ePgly ^P	rodukt	ów	l.	dentyfikacja
	RT	A	RA			r	n/z [%]			MM	Struktura
	1 724	769	2.0	m/z	44	40	34				14	,ОН
1	1,754	208	5,5	[%]	24	14	100				44	/
T	Dane	e z Biblio	teki	m/z	44	43	42	29			44/	\bigtriangledown
		MS-EI		[%]	66	16	13	100			C_2H_4O	0
2	1 00/	104	15	m/z	73	60	45	41			72	
2	1,994	104	1,5	[%]	22	98	50	100			75	
	2 296	220	47	m/z	92	91	65	54	44	39	02/	
2	3 2,200 320 4,7 [%] 76 100 29 35 58 95 92/ C ₇ H ₈ C ₁ H ₈											
5	3 Dane z Biblioteki m/z 92 91 65 51 39 C ₇ H ₈ C-CH ₃											
	MS-EI [%] 78 100 12 8 10											
2 438 332 4 9 m/z 106 105 91 77 65 39 100 /												
	2,438	332	4,9	[%]	33	18	100	16	14	44	106/	
4	Dane	z Biblio	blioteki		106	105	91	77	65	39	C_8H_{10}	H ₃ C - CH ₃
		MS-EI		[%]	56	27	100	12	5	5		
-	2 7 2 0	F.0	0.0	m/z	47	44	40				47	
5	2,730	58	0,9	[%]	100	22	32				47	
c	2.000	74	1.1	m/z	124	62	61	42	40		124	
D	3,808	74	1,1	[%]	44	40	36	64	100		124	
	4 106	1022	27	m/z	120	119	91	65	50	39	120/	
7	4,106	1822	27.	[%]	47	49	69	60	36	100	C ₈ H ₈ O	
/	Dane	e z Biblio	teki	m/z	120	119	91	89	65	39		$H_3 U - U = U = U$
		MS-EI		[%]	80	90	100	10	30	20		
	4 4 2 1	2200	25	m/z	117	116	90	76	63	39	447/	
0	4,431	2289	35	[%]	62	53	55	18	79	100		
0	Dane	e z Biblio	teki	m/z	120	119	91	89	65	39		
		MS-EI		[%]	80	90	100	10	30	20		
•	4.072	200		m/z	105	65	51	44	39		105/	
9	4,973	300	4,4	[%]	100	43	43	99	89		C_7H_7N	H ₂ C=NH
10	24.440	1220	10	m/z	51	44	39				Γ1	
10	24,440	1228	18	[%]	60	100	57				51	
Σ	Σ 6795 100,6											
GC: F	GC: RT - czas retencji [min]; A (A x 10 ³) - powierzchnia piku na chromatogramie;											
RA [9	%] - wzglęc	dna pow	ierzchnia	piku na	chrom	atogra	mie;					
IVIN	 masa czą 	steczko	wa vs. wz	or sum	aryczny	,						

Tab	Tabela 4-55.2. Wyniki analizy GC-MS lotnych produktów pirolizy p-MePgly ^P [400°C; 2 min] Zredukowane widma MS-El produktów											
Nr.		GC		Zre	dukow	ane wi piroliz	idma M xy <i>p</i> -Me	1S-EI pr Pgly ^P	rodukt	ów	I	dentyfikacja
	RT	A	RA			m	/z vs. [9	%]			MM	Struktura
	1 701	110		m/z	44	34	33					HQ
1	1,701	110	1,1	[%]	12	100	12				44/	\
L	Dane	e z Biblio	teki	m/z	44	43	42	29			C_2H_4O	\bigtriangledown
		MS-EI		[%]	66	16	13	100				Ö
2 405 215 2 m/z 106 91 78 77 52 39 106/												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
2 Dane z Biblioteki m/z 106 105 91 77 65 39												
		MS-EI		[%]	56	100	12	5	5			
	4 094	1622	1623 17		120	119	91	89	75	39	120/	
2	4,064	1025	17	[%]	27	23	65	24	6	100	C ₈ H ₈ O	
5	Dane	e z Biblio	teki	m/z	120	119	91	89	65	39		H ₃ C H
		MS-EI		[%]	80	90	100	10	30	20		
	1 200 120C 11 m/z 117 116 91 89 78 39 117/											
л	4,388	1390	14	[%]	48	22	8.9	25	10	100	C_8H_7N	
4	Dane	e z Biblio	teki	m/z	117	116	90	89	63	39		
		MS-EI		[%]	100	60	30	20	10	15		
				m/z	118	105	77	65	52	39	119/	
5	4,940	182	1,9	[%]	40	84	34	54	32	100	C ₈ H ₉ N	H ₃ C-C=NH
_				m/z	105	77	65	44	40	39	105/	
6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
Σ 9732 100,2												
GC: RT - czas retencji [min]; A (Ax10 ³) - powierzchnia piku na chromatogramie;												
RA [%] - względna powierzchnia piku na chromatogramie;												
MM	- masa czą	isteczko	wa vs. wz	or sum	aryczny	,						

Tab	Tabela 4-55.3. Wyniki analizy GC-MS lotnych produktów pirolizy p-MePgly ^P [400°C;37min] Zredukowane widma MS-El produktów											
Nr		GC		Zre	edukow	ane w piroliz	idma N zy <i>p</i> -Me	1S-EI pi ePgly ^P	rodukt	ów	I	dentyfikacja
111.	RT	Α	RA			. 1	n/z [%]			MM	Struktura
	1 701	270	2.0	m/z	44	40	34					НО
1	1,701	278	3,9	[%]	15	7	100				44/	
T	Dane	z Biblio	teki	m/z	44	43	42	29			C_2H_4O	$\overline{\nabla}$
		MS-EI		[%]	66	16	13	100				Õ
2	1 809 961 14 m/z 75 74 73 57 55 45										75	
2	1,809	961	14	[%]	3	38	34	32	24	100	/5	
2	4 0 6 4	70	1.0	m/z	73	56	54	44	40		70	
3	1,961	70	1,0	[%]	20	12	70	68	100		/3	
m/z 55 54 45 44 40												
4	4 2,048 48 0,7 <u>[%]</u> 26 92 37 100 100 55											
	2167 220 22 m/z 92 91 65 54 44 39											
_	2,167 230 3,3 [%] 76 100 29 35 58 95 92/											
5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											<u>(</u> СН ₃
		MS-EI		[%]	78	100	12	8	6	10		
	2 405	247	2.4	m/z	106	92	91	79	63	39		
6	2,405	217	3,1	[%]	33	25	80	16	35	100	106/	
6	Dane	Dane z Biblioteki			106	105	91	77	65	39	C_8H_{10}	H ₃ C - CH ₃
		MS-EI		[%]	56	27	100	12	5	5		
-	2 74 0	255	2.6	m/z	101	91	72	65	58	44	101	
/	2,719	255	3,6	[%]	22	78	35	10	24	100	101	
•	2.025	F 4	07	m/z	62	44	40				62	
8	3,835	51	0,7	[%]	65	69	100				62	
	4.005	2520	20	m/z	120	119	91	65	50	39		
0	4,095	2539	30	[%]	51	47	87	56	29	100	120/	
9	Dane	z Biblio	teki	m/z	120	119	91	89	65	39	C ₈ H ₈ O	H ₃ C - C - C - O H
		MS-EI		[%]	80	90	100	10	30	20		
	4 200	1050	26	m/z	117	116	90	76	63	39		
10	4,399	1852	26	[%]	62	53	42	18	60	100	117/	
10	Dane	z Biblio	teki	m/z	117	116	90	89	63	39	C_8H_7N	
		MS-EI		[%]	100	60	30	20	10]	15		
11	4.040	190	2 7	m/z	105	77	51	44	40		105	
11	4,940	189	2,7	[%]	64	38	49	99	100		105	
12	24 51	296		m/z	65	53	44	40			6E	
12	24,51	380	5,5	[%]	51	44	100	89			05	
Σ		7076	99,8									
GC: I	RT - czas r	etencji [min]; A	(Ax10 ³)) - powi	erzchnia	a piku u	na chro	omatog	ramie;		
RA [9	%] - wzglę	dna pov	vierzchn	na piku	na chro	matogr	amie;					
IVIIVI	IM - masa cząsteczkowa vs. wzór sumaryczny											

Tab	Tabela 4-56. Wyniki analizy GC-MS lotnych produktów pirolizy 2,3,4-Me ₃ -Pgly ^P												
Nr.		GC		Zr	edukow pi	vane wi rolizy 2	dma M ,3,4-M	S-EI pro e₃-Pgly ^F	oduktó	W	Ider	tyfikacja	
	RT	Α	RA		· ·	'n	n/z [%]				MM	Struktura	
				m/z	44	43	42	34				НО	
	1,853	86	0,7	[%]	12	14	11	100			44/		
1	Dane	e z Bibliot	eki	m/z	44	43	42	29			C_2H_4O		
		MS-EI		[%]	66	16	13	100				ò	
2	1 0 0 1	77	0.0	m/z	70	58	47	45			70		
2	2 1,501 77 0,0 [%] 9 8 10 100 70												
3 120 440 3.6 m/z 120 105 92 80 63 39 120/ CH.													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
3	3 Dane z Biblioteki m/z 120 105 91 80 63 39												
	MS-EI [%] 70 100 9 8 5 8											CH ₃	
			576 4,7		134	120	119	91	79	39	134/	011	
	4,810	10 576	4,7	[%]	38	59	67	49	31	100	$C_{10}H_{14}$		
4	Dane z Bibliot	eki	m/z	134	120	119	91	79	39	-			
		MS-EI		[%]	58	10	100	10	5	5		CH ₃	
	7.005	7672	62	m/z	145	130	104	77	51	39	145/	011	
_	7,865	/6/2	62.	[%]	45	91	24	21	66	100	$C_{10}H_{11}N$		
5	Dane	e z Bibliot	eki	m/z	145	130	115	103	77	39			
		MS-EI		[%]	45	100	10	10	12	18		013	
	0.010			m/z	148	147	91	78	65	41	148/	011	
6	8,678	1927	16,0	[%]	45	91	24	21	72	100	$C_{10}H_{12}O$		
6	Dane	e z Bibliot	eki	m/z	148	147	119	105	91	41		H ₃ C=(-,-,-,C=O H	
		MS-EI		[%]	76	100	66	10	15	5		CH ₃	
_			. –	m/z	104	53	51	41	39		404		
/	9,577	216	1,/	[%]	92	83	97	92	100		104		
0	27.00	1261	11.0	m/z	40						40		
ð	27,69 1361 11,0 [%] 100 40												
Σ 12355 101													
GC: F	GC: RT - czas retencji [min]; A (Ax10 ³) - powierzchnia piku na chromatogramie;												
RA [9	RA [%] - względna powierzchnia piku na chromatogramie;												
MM	- masa cza	ąsteczkow	/a vs. wz	ór suma	ryczny								

Tabe	Tabela 4-57. Wyniki analizy GC-MS lotnych produktów pirolizy <i>p</i> -BrPgly ^P											
Nr.		GC		Zredu	ıkowan	e widm	ia MS-E p-BrPglv	El produ v ^P	ıktów p	irolizy	Idei	ntyfikacja
	RT	А	RA				m/z [%	, .]			MM	Struktura
4	4 600		1.0	m/z	64	48	44	40	34		64	
T	1,690	44	1,9	[%]	24	51	76	24	100		64	
	2 71 6	200	10	m/z	172	170	91	78	63	39	172/	
2	3,710	280	12	[%]	15	17	100	10	84	68	C ₇ H ₇ Br	
Z Dane z Biblioteki m/z 172 170 91 65 63 39												
MS-EI [%] 38 40 100 18 10 10												
m/z 185 184 183 157 79 50 185/												
3	6,500	223	9,5	[%]	21	18	26	15	16	100	C ₇ H ₆ N Br	Br-C:NH
	6,858 26	260	260 11 -	m/z	183	181	102	79	75	50	183/	
4	,			[%]	38	41	55	26	73	100	C ₇ H ₄ N	
4	Dane	e z Bibliot	.eki	m/z	183	181	102	90	75	50	BI	
		MS-EI		[%]	85	90	100	5	25	20		
E	0 220	460	2.0	m/z	89	77	63	51	50	44	20	
5	9,338	460	2,0	[%]	100	76	90	94	80	86	69	
6	11,07	110	ΕO	m/z	273	90	89	63	50	40	272	
0	2	110	5,0	[%]	100	49	57	50	42	50	275	
	70 20	1277	50	m/z	102	90	89	75	63	50		
-	28,70	1572	- 59	[%]	67	77	70	58	84	100	102	
/	Dane	e z Bibliot	.eki	m/z	103	102	87	76	63	50	102	
		MS-EI		[%]	9	100	2	20	5	10		
Σ 2342 100												
GC: RT - czas retencji [min]; A (Ax10 ³) - powierzchnia piku na chromatogramie;												
RA [%	[] - wzglęc	ina powie	erzchnia	piku na ór cuma	chroma	togrami	e;					

Tab	Tabela 4-58. Wyniki analizy GC-MS lotnych produktów pirolizy o-ClPgly Zredukowane widma MS-El produktów pirolizy												
Nr.		GC		Zredu	kowan	e widm o	a MS-EI -Cl-Pgly	produl P	któw pi	irolizy	Ident	yfikacja	
	RT	Α	RA			r	n/z [%]				MM	Struktura	
				m/z	44	44	34	33				OH	
	1,950	104	0,3	[%]	62	55	100	47			44/	<u> </u>	
1	Dane	e z Bibliote	eki	m/z	44	43	42	29			C_2H_4O	∇	
		MS-EI		[%]	66	16	13	100				Õ	
	2 4 4 2	244	4.0	m/z	126	91	89	65	63	39	126/		
2	3,142	311	1,0	[%]	47	100	44	36	65	41	C ₇ H ₇ Cl	CH,	
2	Z Dane z Biblioteki m/z 127 126 91 90 63 39												
	MS-EI [%] 10 40 100 15 20 20												
2	3 4 0875 60 0.2 m/z 44 44												
3	3 4,0875 60 0,2 [%] 100 44												
				m/z	141	140	111	77	74	62	141/		
	4,875	916	3,1	[%]	17	20	15	17	38	14	, C ₇ H ₅ OCl	∕⊂>−c=o	
4	Dane	z Bibliote	eki	m/z	141	140	139	111	77	75			
		MS-EI		[%]	40	78	100	45	20	35		01	
				m/z	137	102	76	75	63	50	137/		
_	5,/53	892	3,1	[%]	100	60	63	90	38	96	C ₇ H ₄ NCI	✓ → CN	
5	Dane	e z Bibliote	eki	m/z	139	137	110	102	75	50			
		MS-EI		[%]	35	100	10	40	20	10		CI	
				m/z	140	139	138	137	75	50	140/		
6	5,883	536	1,8	[%]	34	48	45	28	66	100	C ₇ H ₆ NCI		
_				m/z	125	91	89	63	51	50	105		
/	6,392	65	0,2	[%]	91	66	75	68	100	90	125		
0	c			m/z	50	45	44	38			-0		
8	6,468	148	0,5	[%]	93	100	83	83			50		
0		26002	00	m/z	133	128	125	99	90	89	133/		
9	9 25,567 26883 90 [%] 18 18 100 20 77 67 $C_{10}H_{13}$												
Σ 29915 100													
GC: RT - czas retencji [min]; A (Ax10 ³) - powierzchnia piku na chromatogramie;													
RA [9	RA [%] - względna powierzchnia piku na chromatogramie;												
MM	- masa czą	steczkow	a vs. wz	or suma	ryczny								

Tab	ela 4-59.	Wynik	i analizy	GC-M	S lotny	ch pro	duktóv	w piro	lizy <i>p</i> -N	IO₂Pgly	/ ^P		
Nr.		GC		Zredu	ıkowan	e widm <i>p</i> -	a MS-E NO₂Pg	l produ ly ^P	uktów p	irolizy	Ide	ntyfikacja	
	RT	Α	RA			I	m/z [%]			MM	Struktura	
1	1 700	244	0.0	m/z	48	44	38	37	36		40		
L	1,766	341	8,8	[%]	1	5	31	16	100		48		
	3 088 3232 83 m/z 94 93 92 78 66 52 04/												
2	3,088	3232	83	[%]	8	100	11	4	75	19	94/		
2	Dane	z Biblic	oteki	m/z	94	93	92	78	66	39	C_6H_7N		
		MS-EI		[%]	6	100	12	4	40	15			
2	C 175	100		m/z	129	127	100	91	73	65	120		
3	6,175	169	4,4	[%]	35	97	34	28	34	100	129		
4	0.904	140	27	m/z	102	76	75	74	63	51	102		
4	9,804	142	5,7	[%]	78	70	65	41	44	100	102		
Σ	Σ 3884 100,3												
GC: RT - czas retencji [min]; A (Ax10 ³) - powierzchnia piku na chromatogramie;													
RA [%] - względna powierzchnia piku na chromatogramie;													
MM	- masa czą	steczkov	wa vs. wz	ór suma	ryczny								

Tabe	Tabela 4-60. Wyniki analizy GC-MS lotnych produktów pirolizy <i>p</i> -HO ₂ C-Pgly ^P											
		GC		Zre	dukowa	ane wic	lma M	S-El pr	odukto	ów	Id	entyfikacia
Nr.					р	irolizy _f	0-HO ₂ 0	C-Pgly ^P				ептупкасја
	RT	Α	RA			m	/z [%]				MM	Struktura
	1 71 2	370	5.0	m/z	74	73	59	45	36			
1	1,712	570	5,0	[%]	33	65	81	100	42		74/	
-	Dane	e z Biblio	teki	m/z	74	73	57	45	28		$C_3H_6O_2$	СО ₂ п
		MS-EI	-	[%]	100	65	48	90	82			
2 2 860 111 1.5 m/z 124 119 91 64 40 124												
2 2,000 111 1,0 [%] 83 45 79 67 100 124												
3 001 263 3 m/z 93 66 50 40 39												
3 5,001 203 3,5 [%] 75 46 30 100 94 93/												
3 Dane z Biblioteki m/z 94 93 92 78 66 39 C ₆ H ₇ N												
		MS-EI		[%]	6	100	12	4	40	15		
	4 420	024	11,2	m/z	117	116	90	89	63	39		
	4,420 834	034 11,2	[%]	100	47	42	47	70	94	117/		
4	Dane	e z Biblio	teki	m/z	117	116	90	89	63	39	C_8H_7N	
		MS-EI		[%]	100	60	30	20	10	15		
	Image: model model <thmodel< th=""> model</thmodel<>											
-	6,977 2597 34,8 101 101 102 70 00 50 101 131/ NC C(O)H											
5	Dane	e z Biblio	teki	m/z	131	130	103	102	76	50	C_8H_5NO	
		MS-EI		[%]	70	100	12	60	20	12		
		2162	12.4	m/z	128	101	76	50	44	40	120/	
C	7,454	3162	42,4	[%]	100	51	42	83	21	43	128/	
б	Dane	e z Biblio	teki	m/z	129	128	113	101	75	50	$C_8H_4N_2$	
		MS-EI		[%]	9	100	2	20	10	10		
-	11.224	447	1.6	m/z	50	40					50	
/	14,224	117	1,6	[%]	64	100					50	
Σ 7454 99,9												
GC: R	GC: RT - czas retencji [min]; A (Ax10 ³) - powierzchnia piku na chromatogramie;											
RA [%] - względna powierzchnia piku na chromatogramie;												
MM -	· masa cza	ąsteczko	wa vs. w	/zór sun	naryczny	,						

Tabel	Tabela 4-61. Wyniki analizy GC-MS lotnych produktów pirolizy 1-NphGly ^P											
Nir		GC		Zredul	kowane	widma 1-N	MS-EI p NphGly ^P	orodukt	ów pir	olizy	Iden	tyfikacja
INF.	RT min]	А	RA			r	1/z [%]				MM	Struktura
1	1 600	20	4	m/z	240	64	34					
L	1,690	39	4	[%]	6	3	100					
	6.024	109	11	m/z	129	128	102	87	75	63	120/	
2	0,024	100	11	[%]	13	100	19	7.	15	25	129/	
2	Dane	z Biblio	oteki	m/z	129	128	127	102	75	64	С ₁₀ П ₈	
MS-EI [%] 10 100 10 8 5 8												
8.938 177 18 m/z 143 142 141 115 89 63 143/												
8,938 177 18 [%] 23 100 68 56 16 45 143/ 3 [%] 23 100 68 56 16 45 C. H.												
3 Dane z Biblioteki m/z 143 142 141 115 89 63 C ₁₁ H ₁₀												
		MS-EI		[%]	12	100	70	32	6	11		
	14 660	121	44	m/z	153	100	76	63	52	44	452/	CN
л	14,009	4,669 434	44	[%]	100	28	29	36	32	43	153/	
4	Dane	Dane z Bibliot	oteki	m/z	154	153	126	100	76	63	$C_{11}\Pi_7$ N	
		MS-EI		[%]	12	100	18	4	8	8		
-	14.072	100	10	m/z	153	128	77	50	44	40	150	
5	14,972	188	19	[%]	61	56	41	41	100	74	153	
c		11	1 1	m/z	44	40						
D	15,557	11	1,1	[%]	63	100					44	
7	20.224	0	0.0	m/z	44							
/	30,334	ð	0,8	[%]	100						44	
0	20.405	0	0.0	m/z	73	43					70	
ð	30,485	ð	0,8	[%]	100	87					/3	
0	20.022	_	0.7	m/z	73	45	39				70	
9	30,832	/	0,7	[%]	100	100	94				/3	
10	24.204	6	0.6	m/z	73	45	33				70	
10	10 31,384 6 0,6 [%] 24 22 100 73											
Σ	Σ 986 100,1											
GC: RT	GC: RT - czas retencji [min]; A (Ax10 ³) - powierzchnia piku na chromatogramie;											
RA [%]	- względn	a powie	erzchnia p	oiku na chr	omatog	ramie;						
MM - I	masa czast	eczkow	avs wzó	r sumarvc	znv							

Tab	Tabela 4-62. Wyniki analizy GC-MS lotnych produktów pirolizy 2-NphGly ^P												
Nr.		GC		Zrec	lukowa	ane wie pirolizy	dma N y 2-Np	IS-El pr hGly ^P	odukt	ów	lo	dentyfikacja	
	RT	Α	RA			'n	1 / z [%]				MM	Struktura	
1	1 71 2	E04	6.0	m/z	64	49	45	34			64		
L T	1,/12	504	6,0	[%]	4	4	39	100			04		
2	2 070	705	0.4	m/z	94	93	66	65	39		04		
2	2,979	765	9,4	[%]	13	93	54	34	100		94		
3	3 821	25	03	m/z	41						/11		
5	5,024	25	0,5	[%]	100						41		
	6 080	945	11	m/z	128	102	74	63	50	39	170/		
л	0,085	545	11	[%]	100	25	30	22	48	36	120/ CuHu		
4	Dane z Biblioteki <u>m/z 129 128 127 102 75 64</u>												
	MS-EI [%] 10 100 10 8 5 8												
5	6 1/13			m/z	128	102	87	74	63	51	178		
5	5 6,143 [%] 100 26 23 31 33 32												
	8 /07	25/13	30	m/z	142	141	115	89	74	63	117/		
6	8,407 2543 30 100 86 94 20 18 36 142/												
0	Dane	z Biblio	oteki	m/z	143	142	141	115	89	71			
		MS-EI		[%]	10	100	50	20	5	5			
				m/z	127	50					127/		
7	14,994	988	12	[%]	100	66					C_9H_5N	HC≡─∕∕─CN	
	15 557	2082	25	m/z	153	127	74	62	50		152/		
0	13,337	2082	25	[%]	100	38	42	47	51		153/ C L N	CN CN	
0	Dane	z Biblio	oteki	m/z	154	153	126	100	76		$C_{11}\Pi_7 \Pi_7$		
		MS-EI		[%]	15	100	15	5	5				
0	17 700	02	1 2	m/z	44						11		
9	17,799	92	1,2	[%]	100						44		
10	20 / 25	01	1 2	m/z	73						72		
10	30,485	91	1,2	[%]	100						75		
11	20 790	60	0.7	m/z	115	73	44				115		
11	30,789	00	0,7	[%]	83	49	100				115		
12	21 070	64	0.7	m/z	141	139	115	73	63	51	1 / 1		
12	51,070	04	0,7	[%]	100	31	55	21	19	19	141		
12	21 2/1	20	0.2	m/z	73	44					72		
12	51,541	20	0,5	[%]	72	100					/5		
11	21 600	20	0.5	m/z	78						70		
14	51,099	50	0,5	[%]	100						70		
15	22 076	125	1 5	m/z	207	73					207		
15	55,870	125	1,5	[%]	100	59					207		
Σ		8370	100,2										
GC: F	RT - czas re	etencji [n	nin]; A (A	x10 ³) -	powier	zchnia	oiku na	chrom	atograr	nie;			
RA [9	RA [%] - względna powierzchnia piku na chromatogramie;												
MIM	- masa czą	steczkov	va vs. wz	or suma	iryczny								

4.2.4.4. BADANIA NAD PIROLIZĄ INNYCH KWASÓW FOSFONOWYCH

Tab	Tabela 4-63. Wyniki analizy GC-MS lotnych produktów pirolizy kwasu 1-hydroksypropylofosfonowego (1-HP ^P)												
	H	3C-C-C H ₂ / O	0 -P(OH)) ₂	00°C Ar	► F	H ₃ C-C- H ₂ [58	_О -С́ Н	+	H ₃ Ç H ₂ C H H	°Ç´ ^H ∕ ^C `CH₃		
	Zredukowane widma MS-El produktów												
Nr.	GC Dirolizy 1-HP ^P Identyfikacja												
	RT A RA m/z [%] MM Struktura												
	1 005	20165	07.6	m/z	59	58	39			F0/	0		
1	1,885 30165 97,6 [%] 6 100 43 58/ O												
Т	1 Dane z Biblioteki m/z 59 58 39 29 C_3H_6O $H_3C^-C^-C$ H_2 H												
		MS-EI		[%]	12	85	05	100			_		
	<u>, 262</u>	722	• • •	m/z	98	83	69	55	39		но 0, . ́Н		
2	2,502	/55	2,5	[%]	11	7	10	24	100	98/	H ₃ C C		
2	Dane	e z Biblio	teki	m/z	98	83	69	55	41	$C_5H_{10}O$	H ₂ C、C [×] C、CH ₃		
		MS-EI		[%]	88	20	48	30	100		H °		
Σ	Σ 30900 100												
GC: F	GC: RT - czas retencji [min]; A (A x 10 ³) - powierzchnia piku na chromatogramie;												
RA [9	RA [%] - względna powierzchnia piku na chromatogramie;												
MM	- masa czą	steczkow	a vs. wzó	r sumary	/czny								

4.3. CHEMICZNE WŁAŚCIWOŚCI AMINOKWASÓW FOSFONOWYCH

4.3.1. BADANIA STABILNOŚCI KWASÓW 1-AMINOALKILOFOSFONOWYCH W ROZTWORACH ZASAD I KWASÓW

Badania przeprowadzano w mini-reaktorkach firmy Aldrich pojemności 5 ml i zakręcanych zakrętką z uszczelnieniem teflonowym (Rys. 4-11.). Reaktorek przeznaczony do badań stabilności AA^P w roztworach zasadowych wyposażony był dodatkowo w wewnętrzne naczyńko wykonane z polietylenu (Rys. 4-11.2.), chroniące ścianki szklane przed działaniem wodorotlenku (zwłaszcza w temperaturze 100°C).

Rysunek 4-11. Mini-reaktorki do badań stabilności AA ^P na ekspozycję w roztworach								
kwasowych i zasadowych								
Rys. 4-11.1. Mini-reaktorek do badań stabilności	Rys. 4-11.2. Mini-reaktorek do badań stabilności							
AA ^P na ekspozycję w roztworach	AA ^P na ekspozycję w roztworach							
Kwasowych (2 M HCl, 2 M H ₂ SO ₄)	zasadowych (2 M KOH)							

Badania stabilności kwasów aminoalkilofosfonowych przeprowadzono dla trzech grup aminokwasów fosfonowych obejmujących:

- kwasy 1-aminoalkilofosfonowe (AA^P);
- kwasy 1-(*N*-alkiloamino)alkilofosfonowe (R-AA^P);
- kwasy 1-(*N*,*N*-dialkiloamino)alkilo-fosfonowe (R₂-AA^P) (Tab. 4-64.).

Tabela 4-64. Grupy kwasów aminoalkilofosfonowych poddane badaniom na stabilność podczasekspozycji w roztworach kwasowych i zasadowych								
$H_2 N - C - PO_3 H_2$ R	R^{1} H H $PO_{3}H_{2}$ $R^{2'}$ R							
Kwasy Kwasy Kwasy								
1-aminoalkilofosfonowe 1-(N-alkiloamino)alkilo- 1-(N,N-dialkiloamino)alkilo-								
(AA ^P)	fosfonowe (R-AA ^P)	fosfonowe (R ₂ -AA ^P)						

4.3.1.1. BADANIA STABILNOŚCI KWASÓW 1-AMINOALKILOFOSFONOWYCH (AA^P) W ROZTWORACH ZASAD I KWASÓW

Do badań wytypowano cztery aminokwasy – pochodne Gly^P – różniące się podstawnikami przy węglu αC .

Roztwory AA^P w odpowiednim roztworze kwasu lub zasady przygotowano zgodnie z wytycznymi w Tabelach: 4-65., 4-66.

Tabela 4-65. Przygotowanie roztworów kwasów 1-aminoalkilofosfonowych w 2 M HCl											
i 2 M KOH											
AA ^P						2 M HCI 2 M KOH					
AA ^P	Struktura	Mol	Masa [mg]	М	2,5 M HX*	D ₂ O	0,02 M EDTA	2,5 M KOH*	D ₂ O	0,02 M EDTA	
Gly [₽]	$H_2 N - C - PO_3 H_2$ H_2	111,1	22	0,02	0,80 ml	0,15 ml	0,05 ml	0,80 ml	0,15 ml	0,05 ml	
Ala ^P	H ₂ N-C-PO ₃ H ₂ Me	125,1	25	0,02	0,80 ml	0,15 ml	0,05 ml	0,80 ml	0,15 ml	0,05 ml	
Mala ^P	Me H ₂ N-C-PO ₃ H ₂ Me	139,1	28	0,02	0,80 ml	0,15 ml	0,05 ml	0,80 ml	0,15 ml	0,05 ml	
Pgly ^P	$H_2N - C - PO_3H_2$ Ph	187,1	37	0,02	0,80 ml	0,15 ml	0,05 ml	0,80 ml	0,15 ml	0,05 ml	
MPA	$H_3C - PO_3H_2$	96	19	0,02	0,80 ml	0,15 ml	0,05 ml	0,80 ml	0,15 ml	0,05 ml	
Mol, Mas	Mol, Masa i Moznaczają odpowiednio: M- masa molowa aminokwasu; Masa/b - naważka aminokwasu rozpuszczona w 1 ml										

roztworu 2 M HCl lub 2 M KOH; M^{/b} - stężenie molowe otrzymanego roztworu aminokwasu. D₂O - 98% 2,5 M HCl: w 3,2 ml 2,5 M HCl rozpuszczono 57 mg MPA. 2,5 M KOH: w 3,2 ml 2,5 M KOH rozpuszczono 57 mg MPA

Tabela 4-66. Przygotowanie roztworów kwasów 1-aminoalkilofosfonowych w 2 M H ₂ SO ₄										
	AA	2 M I								
AA ^P	Struktura	М	mg	mmol	2.4M* H ₂ SO ₄	D₂O [98%]	0.02M EDTA			
Gly ^P	$H_2 N - C - PO_3 H_2$ H_2	111,1	22	0,2	0,40ml	0,05ml	0,05ml			
Ala ^P	$H_2N-C-PO_3H_2$ Me	125,1	25	0,2	0,40ml	0,05ml	0,05ml			
Mala ^P	Me H ₂ N-C-PO ₃ H ₂ Me	139,1	28	0,2	0,40ml	0,05ml	0,05ml			
PGly ^P	$H_2N-C-PO_3H_2$ Ph	187,1	19	0,1	0,40ml	0,05ml	0,05ml			
MPA	$Me - PO_3H_2$	96	19	0,2	0,40ml	0,05ml	0,05ml			
17 ml H ₂	17 ml H ₂ O + 2 ml H ₂ SO ₄ ; 2,4 M H ₂ SO ₄ : w 2,4 ml rozpuszczono 57 mg MPA									

4.3.1.1.1. BADANIA STABILNOŚCI KWASÓW 1-AMINOALKILOFOSFONOWYCH (AA^P) W ROZTWORACH ZASAD

Wyniki badań ³¹P NMR nad stabilnością AA^P w 2 M KOH przedstawiono w Tabelach: 4-67., 4-68.

Tabola 4.67 Stabilność AA^{P} na oksnozycie w 2 M KOH [temp. 25° C]											
	Ekspoz.	0		120h/5d		360h/15d		720h/30d		1632h/68d	
Gly [₽]	ppm	19,3	a/	19,3	a/	19,3	a/	19,3	a/	19,3	a/
	%	100		100		100		100		100	
	Ekspoz.	()	120	h/5d	360h/15d		720h/30d		1632h/68d	
Ala ^P	ppm	22,1	a/	22,1	a/	22,1	a/	22,1	a/	22,1	a/
Ala ^P	%	100		100		100		100		100	
	Ekspoz.	0		120h/5d		360h	/15d	720h/30d		1632h/68d	
Mala ^P	ppm	24,9	a/	24,9	a/	24,9	a/	24,9	a/	24,9	a/
	%	100		100		100		100		100	
	Ekspoz.	0		120h/5d		360h/15d		720h/30d		1632h/68d	
Pgly ^P	ppm	18,0	a/	18,0	a/	18,0	a/	18,0	a/	18,0	a/
	%	100		100		100		100		100	
^{a/} Na zestawienie nie uwzględniano sygnału wzorca (MPA)											

Tabela 4-68. Stabilność AA ^P na ekspozycję w 2 M KOH [temp., 100°C]											
	Ekspoz,	0		2h		8h		16h		24h	
Gly ^P	ppm	19,3	a/								
	%	100		100		100		100		100	
	Ekspoz,	0		2h		8h		16h		24h	
Ala ^P	ppm	22,1	a/	22,1	a/	22,1	a/			22,1	
	%	100		100		100				100	
	Ekspoz,	0		2h		8h		16h		24h	
Mala ^P	ppm	24,9	a/								
	%	100		100		100		100		100	
	Ekspoz,	0		2h		8h		16h		24h	
Pgly ^P	ppm	18,0	a/								
	%	100		100		100		100		100	
^{a/} Na zestawienie nie uwzględniano sygnału wzorca (MPA)											
4.3.1.1.2. BADANIA STABILNOŚCI KWASÓW 1-AMINOALKILOFOSFONOWYCH (AA^P) W ROZTWORACH KWASÓW

Wyniki badań ³¹P NMR nad stabilnością AA^P w 2 M KOH przedstawiono w Tabelach: 4-69., 4-70.

Tabela 4-69. Stabilność AA ^P na ekspozycję w 2 M HCl [temp. 25°C]											
	Eksp. [h]	0		120h/5d		360h/15d		720h/30d		1632h/68d	
Gly ^P	ppm	13,9	a/	13,9	a/	13,9	a/	13,9	a/	13,9	a/
	%	100		100		100		100		100	
	Eksp. [h]	0		120h/5d		360h/15d		720h/30d		1632h/68d	
Ala ^P	ppm	16,8	a/	16,8	a/	16,8	a/	16,8	a/	16,8	a/
	%	100		100		100		100		100	
	Eksp. [h]	0		120h/5d		360h	/15d	720h	/30d	1632	n/68d
Mala ^P	ppm	19,2	a/	19,2	a/	19,2	a/	19,2	a/	19,2	a/
	%	100		100		100		100		100	
	Eksp. [h]	()	120	n/5d	360h/15d		720h/30d		1632	n/68d
Pgly ^P	ppm	12,5	a/	12,5	a/	12,5	a/	12,5	a/	12,5	a/
	%	100		100		100		100		100	
^{a/} Na zestawienie nie uwzględniano sygnału wzorca (MPA)											

Tabela 4	Tabela 4-70. Stabilność AA ^P na ekspozycję w 2 M H ₂ SO ₄ [temp. 100°C]										
Gly ^P	Ekspoz.	0		24h		48h		72h		120h	
	ppm	13,9		13,9		13,9		13,9		13,9	
	%	100		100		100		100		100	
	Ekspoz.	0		24h		48h		72h		12 <mark>0</mark> h	
Ala ^P	ppm	16,8		16,8		16,8		16,8		16,8	
	%	100		100		100		100		100	
	Ekspoz.	0		24h		48	3h	72	2h	12	0h
Mala ^P	ppm	19,2		19,2		19,2		19,2		19,2	
	%	100		100		100		100		100	
Pgly ^P	Ekspoz.	()	24	1h	48h		72	2h	12	0h
	ppm	13,3		13,3		13,3		13,3		13,3	
	%	100		100		100		100		100	

4.3.1.3. BADANIA STABILNOŚCI KWASÓW 1-(*N*-ALKILOAMINO)ALKILOFOSFONOWYCH (R-AA^P, R_2 -AA^P) W ROZTWORACH KWASÓW I ZASAD

Roztwory kwasów 1-(*N*-alkiloamino)alkilofosfonowych w odpowiednim roztworze kwasu lub zasady przygotowano zgodnie z wytycznymi w Tabelach: 4-71., 4-72.

Tabela 4-71. Przygotowanie roztworów kwasów 1-(N-alkiloamino)alkilofosfonowych											
w 2 M H ₂ SO ₄											
		AA ^P	nawa	żka AA ^P	2 M H ₂ SO ₄ ^{/b}						
Nr	AA ^P	Struktura	М	mmol	mg ^{/a}	2 <i>,</i> 4M* H₂SO₄	D₂O [98%]	0,05M EDTA			
1	tBu-Gly ^P	$\begin{array}{c} Bu^{t} - N - C - PO_{3}H_{2} \\ H_{2} \\ H_{2} \end{array}$	168,1	0,2	35/ [34]	0,40ml	0,05ml	0,05ml			
2	tBu-Ala ^P	$\mathbf{Bu}^{\mathrm{t}} = \mathbf{N} - \mathbf{C} - \mathbf{PO}_{3}\mathbf{H}_{2}$ $\mathbf{H} = \mathbf{M}_{1}$ Me	182,1	0,2	35/ [36]	0,40ml	0,05ml	0,05ml			
3	Me-Hala ^P	$\substack{Me-N-C-PO_3H_2\\H-L\\Et}$	153,1	0,2	30/ [31]	0,40ml	0,05ml	0,05ml			
4	Et-Hala [₽]	$Et-N-C-PO_{3}H_{2}$ H Et	167,1	0,2	35/ [33]	0,40ml	0,05ml	0,05ml			
5	Me_2 -Hala ^P	$Me_2N-C-PO_3H_2$ Et	167,1	0,2	34/ [33]	0,40ml	0,05ml	0,05ml			
6	Et-Mala ^P	$Et - N - C - PO_3H_2$ H H Me	167,1	0,2	28/ [28]	0,40ml	0,05ml	0,05ml			
7	ΡΜΑ	H ₂ C-PO ₂ H ₂	96	0,1	9,6	0,40ml					
,		3 - 32	7×9,6	7x0,1	67	2,8ml					
a/Naunita /Imaga 0.2 mmalali											

⁴/Naważka/[masa 0,2 mmola];

 $^{b/2}$,4 M H₂SO₄ otrzymano przez rozpuszczenie 95-98% H₂SO₄ (d=1,84 g/ml, ok. 18 M) (2ml) w wodzie (17 ml) i po wyznaczeniu miana; roztwór standardowy MPA w 2,4 M* H₂SO₄ otrzymano przez rozpuszczenie MPA (67 mg) w 2,4 M H₂SO₄ (2,8 ml)

Tabela 4-72. Przygotowanie roztworów kwasów 1-(<i>N</i> -alkiloamino)alkilofosfonowych w 2 M KOH											
	W 2	AA ^P	nawa	żka AA ^P	2 M KOH ^{/b}						
Nr	AA ^P	Struktura	М	mmol	mg ^{/a}	2,4 M* KOH	D₂O [98%]	0,05 M EDTA			
1	tBu-Gly ^P	$\begin{array}{c} Bu^{t} - N - C - PO_{3}H_{2} \\ H & H_{2} \end{array}$	168,1	0,2	34/ [34]	0,40ml	0,05ml	0,05ml			
2	tBu-Ala ^P	$\operatorname{Bu}^{\operatorname{t}}_{\operatorname{H}} \operatorname{H}^{\operatorname{H}}_{\operatorname{H}} \operatorname{H}^{\operatorname{t}}_{\operatorname{Me}} \operatorname{H}^{\operatorname{t}}_{\operatorname{Me}}$	182,1	0,2	37/ [36]	0,40ml	0,05ml	0 <i>,</i> 05ml			
3	Me-Hala ^P	$\substack{Me-N-C-PO_3H_2\\H-L\\Et}^H$	153,1	0,2	31/ [31]	0,40ml	0,05ml	0,05ml			
4	Et-Hala ^P	$Et-N-C-PO_{3}H_{2}$ H Et	167,1	0,2	32/ [33]	0,40ml	0,05ml	0,05ml			
5	Me_2 -Hala ^P	$Me_2N-C-PO_3H_2$ Et	167,1	0,1	17/ [17]	0 <i>,</i> 40ml	0,05ml	0 <i>,</i> 05ml			
6	Et-Mala ^P	Me Et-N-C-PO ₃ H ₂ H H Me	167,1	0,2	28/ [28]	0,40ml	0,05ml	0,05ml			
7		H.C-PO.H.	96,1	0,1	9,6	0,40ml					
,		-3 3 - 2	7×9,6	7x0,1	69	2,8ml					
 ^{a/}Naważka/[masa 0,2 mmola]; ^{b/}2,4M KOH otrzymano przez rozpuszczenie naważki KOH (ok. 14,0 g) w wodzie (100 ml) i po wyznaczeniu miana; roztwór standardowy MPA w 2,4M* KOH otrzymano przez rozpuszczenie MPA (67 mg) w 2,4M KOH (2,8 ml) 											

Widma ³¹P NMR odpwiednIch mieszanin reakcyjnych R-AA^P- 2 M KOH-H₂O i R-AA^P- 2 M H₂SO₄-H₂O przedstawiono w rozdziale *Badania Własne*.

4.3.2. REAKCJE KWASÓW AMINOALKILOFOSFONOWYCH Z $\rm H_2O_2$

Do zbadania stabilności AA^P w roztworach nadtlenku wodoru wybrano standardowy skład aminokwasów: Gly^P, Ala^P, Mala^P, PGly^P.

Przygotowanie mieszanin reakcyjnych $AA^{P}-H_{2}O_{2}$ dokonano wg. klucza zamieszczonego w Tabeli 4-73.

Tabela 4-73. Przygotowanie mieszanin reakcyjnych AA ^P -H ₂ O ₂											
	AA	7 _{P*}	2 M HCl		Ac	OH/AcO	Na	2 M NaOH			
Nr	Abbr.	0,1 mmol	2,5M HCl	D ₂ O	H_2O_2	Bufor	D_2O	H ₂ O ₂	2,5M NaOH	D_2O	H_2O_2
GH	Gly ^P	11 mg	0,4 ml	0,05 ml	0,05 ml						
АН	Ala ^P	12 mg	0,4 ml	0,05 ml	0,05 ml	-					
МН	Mala ^P	14 mg	0,4 ml	0,05 ml	0,05 ml	-					
РН	Pgly ^P	19 mg	0,4 ml	0,05 ml	0,05 ml	-					
M*H	MPA	9,6 mg	0,4 ml	0,05 ml	0,05 ml	-					
_			1					1	1		
GB	Gly ^P	11 mg				0,4 ml	0,05 ml	0,05 ml			
AB	Ala ^P	12 mg				0,4 ml	0,05 ml	0,05 ml			
MB	Mala ^P	14 mg				0,4 ml	0,05 ml	0,05 ml			
РВ	Pgly ^P	19 mg				0,4 ml	0,05 ml	0,05 ml			
M*B	MPA	9,6 mg				0,4 ml	0,05 ml	0,05 ml			
	1							1	1		
GZ	Gly ^P	11 mg							0,4 ml	0,05 ml	0,05 ml
AZ	Ala ^P	12 mg							0,4 ml	0,05 ml	0,05 ml
MZ	Mala ^P	14 mg							0,4 ml	0,05 ml	0,05 ml
ΡZ	Pgly ^P	19 mg							0,4 ml	0,05 ml	0,05 ml
M*Z	MPA	9,6 mg							0,4 ml	0,05 ml	0,05 ml

 H_2O_2 – pobierana próbki H_2O_2 (30%), d=1,1122 g/ml, 1l = 1112,2g = 333,6g H_2O_2 = 9,8M H_2O_2

Roztwory z Tabeli 4-73. umieszczono w rurkach NMR i termostatowano w temperaturze $25\pm 0.2^{\circ}$ C.

Roztwory poddawano analizie ³¹P NMR w określonym czasie (Rys.: 3-35., 3-37., 3-39.).

4.3.2.1. STABILNOŚĆ H₂O₂ W WARUNKACH POMIARU

Do zbadania stabilności nadtlenku wodoru w ww. roztworach wykorzystano roztworu wzorcowe przedstawione w Tabeli 4-74.

Oznaczenie zawartości nadtlenku wodoru w roztworach 2 M HCl, 2 M AcOH/AcONa i 2 M NaOH przeprowadzono z wykorzystaniem miareczkowania manganometrycznego (Sch. 4-10)^[347].

 $5H_2O_2 + 2KMnO_4 + 3H_2SO_4 \longrightarrow 2MnSO_4 + 5O_2 + 8H_2O + K_2SO_4$ $5H_2O_2 + 2MnO_4^- + 6H^+ \longrightarrow 2Mn^{2+} + 5O_2 + 8H_2O$

Schemat 4-10. Reakcja utlenienia H₂O₂ działaniem nadmanganianu

Tabela 4-74. Przygotowanie mieszanin reakcyjnych H ₂ O ₂										
	2 M HCl		2 M	AcOH / Aco	DNa	2 M NaOH				
2,5 M HCl	H ₂ O	H_2O_2	Bufor	H ₂ O	H_2O_2	2,4 M NaOH	H ₂ O	H_2O_2		
8,0 ml	1,0 ml	1,0 ml	8,0 ml	1,0 ml	1,0 ml	8,0 ml	1,0 ml	1,0 ml		
Kolbka miarowa 10 ml			Kolbk	a miarowa	10 ml	Kolbka miarowa 10 ml				

Procedura miareczkowania

[1] 1ml roztworu przenieść do kolbki miarowej (100ml) i wymieszać.

[2] Pobrać pipetą do kolby stożkowej 25 ml roztworu próbki, dodać 20 ml 1M roztworu kwasu siarkowego i miareczkować 0,021 M roztworem KMnO₄ (miano ustalono miareczkując naważkę szczawianu sodowego) do pojawienia się bladoróżowego zabarwienia.

[3] Miareczkowanie powtarzano 3-krotnie.

[4] Wyniki oznaczeń, uzyskane z algorytmu 4-2., przedstawiono w Tabeli 4-75. w postaci względnych ilości mmoli H_2O_2 , odniesionych do stanu początkowego (t=0).

Równanie 4-2. Algorytm do wyliczania ilość mmoli H₂O₂ w próbce miareczkowanej

 $nH_2O_2 [mmol] = 2,5 \text{ KMnO}_4 [mmol] = 2,5 \times c_{(KMnO4)} [mmol/ml] \times V_{(KMnO4)} [ml] \times w$

gdzie:

2,5 – współczynnik wynikający ze stechiometrii reakcji 4-10; $c_{(KMnO4)}$ – stężenie KMnO₄ (0,021 M); $V_{(KMnO4)}$ – średnia objętość zużytego KMnO₄; w – współmierność pipety (4).

Tabela 4-75. Wyniki oznaczeń H ₂ O ₂ w roztworach										
$%H_2O_2 = H_2O_2(t) / H_2O_2(t_o) \times 100\%$										
C_{725} [b] vs. d (24 b)	0	24 h	168 h	336 h	720 h					
Czas [11] vs. u (24 11)	0	(1 d)	(7 d)	(14 d)	(30 d)					
Względna ilość H ₂ O ₂ w 2 M HCl	100%	69,8%	6,20%	2,17%	0,93%					
Względna ilość H ₂ O ₂ w buforze	100%	95,4%	91,0%	90,0%	99,8%					
Względna ilość H ₂ O ₂ w 2 M KOH	100%	98,2%	98,2%	98,2%	95,0%					

4.4. BADANIA BIOLOGICZNE AMINOKWASÓW FOSFONOWYCH

W celu określenia aktywności przeciwdrobnoustrojowej związku chemicznego uzyskanego na drodze syntezy chemicznej, należy przeprowadzić testy mikrobiologiczne, określające podatność patogena na badany związek chemiczny. Wyniki testów mikrobiologicznych mogą być pomocne w celu wybrania substancji posiadającej cechy chemioterapeutyku o optymalnej aktywności.

4.4.1. METODA DYFUZYJNO-KRĄŻKOWA (KIRBY-BAUERA)

Częstą formą badania aktywności przeciwdrobnoustrojowej związku chemicznego jest metoda dyfuzyjno-krążkowa (Kirby-Bauera) – oparta na powolnym uwalnianiu substancji zawartej w krążku do podłoża.

Zasada metody

Na płytkę odpowiedniego podłoża zestalonego agarem wysiewa się czystą hodowlę patogena w taki sposób, aby po inkubacji cała jej powierzchnia była pokryta wzrostem bakteryjnym — tzw. *murawką*. Przed inkubacją, w różnych miejscach na powierzchni płytki umieszcza się małe krążki bibuły nasączone testowanymi związkami. Podczas inkubacji z każdego krążka badany środek dyfunduje promieniście do podłoża, tworząc gradient stężeń. Największa jego koncentracja występuje przy brzegach krążka i spada wraz z odległością od krążka. Wielkość strefy zahamowania wzrostu bakterii jest wprost proporcjonalna do stopnia wrażliwości bakterii na testowaną substancję chemiczną – im większa jest strefa zahamowania, tym bakteria jest bardziej wrażliwa. Test ten jest skuteczny dla tych bakterii, których wzrost jest widoczny po całonocnej inkubacji. W zależności od wielkości strefy, bakterie określa się jako: wrażliwe, średnio wrażliwe lub oporne.

Oznaczanie oporności bakterii metodą krążkowo-dyfuzyjną

Do określenia wrażliwości mikroorganizmów na związki chemiczne, wykorzystano półilościową metodę *in vitro* tzn. test dyfuzji krążkowej na agarze. Do badań użyto dwóch pospolitych, szybko rosnących mikroorganizmów wzorcowych: *Staphylococcus aureus* ATCC 6538 (Gram+) oraz *Escherichia coli* ATCC 11229 (Gram-).

Materiały

- agar tryptozowo sojowy 40 g na 1000 ml wody destylowanej;
- bulion tryptozowo sojowy 30 g na 1000 ml wody destylowanej;
- roztwory: kwasów 1-(N-acetyloamino)alkilofosfonowych i peptydów glicyloaminoalkliofosfonowych o określonym stężeniu;
- papierowe krążki nasączone badanym związkiem;
- zawiesina bakteryjna;
- wzorzec skali.

Procedura badania

[1] Przygotowanie 1 ml roztworu testowanych związków chemicznych o stężeniu ok. 54 mg/l W ddzielnych fiolkach chromatograficznych odważono testowane związki chemiczne, do każdej wialki dodano 1 ml wody destylowanej. [2] Przygotowanie krążków: wycięte krążki z papieru chłonnego (bibuły jakościowej) o średnicy 6 mm nasączono badanymi związkami chemicznymi o określonym stężeniu.

[3] Przygotowanie *inoculum* – zawiesiny bakteryjnej do badań: przygotować probówkę z 4,5
– 5,0 ml bulionu tryptozowo – sojowego (T.C.S.) i umieścić w niej pojedynczą kolonię z hodowli agarowej. Inkubować przez ok. 24 h w temperaturze 37 (± 2)ºC.

[4] Przygotować 6 probówek z 9 ml sterylnej wody destylowanej, w celu 10cio krotnych rozcieńczeń (10^{-1} , 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} , 10^{-6}). Z rozcieńczenia 10^{-6} wysiać po 0,1 ml na dwie szalki z agarem w celu określenia ilości bakterii. Inkubować przez 18 – 24 h w temp. 37 (± 2)⁰C. Policzyć wyrosłe kolonie.

[5] Z rozcieńczenia 10^{-1} pobrano materiał biologiczny do badań – liczebność bakterii wynosiła 1÷2 x 10^8 cfu/ml, co w przybliżeniu odpowiada 0,5 w skali McFarlanda. Pobrano 0,1 ml zawiesiny i równomiernie rozprowadzono na szalce z podłożem.

[6] Po wyschnięciu (do 15 min) na posiane podłoże nałożono wilgotne krążki z testowanymi związkami (za pomocą sterylnej pęsety). Każdy krążek należy delikatnie przycisnąć, zapewniając równomierny kontakt z podłożem. Na jeden związek chemiczny przygotowano 3 powtórzenia.

 [7] W ciągu 15 min. płytki wstawiono do cieplarki, inkubowano w warunkach tlenowych 18-24 godziny, w temp. 37°C.

[8] W przypadku pojawienia się efektu bakteriobójczego badanych związków chemicznych należy zmierzyć średnicę każdej strefy zahamowania wzrostu drobnoustroju (wliczając średnicę krążka) i podać odczyt w mm, a wyniki interpretować według średnicy uzyskanych stref zahamowania wzrostu.

4.4.2. METODA ROZCIEŃCZENIOWA W POŻYWCE PŁYNNEJ - METODA NEFELOMETRYCZNA

W następnym etapie doświadczeń zastosowano półilościową metodę *in vitro*, która wykorzystuje zdolność bakterii do wzrostu w pożywce płynnej w obecności określonego stężenia badanego związku.

294

Zasada metody

W celu określenia różnicy wzrostu mikroorganizmów w obecności różnych 1-(*N*-acyloamino)fosfonianów/peptydów posłużono się metodą instrumentalną – nefelometrią. Jest to metoda spektrofotometryczna wykorzystująca pomiar natężenia światła, które przeszło przez ośrodek mętny (zawiesinę bakterii).

Do badań użyto dwóch pospolitych, szybko rosnących mikroorganizmów wzorcowych *Staphylococcus aureus* ATCC 6538 (Gram+) oraz *Escherichia coli* ATCC 11229 (Gram-).

Instrumentalny pomiar mętności opiera się na zdolności cząsteczek w zawiesinie do rozpraszania światła. Do wykonania pomiarów laboratoryjnych użyto przenośne urządzenie przeznaczone do pomiaru mętności zawiesin bakteryjnych: nefelometr – densytometr DEN 1 firmy Grant-Bio (Rys. 4-14.).

Podstawowe dane techniczne:

- pomiar mętności zawiesin bakteryjnych odpowiadający wartościom od 0,3 do 15,0 jednostek w skali McFarlanda;
- źródło światła: dioda emitująca światło o długość fali: 565 ± 15 nm;
- wyniki wyświetlane są na ciekłokrystalicznym ekranie przyrządu;
- zawiesinę drobnoustrojów można sporządzić z wody, roztworu soli fizjologicznej lub przejrzystego, płynnego podłoża wzrostowego o barwach od żółtej do jasnobrązowej;
- do analizy wymagane są minimum 2,0 ml roztworu.

Rysunek 4-14. Densytometr DEN-1 firmy Grant-Bio

Aparat stosowano do pomiaru stężenia inokulum oraz określenia stopnia zmętnienia roztworu, wywołanego wzrastającą ilością komórek bakteryjnych po 5–cio i 24–ro godzinnej inkubacji zawiesiny bakteryjnej w obecności badanego związku chemicznego.

Materiały

- agar tryptozowo sojowy 40 g na 1000 ml wody destylowanej;
- bulion tryptozowo sojowy 30 g na 1000 ml wody destylowanej;
- zawiesina bakteryjna;
- wzorzec skali;
- densytometr firmy Grant-Bio model: DEN-1;
- roztwory: kwasów 1-(*N*-acetyloamino)alkilofosfonowych i peptydów glicyloaminoalkliofosfonowych o określonym stężeniu (Tab.: 3-40., 3-41.).

Przygotowanie zawiesiny bakteryjnej do badań (inoculum)

[1] Przygotować probówkę z 4,5 do 5,0 ml bulionu tryptozowo – sojowego (T.C.S.) i umieścić w niej pojedynczą kolonię z hodowli agarowej. Inkubować przez ok. 24 h w temperaturze 37 $(\pm 2)^{0}$ C.

[2] Przygotować 6 probówek z 9 ml sterylnej wody destylowanej, w celu 10cio krotnych rozcieńczeń $(10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6})$.

[3] Z rozcieńczenia 10^{-6} wysiać po 0,1 ml na dwie szalki z agarem w celu określenia ilości bakterii. Inkubować przez 18 do 24 h w temp. 37 (± 2)⁰C. Policzyć wyrosłe kolonie.

[4] Z rozcieńczenia 10⁻¹ pobrano materiał biologiczny do badań – liczebność bakterii wynosiła dla *Staphylococcus aureus*: 3,5 x 10⁷ cfu/ml, a dla *Escherichia coli*: 6,4 x 10⁷ cfu/ml.

[5] Po 10 krotnym rozcieńczeniu tych zawiesin otrzymano roztwory o mętności w przybliżeniu odpowiadającej 0,5 w skali McFarlanda.

Przygotowanie roztworów do badań

Do dwóch szeregów probówek (równolegle dla dwóch gatunków bakterii) dla każdego z 16 testowanych związków oraz próby odniesienia (razem 34 probówek), dodano po:

• 1,7 ml bulionu tryptozowo – sojowego (T.C.S.);

- 0,2 ml badanego związku (kwasu 1-(*N*-acyloamino)alkilofosfonowego, fosfonopeptydu), a w przypadku próby odniesienia wody destylowanej;
- 0,1 ml zawiesiny bakterii Staphylococcus aureus i Escherichia coli o gęstości 0,5 w skali McFarlanda.

Densytometryczny pomiar gęstości zawiesiny

Przed wykonaniem pomiarów urządzenie DEN-1 było kalibrowane za pomocą zestawu kalibrującego (odczyt kalibratorów: 0,25 i 0,5 w skali McFarlanda).

Każdą probówkę umieszczano w komorze odczytu densytometru DEN–1 i wykonywano pomiar w celu znalezienia odpowiednika w skali McFarlanda dla danej zawiesiny bakteryjnej (Tab.: 3-40., 3-41.). Pomiaru dokonano po 5 h i 24 h inkubacji zawiesiny bakteryjnej w temp. 37°C w obecności badanego związku chemicznego.

5. PODSUMOWANIE

Podczas realizacji Pracy Doktorskiej osiągnięto następujące cele cząstkowe:

1. Przeprowadzono syntezę 25 związków użytych dalej do badań fizyko-chemicznych i/lub biologicznych. Szereg z tych związków (10) to związki dotąd nieopisane w literaturze naukowej.

2. Opracowano dwie metody wyznaczania rozpuszczalności kwasów aminoalkilofosfonowych w wodzie oraz w układach woda-izopropanol. Wyznaczono rozpuszczalności w temperaturze pokojowej dla 17 reprezentatywnych kwasów aminoalkilofosfonowych w wodzie oraz w układach woda-izopropanol (90;10; 75:25; 50:50 i 25:75).

[Kudzin, M.H; Kudzin, Z.H.; Urbaniak, P.; Drabowicz, J.: *Investigations on the solubility of aminoalkylphosphonic acids*. 16th International Symposium Advances in the Chemistry of *Heteroorganic Compounds*, P-085, CBMM PAN, Łódź, 2013.11.15.]^[262].

3. Przeprowadzono badania termograwimetryczne reprezentatywnej grupy kwasów aminofosfonowych.

[Kudzin, M.H.; Kudzin, Z.H.; Urbaniak, P.; Drabowicz J.; Perlikowska, W. *ω-Amino-alkylophosphonic acids. Investigations of selected physical and chemical properties.* P-35. XV International Symposium Advances in the Chemistry of Heteroorganic Compounds, CBMM PAN, Łódź, 2012.11.16.]^[238]

Tematyka ta stanowi nowość, oprócz pracy Kurta Modritzera [Moedritzer, 1972]^[212] literatura chemiczna nie zawiera doniesień dotyczących badań termograwimetrycznych kwasów aminofosfonowych.

4. Przeprowadzono badania nad pirolizą reprezentatywnej grupy kwasów aminofosfonowych.

[Kudzin, M.H.; Mrozińska, Z.: Investigation of Thermal Decomposition of 1-Aminoalkylphosphonic Acids. P-88. XV International Symposium Advances in the Chemistry of Heteroorganic Compounds, CBMM PAN, Łódź, 2012.11.16.]^[283]

298

Tematyka ta stanowi nowość, oprócz pracy Hoffmann'a [Hoffmann et al., 2012]^[282] literatura chemiczna nie zawiera doniesień dotyczących badań nad pirolizą kwasów aminofosfonowych.

5. Przeprowadzono charakterystykę ³¹P NMR (przesunięcia chemiczne δ (³¹P) w wodnych roztworach 2 M KOH, buforze AcOH-AcOK, wodzie i 2 M HCl) dla 7 klas kwasów fosfonowych, w tym 5 klas kwasów aminofosfonowych, łącznie opis dotyczy 30 związków.

6. Przeprowadzono badania nad stabilnością reprezentatywnej grupy kwasów 1amInoalkilofosfonowych (Gly^P, Ala^P, Mala^P, Pgly^P), oraz 1-(*N*-alkiloamino)alkilofosfonowych (*t*Bu-Gly^P, *t*Bu-Ala^P, Me-Hala^P, Et-Hala^P, Et-Mala^P) oraz 1-(*N*,*N*-dialkiloamino)alkilofosfonowych (Me₂-Hala^P) na ekspozycję w roztworach kwasów i zasad (2 M HCl, 2 M H₂SO₄, 2 M KOH) w temperaturach 20 °C i 100 °C.

7. Przeprowadzono badania nad stabilnością reprezentatywnej grupy kwasów 1aminoalkilo-fosfonowych (Gly^P, Ala^P, Mala^P, Pgly^P) na ekspozycję w roztworach nadtlenku wodoru (w 2 M HCl, buforze AcOK/AcOH, 2 M KOH).

[Kudzin, M.H.; Kudzin, Z.H.; Urbaniak, P.; Drabowicz, J. *Reaction of 1-aminoalkyl-phosphonic acids with hydrogen peroxide. Oxidative dephosphonylation.* P-36. XV International Symposium Advances in the Chemistry of Heteroorganic Compounds, CBMM PAN, Łódź, 2012.11.12.]^[308].

8. Przeprowadzono badania nad właściwościami biologicznymi reprezentatywnej grupy kwasów 1-(*N*-acyloamino)alkilofosfonowych i fosfonopeptydów.

[Kudzin M.H., Kudzin Z.H., Drabowicz J. *Derivatives of aminoalkylphosphonic acids and glycylaminoalkylphosphonic acids as antibacterial additives in biopolymers*. European Polymer Congress EPF-2011; Grenada 2011.06.26.]^[335]

9. Dla celów dokumentacyjnych wykonano szereg widm UV i IR oraz widm ¹H NMR, ³¹P NMR i ¹³C NMR reprezentatywnych kwasów 1-aminoalkilofosfonowych (widma te będą wykorzystane przy opracowaniu pracy monograficznej, w przygotowaniu).

299

6. LITERATURA

6.1. LITERATURA NUMERYCZNIE

Przyjąłem zasadę zastosowaną wcześniej podczas pisania przeglądu do Current Organic Chemistry

[1] Kukhar, V.P.; Hudson, H.R. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity.* Eds. Kukhar, V.P.; Hudson, H.R.; Wiley& Sons Ltd: Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, **2000**.

[2] Soroka, M. Wybrane problemy chemii kwasów aminofosfonowych (Selected problems of chemistry of aminophosphonic acids). Pr. Nauk. Inst. Chem. Org. Fiz. Politech. Wrocław., **1987**, *32*, 1-92.

[3] Ryglowski, A.; Kafarski, P. Preparation of 1-aminoalkylphosphonic acids and 2aminoalkylphosphonic acids by reductive amination of oxoalkylphosphonates. *Tetrahedron*, **1996**, *53*, 10685-10692.

[4] Kafarski, P.; Lejczak, B. Aminophosphonic Acids of Potential Medical Importance. *Curr. Med. Chem. – Anti-Cancer Agents*, **2001**, *1*, 301-312.

[5] Kabachnik, M.I.; Medved, T.Y.; Dyatlova, N.M.; Archipova, O.G.; Rudomino, M.W. Phosphoroorganic complexones. *Usp. Khim.*, **1968**, *37*, 1161-1191.

[6] Kabachnik, M.I.; Medved, T.Y.; Dyatlova, N.M.; Rudomino, M.V. Phosphoroorganic complexones. *Usp. Khim.*, **1974**, *43*, 1554-1574.

[7] Petrov, K.A.; Chauzov, V.A.; Erokhina, T.E. Aminoalkyl organo-phosphorus compounds. *Usp. Khim.*, **1974**, *43*, 2045-2087.

[8] Prajer, K.; Rachoń, J. α-Aminophosphonic acids. Z. Chem., **1975**, 15, 209-215.

[9] Redmore, D. *The chemistry of P-C-N systems*. Topics in Phosphorus Chemistry, Eds.; Grayson M., Griflith E.J., Wiley-Intersci.; New York, **1976**; Vol. VIII.

[10] Kukhar, V.P.; Solodenko, V.A. The phosphorus analogues of aminocarboxylic acids. *Usp. Khim.*, **1987**, *56*, 1504-1532.

[11] Engel, R. Handbook in organophosphorus chemistry. Marcel Dekker Inc, New York; 1981.

[12] Kudzin, Z.H., *Investigations in the domain of aminophosphonic acids*. W.N.U.Ł., Łódź, **1996**, pp. 1-110.

[13] Kudzin, Z.H. 1-Aminoalkanephosphonic acids: six decades of exploration. *Sci. Issues, Acad. J. Długosza, Częstochowa*; **2005**, IX, 29-76.

[14] Kudzin, Z.H.; Kudzin, M.H.; Drabowicz, J.; Stevens, Ch. Aminophosphonic acids - phosphorus analogues of natural amino acids. *Curr. Org. Chem.*, **2011**, *15*, 2015-2071.

[15] Kudzin, Z.H.; Kudzin, M.H.; Drabowicz, J. Thioureidoalkylphosphonates in the synthesis of 1aminoalkyl-phosphonic acids. The Ptc-aminophosphonate method. *Arkivoc*, **2011**, *VI*, 227-269.

[16] Uziel, J.; Genet, J.P. Synthesis of racemic and optically active α -aminophosphonic acids. *Zh. Org. Khim.*, **1997**, *33*, 1605-1627.

[17] Hildenbrand, R.L.; Curley-Joseph, J.; Lubansky, H.J.; Henderson, T.O., Biology of alkylphosphonic acids. *A review of the distribution, metabolism and structure of naturally occurring alkylphosphonic acids*. Topics in Phosphorus Chemistry, Eds. Grayson, M.; Griffith, E.J.; Wiley-Intersci, Vol. XI, New York, **1983**, 297-338.

[18] Collinsova, M.; Jiracek, J. Phosphinic acid compounds in biochemistry, biology and medicine. *Curr. Med. Chem.*, **2000**, *7*, 629-647.

[19] Romanenko, V.D.;, Kukhar, V.P. Fluorinated Phosphonates: Synthesis and Biomedical Application. *Chem. Rev.*, **2006**, *106*, 3868-3935.

[20] Wardle, N.J.; Bligh, S.W.A.; Hudson, H.R. Omega-Phosphinyl-alpha-amino acids: synthesis and development towards use as therapeutic agents. *Curr. Org. Chem.*, **2007**, *11*, 1635-1651.

[21] Orsini F., Sello G., Sisti M. Aminophosphonic acids and derivatives. Synthesis and biological applications. *Curr. Med. Chem.*, **2010**, *17*, 264-289.

[22] Kafarski, P.; Mastalerz, P. Aminophosphonates: natural occurrence, biochemistry and biological properties. *Beitr. Wirkst. Forsch.*, **1984**, *21*, 1-110.

[23] Kafarski, P.; Lejczak, B. Biological activity of aminophosphonic acids. *Phosphorus & Sulfur*, **1991**, *63*, 193-215.

[24] Lejczak, B.; Kafarski, P. Biological activity of aminophosphonic acids and their short peptides. *Top Heterocycl. Chem.*, **2009**, *20*, 31–63.

[25] Michaelis, A.; Schenk, A., Über die Enwirkung von Phosphorchlorüd mit tertiäre aromatische Amine. *Justus Liebigs Annalen der Chemie*; **1890**, *260*, 1-39.

[26] Nijk, D.R. Comperative study of phenyl phosphonic acids and arsene phenyl acids substituted in the ring. *Rec. Trav. Chim.*, 41, 461-4500; *Chem. Abstr.*: **1923**, *17*, 1793.

[27] Bourneuf, M. Action of halides of phosphorous on certain aromatic amines. *Bull. Soc. Chim. Fr.*, **1923**, *33*, 1808-1823.

[28] Benda, L.; Schmidt, W. Dialkylamino aryl phosphinous acids. US Pat. 1.607.113 (1926); *Chem. Abstr.*: **1927**, *21*, P249.

[29] Plazek, S.; Sasyk, Z. About some of phosphoroorganic compounds. (O pewnych związkach fosforoorganicznych). *Roczn. Chem.*, **1934**, *14*, 73-76.

[30] Dicklay, J.B.; McNally, J.G. (Eastman Kodak) Acylamino derivatives of hydroxyl aliphatic phosphonic acids. US Pat. 2.374.807 (1945); *Chem. Abstr.*: **1945**, *39*, P3008.

[31] Bauer, H. Synthesis of *p*-aminobenezenephosphonic acid (phosphanilic acid). *J. Amer. Chem. Soc.*, **1941**, *63*, 2137-2138.

[32] Pikl, J. Amino- and methylaminomethanephosphonic acids and derivatives. Pat. US, 2328358, **1943**; *Chem. Abstr.:* **1944**, *38*, 754.

[33] Chavane, V. Aminophosphonic acids. Compt. rend., 1947, 224, 406-408.

[34] Rumpf, P.; Chavane, V. An electrochemical study of some phosphonic acid amines. *Compt. rend.* **1947**, *224*, 919-920.

[35] Chavane, V. Aliphatic phosphonic acids and their amino derivatives. IV. Electrometric titration studies. *Ann. chim.*, **1949**, *12*, 383-392.

[36] Chavane, V. Aliphatic phosphonic acids and their amino derivatives. III. Synthesis of aliphatic aminophosphonic acids. *Ann. chim.*, **1949**, 12, 372-382.

[37] Schwarzenbach, G.; Ackermann, H.; Ruckstuhl, P. Complexones. XV. A new derivative of iminodiacetic acid and its complexes with alkali earth metals. Correlation between acidity and chelating properties. *Helv. Chim. Acta*, **1949**, *32*, 1175-1186.

[38] Westerback, S.J.; Martell, A.E. Ethylenediaminetetra(methylene-phosphonic acid). *Nature* (*London*), **1956**, *178*, 321-322.

[39] Mastalerz, P. Inhibition of glutamine synthetase by phosphonic analogs of glutamic acid. *Arch. Immun. Ter. Dośw.*, 1959², 7, 201-210; *Chem. Abstr.*: **1960**, *54*, 6843.

[40] Horiguchi, M.; Kandatsu, M. Isolation of 2-aminoethyl phosphonic amid from rumen protozoa. *Nature (London)*, **1959**, *184*, 901-902.

[41] Kandatsu, M.; Horiguchi, M. Occurrence of ciliatine (2-aminoethylphosphonic acid) in Tetrahymena. *Agric. Biol. Chem.*, **1962**, *26*, 721-722.

[42] Kittredge, J.S.; Roberts, E.; Simonsen, D.G. Occurrence of free 2-aminoethyl-phosphonic acid in the sea anemone, *Anthopluera elegantissima*. *Biochemistry*, **1962**, *1*, 624-628.

[43] Kittredge, J.S.; Hughes, R.R. Occurence of "alfa"-amino-"beta"-phosphonopropionic acid in the zoanthid, zoanthus sociatus, and the ciliate, *Tetrahymena pyrifornis*. *Biochemistry*, **1964**, *3*, 991-996.

[44] Shimizu, H.; Kakimoto, Y.; Nakajima, T.; Kazanawa, A.; Sano, I. Isolation and identification of 2-aminoethylphosphonic acid from the bovine brain. *Nature (London)*, **1965**, *207*, 1197-1198.

[45] Alhadeff, J.A.; Daves, G.D. Jr. Occurrence of 2-aminoethylphosphonic acid in human brain. *Biochemistry*, **1970**, *9*, 4866-4869.

[46] Alhadeff, J.A.; Daves Jr., G.D. 2-Aminoethylphosphonic acid. Distribution in human tissues. *Biochem. Biophys. Acta*, **1971**, 244, 211-213.

[47] Tan, S.A.; Tan, L.G. Distribution of ciliatine (2-aminoethylphosphonic acid) and phosphonoalanine (2-amino-3-phosphonopropionic acid) in human tissues. *Clin. Physiol. Biol. Chem.*, **1989**, *7*, 303-309.

[48] Quin, L.D.; Quin, G.S. Screening for carbon-bound phosphorus in Marine animals by high-resolution ³¹P-NMR spectroscopy: coastal and hydrothermal vent invertebrates. *Comp. Bioch. Physiol. Part B*, **2001**, *128*, 173-185.

[49] Kittredge, J.S.; Isbell, A.F.; Hughes, R.R. Isolation and characterization of the N-Me derivatives of 2-aminoethylophosphonic acid from the sea anemone. *Biochemistry*, **1967**, *6*, 289-295.

[50] Seto, H.; Imai, S.; Tsuruoka, T.; Ogawa, H.; Satoh, A.; Sasaki, T.; Otake, N. Studies in the synthesis of Bialaphos (SF-1293). P. 3. Production of phosphinic acid derivatives MP-103, MP-104 and MP-105 by a blocked mutant of *Strypomyces hygroscopicus* SF-12903 and their roles in the biosyntheses of Bialaphos. *Biochem. Biophys. Res. Commun.*, **1983**, *111*, 1008-1014.

[51] Bayer, E.; Gugel, K.H.; Haegele, K.; Hagenmaier, H.; Jessipov, S.; Koenig,W.A.; Zaehner, H. Metabolic products of microorganisms. 98. Phosphinothricine and phosphinothricylo-alanylo-alanine. *Helv. Chim. Acta*, **1972**, *55*, 224-239.

[52] Seto, H.; Sasaki, T.; Imai, S.; Tsuruoka, T.; Ogawa, H.; Satoh, A.; Inoue, S.; Nida, T.; Otake, N. Studies in the synthesis of Bialaphos. P. 2. Isolation of the first natural products with the C-P-H bond and their influent on the C-P-C bond formation. *J. Antibiot.*, **1983**, *36*, 96-98.

[53] Korn, E.D.; Deaborn, D.G.; Falles, H.M.; Sokoloski, E.A. A major polysaccharide constituents of the amoeba plasma membrane contains 2-aminoethylphosphonic acid and 1-hydroxy-2-aminoethylphosphonic acid. *J. Biol. Chem.*, **1973**, *248*, 2257-2259.

[54] Kasa, H.; Yamato, M.; Koguchi, T.; Okachi, R.; Kasai, M.; Shirahata, K.; Kawamoto, I.; Shuto, K.; Karasawa, A.; Deguchi, T.; Nakayama, K. Phosphorus containing oligopeptides, and a pharmaceutical composition containing them. *Eur. Pat. Appl.* 0.061.1982, **1983**; *Chem. Abstr.*: **1983**, *98*, 107793.

[55] Okuhara, M.; Kuroda, Y.; Goto, T.; Okamoto, M.; Terano, H.; Kohsaka, M.; Aoki, H.; Imanaka, H. Studies on new phosphonic acid antibiotics. I. FR-900098, isolation and characterization. *J. Antibiot.*, **1980**, *33*, 13-17.

[56] Okuhara, M.; Kuroda, Y.; Goto, T.; Okamoto, M.; Terano, H.; Kohsaka, M.; Aoki, H.; Imanaka, H. Studies on new phosphonic acid antibiotics. III. Isolation and characterization of FR-31564, FR-32863 and FR-33289. *J. Antibiot.*, **1980**, *33*, 24-28.

[57] Fredenhagen, A.; Angst, Ch.; Peter, H.H. Digestion of rhizocticins to (Z)-L-2-amino-5-phosphono-3-pentenoic acid: revision of the absolute configuration of plumbemycins A and B J. *Antibiot.*, **1995**, *48*, 1043-1045.

[58] Cassaigne, A.; Lacoste, A.M.; Neuzil, E. Nonenzymatic transamination of aminophosphonic acids. *Biochim. Biophys. Acta*, **1971**, *252*, 506-513.

[59] Lejczak, B. Biologiczna aktywność aminofosfonianów i fosfonopeptydów. (Biological activities of aminophosphonates and phosphono-peptides.) *Pr. Nauk. Inst. Chem. Org. Fiz. Politech. Wrocław.*, **1988**, *35*, 3-81.

[60] Landt, M.; Boltz, S.C.; Butler, L.C. Alkaline phosphatase: affinity chromatography and inhibition by phosphonic acids. *Biochemistry*, **1978**, *17*, 915-919.

[61] Neuzil E., Cassaigne A. Antibacterial phosphonates. *Exp. Ann. Biochim. Med.*, **1980**, *34*, 181-215; *Chem. Abstr.*: **1980**, *93*, 198358j.

[62] Soper, T.S.; Manning, J.M. different modes of action of inhibitors of bacterial d-amino acid transaminase. *J. Biol. Chem.*, **1981**, *256*, 4263-4268.

[63] Neuzil, E.; Cassaigne, A.; Lacoste, A.M. Transamination non enzymatique des acides aminoalkylphosphoniques par l'acide glyoxylique. [Non enzymatic transamination of aminoalkylphosphonic acids by glyoxylic acid]. *Compt. Rend. Acad. Sci. Ser. D*, **1970**, *270*, 2724-2726.

[64] Lambert, M.P.; Neuhaus, F.C. Factors affecting the level of alanine racemase in *Escherichia coli*. J. Bacteriol., **1972**, 109, 1156-1161; Chem. Abstr.: **1972**, 76, 150837.

[65] Adams, E.; Mukharjee, K.A.; Dunathan, H.C. Alanine racemase of *Pseudomonas*. Substrate and inhibitor specifity. *Arch. Biochem. Biophys.*, **1974**, *165*, 126-132; *Chem. Abstr.*: **1975**, *82*, 27847.

[66] Allen, J.G.; Atherton, F.R.; Hall, M.J.; Hassall, C.H.; Holmes, S.W.; Lambert, R.W.; Nisbet, L.J.; Ringrose, P.S. Phosphonopeptides, a new class of synthetic antibacterial agents. *Nature (London)* **1978**, *272*, 56-58.

[67] Atherton, F.R.; Hall, M.J.; Hassall, C.H.; Lambert, R.W.; Ringrose, P.S. Phosphonopeptides as antibacterial agents: rationale, chemistry, and structure-activity relationships. *Antimicrob. Agents Chemother.*, **1979**, *15*, 677-683.

[68] Badet, B.; Walsh, C.T. Purification of an alanine racemase frog *Streptococcus faecalis* and analysis of its inactivation by (1-aminoethyl)phosphonic acid enantiomers. *Biochemistry*, **1985**, *24*, 1333-1341.

[69] Copie, V.; Faraci, W.S.; Walsh, C.T.; Griffin, R.G. Inhibition of alanine racemase by alanine phosphonate: detection of an imine linkage to pyridoxal 5'-phosphate in the enzyme-inhibitor complex by solid-state nitrogen-15 nuclear magnetic resonance. *Biochemistry*, **1988**, *27*, 4966-4970.

[70] Lilja, H.; Csopak, H.; Lindman, B.; Folsch, G. Fluorine-19 NMR studies of the binding of a fluorine-labelled phosphonate ion to Escherichia coli alkaline phosphatase. *Biochem. Biophys.* Acta, **1975**, *384*, 277-282; *Chem. Abstr.*: **1975/6**, *82*, 151250a.

[71] Neale, S. Amino acid analogs of as substrates of a rabbit reticulocyte aminoacyl-tRNA synthetase preparation. *Chem.-Biol. Interactions*, **1970**, *2*, 349-367; *Chem. Abstr*: **1971**, *74*, 94700.

[72] Anderson, J.W.; Fowden, L. 1-Amino-2-phenylethane-1-phosphonic acid: a specific competitive inhibitor of phenylalanyl-^tRNA synthetase. *Chem.-Biol. Interactions*, **1970**, *2*, 53-55; *Chem. Abstr*: **1970**, *73*, 73264f.

[73] Strater, N.; Lipscomb, W.N. Transition state analog L-Leucinephosphonic acid bound to bovine lens leucine aminopetidase: X-ray structure as 1.65 Å resolution in a new crystal form. *Biochemistry*, **1995**, *34*, 9200-9210.

[74] Sekura, R.; Meister, A. γ-Glutamylcysteine synthetase. Further purification, "half of the sites" reactivity, subunits and specificity. *J. Biol. Chem.*, **1977**, *252*, 2599-2605.

[75] Logusch, E.W.; Walker, D.M.; McDonald, J.F.; Franz, J.E. Substrate variability as a factor in enzyme inhibitor design: inhibition of ovine brain glutamine synthetase by α - and γ -substituted phosphinotricins. *Biochemistry*, **1989**, *28*, 3043-3051.

[76] Lacoste, A.M.; Cassaigne, A.; Neuzil, E. Aminophosphonic acids and growth of Pseudomonas aeruginosa. *Compt. Rend. Acad. Sci., Paris, Ser. D,* **1975**, *280*, 1173-1176; *Chem. Absr.*: **1975**, *82*, 165298j.

[77] Petrillo, E.W.; Spitzmiller, E. Synthesis of 2-phosphono-pyrrolidine and its substitution for proline as an inhibitor of angiotensine-converting enzyme. *Tetrahedron Lett.*, **1979**, 4929-4933.

[78] Izbicka-Dimitrijevic, E.; Mastalerz, P.; Kochman, M. Dual effects of phenylalanine analogs on rabbit muscle pyruvate kinase activity. *Eur. J. Biochem.*, **1981**, *114*, 565-568; *Chem. Abstr.*: **1981**, *94*, 170114.

[79] Janas, K.; Filipiak, A.; Kowalik, J.; Mastalerz, P.; Knypl, J.S. 1-Amino-2-phenylethyl-phosphonic acid: an inhibition of L-phenylalanine ammonialyse *in vitro*. *Acta Biochim. Polonica*, **1985**, *32*, 131-143.

[80] Laber, B.; Kiltz, H.H.; Amrhein, N. Inhibition of phenylalanine ammonia-lyase *in vitro* and *in vivo* by (1-amino-2-phenylethyl)-phosphonic acid, the phosphonic analog of phenylalanine. *Z. Naturforsch. C Biosci.*, **1985**, *41*, 49-55; *Chem. Abstr.*: **1986**, *104*, 183299.

[81] Cassaigne, A.; Lacoste, A.M.; Neuzil, E. Aminoalkylphosphonic acids. I. Effect of tyrosinase on the phosphonic analog of tyrosine. *Bull. Soc. Chim. Biol.*, **1967**, *49*, 1813-1825; *Chem. Abstr.*: **1968**, *68* 84550.

[82] Lejczak, B.; Kafarski, P.; Makowiecka, E. Phosphonic analogs of tyrosine and 3,4dihydroxyphenylalanine (DOPA) influence mushroom tyrosinase activity. Antimelanoic agents. *Biochem. J.*, **1987**, *242*, 81-88.

[83] Iron, A.; Ruart, M.; Duboy, J.P.; Beranger, M.; Cassaigne, A.; Neuzil, E. The phosphonic analog of tyrosine: a tool in metabolic studiem. *Biochem. Soc. Trans.*, **1981**, *9*, 246; *Chem. Abstr.*: **1981**, *95*, 198358.

[84] Sikorski, J.A; Logush, E.W. *Aliphatic carbon-phosphorus compound as herbicides*. In Book: *Handbook in organophosphorus chemistry*. Ed Engel R, Marcel Dekker Inc, New York; **1988**, *15* Chpt., 737-806.

[85] Franz, J.E.; Mao, K.K.; Sikorski, J.A.: *Glyphosate: A unique global herbicide*. ACS Monograph 189, Amer. Chem. Soc., Washington, DC; **1997**.

[86] Kafarski P.; Lejczak, B.; Mastalerz, P. Phosphonopeptides. Synthesis and biological activity. *Beitr. Wirkst. Forsch.*, **1985**, *25*, 1-77.

[87] Kafarski, P.; Lejczak, B. *Synthesis of phosphono- and phosphino-peptides*. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity*. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *6*, 172-204.

[88] Kafarski, P.; Lejczak, B. *The biological activity of phosphono- and phosphonopeptides*. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity*. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *12*, 407-442.

[89] Hudson, H.R. Aminophosphonic and aminophosphinic acids and their derivatives as agrochemicals. In Book: Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. 13, 443-482.

[90] Karanewsky, D.S.; Badia, M.C.; Cushman, D.W.; De Forrest, J.M.; Dejneka, T.; Loots, M.J.; Pern, M.G.; Petrillo Jr, R.D.; Powell, R.J. (Phosphinyloxy)acyl amino acid inhibitors of angiotensin converting enzyme (ACE). 1. Discovery of (*S*)-1-[6-amino-2-[[hydroxy(4-phenylbutyl)phosphinyl]oxy]-1-oxohexyl]-L-proline, a novel orally active inhibitor of ACE. *J. Med. Chem.*, **1988**, *31*, 204-2012.

[91] De Tinguy-Moreaud, E.; Bioulac, B.; Vincent, J.D.; Neuzil, E. Neuroactive properties of some phosphonic analogs of natural guanido compounds. *Gen. Pharmacol.*, **1980**, *11*, 513-519.

[92] Russell, G.R.G. Bisphosphonates: The first 40 years. Bone, 2011, 49, 2-19.

[93] De Clercq, E.; Holy, A.; Rosenberg, I.; Sakuma, T.; Balzarini, J.; Maudgal, P.C. A novel selective broad-spectrum anti-DNA virus agent. *Nature (London)*, **1986**, *323*, 464-467.

[94] De Clercq, E. The clinical potential of the acyclic (and cyclic) nucleoside phosphonates: the magic of the phosphonate bond. *Biochem. Pharmacol.*, **2011**, *82*, 99-109.

[95] Maier, L. Advances in the chemistry of aminophosphinic acids. *Phosphorus & Sulfur*, **1983**, *14*,295-322.

[96] Mastalerz, P. *α-Substituted phosphonates. Handbook in organo-phosphorus chemistry.* Marcel Dekker Inc., New York; **1988**, Chpt. *7*, 276-375.

[97] Kafarski, P.; Zoń, J. Synthesis of α -aminoalkanephosphonic and α -aminoalkanephosphinic acids. In Book: Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. 2, 33-74.

[98] Lall, Sh.; Engel, R. α-Amino acid analogues bearing side-chain C-P linkages. In Book: Aminophosphonic and aminophosphinic acids. In Book: Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt 4, 103-126.

[99] Kukhar, V.P. Synthesis of α -aminoalkanephosphonic and α -aminoalkanephosphinic acids with the amino substituents in other than α -position. In Book: Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**¹, Chpt. 3: 75-102.

[100] Pallacios, F.; Alonso, C.; Santos, J.M. Synthesis of β -aminophosphonates and -phosphinates. Chem. Rev., **2005**, *105*, 899-931.

[101] Dhavan, B.; Redmore, D. Optically active 1-aminoalkylphosphonic acids. *Phosphorus & Sulfur*, **1987**, *32*, 119-144.

[102] Kukhar V.P. Asymmetric synthesis of aminophosphonic and aminophosphinic acids. In Book: Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *5*, 127-172.

[103] Ma, J.-N. Catalytic asymmetric synthesis of α - and β -amino phosphonic acid derivatives. *Chem. Soc. Rev.*, **2006**, *35*, 630-636.

[104] Hagele, G. *Physical properties and NMR characterization of aminophosphonates and aminophosphinates.* In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity.* Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *8*, 217-284.

[105] Kudzin, Z.H.; Mokrzan, J.; Skowroński, R. Long chain aminothiaalkane-phosphonates, their sulphinyl and sulphonyl derivatives. A new class of complexane type surfactants. *Phosphorus & Sulfur*, **1989**, *42*, 41-46.

[106] Kudzin, Z.H.; Drabowicz, J.; Sochacki, M.; Wiśniewski, W. Characterization of 1-aminoalkanephosphonic acids by means of chemical ionization mass spectrometry. *Phosphorus & Sulfur*, **1994**, *92*, 77-93. [107] Kudzin, Z.H.; Skrzypek, S.W.; Skowroński, R.; Ciesielski, W.; Cristau, H.J.; Plenat, F. Polarographic investigations of functionalized alkanephosphonic acids. P. II. *Phosphorus & Sulfur*, **1996**, *119*, 201-207.

[108] Kudzin, Z.H.; Sochacki, M. Mass Spectrometry and Gas Chromatography-Mass Spectrometry of aminoalkanephosphonic acids. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity.* Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *11*, 363-406.

[109] Horiguchi, M. *Natural carbon-phosphorus compounds*. In Hallmann, M. (ed.): *Analytical Chemistry of Phosphorus Chemistry*, Wiley-Intersci., New York; **1972**, Chpt. *18*, 703-721.

[110] Szczepaniak, W.; Siepak, J.; Kuczyński, J. Phosphoro-organic complexones in chemical analysis. *Chem. Anal.*, **1978**, *23*, 210-223.

[111] Galushko, S.V. Column chromatography of aminophosphonic acids and peptides. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity.* Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. 7, 205-216.

[112] Kudzin, Z.H.; Kotyński, A. Andrijewski, G. Aminoalkane-diphosphonic acids. Synthesis and acidic properties. *J. Organometal. Chem.*, **1994**, *477*, 199-205.

[113] Kudzin, Z.H.; Andrijewski, G.; Drabowicz, J. 1-Aminothiaalkane-phosphonic acids – sulphinyl and sulphonyl derivatives. Synthesis and acidic properties. *Heteroatom Chem.*, **1994**, *5*, 1-6.

[114] Kudzin, Z.H.; Gralak, D.; Drabowicz, J.; Łuczak, J. A novel approach for simulataneous determination of glyphosate and its metabolites. *J. Chromatogr. A*, **2002**, *947*, 129-141.

[115] Kudzin, Z.H.; Gralak, D.; Andrijewski, G.; Drabowicz, J.; Łuczak, J. Simulataneous determination of biologically active aminophosphonates and aminophosphinates. *J. Chromatogr. A* **2003**, *99*8, 183-199.

[116] Stalikas, C.D.; Pilidis, G.A. Development of a method for the simultaneous determination of phosphonic and amino amid group containing pesticides by gas chromatography with mass-selective detection. Optimization of the derivatization procedure using an experimental design approach. *J. Chromatogr. A*, **2000**, *872*, 215-225.

[117] Stalikas, C.D.; Konidari, C.N. Analytical methods to determine phosphonic and amino acid group-containing pesticides. *J. Chromatogr. A*, **2001**, *907*, 1-19.

[118] Choi, N.; McPartlin, M. *X-Ray crystallographic studies*. In Book: *Aminophosphonic and aminophosphinic acids*. *Chemistry and biological activity*. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *10*, 327-362.

[119] Szczepaniak, W.; Siepak, J. Phosphoroorganic complexones. *Wiad. Chem.*, **1975**, *29*, 193-210.

[120] Rizkalla, E.N. Metal chelates of phosphonate-containing ligands. *Rev. Inorg. Chem.*, **1983**, *5*, 223-304.

[121] Delgado, R.; Siegfried, L.C.; Kaden, T.A. Metal complexes with macrocyclic ligands. 14. Protonation studies and complexation properties of tetra-azamacrocyclic methylene-phosphonates with earth-alkali ions. *Helv. Chim Acta*, **1990**, *73*, 140-148.

[122] Sinyavskaya, E.I. Coordination compounds with aminophosphonic acids. *Koord. Khim*, **1991**, *17*, 1599-1626.

[123] Kiss, T.; Lazar, I.; Kafarski, P. Chelating tendencies of bioactive aminophosphonates. *Met.- Based Drugs*, **1994**, *1*, 247-264.

[124] Wainwright, K.P. Synthetic and structural aspects of the chemistry of saturated polyaza macrocyclic ligands bearing pendant coordinating groups attached to nitrogen. *Coord. Chem. Rev.*, **1997**, *166*, 35-90.

[125] Kiss T., Lazar I. *Stability constants of metal complexes in solution*. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity*. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *9*, 285-326.

[126] Kamecka, A.; Kurzak, B. Coordination properties of phosphonate ligands with some metal ions. *Wiad. Chem.*, **2003**, *57*, 797-825.

[127] Song, J.L.; Mao, J.G. New metal phosphonates containing coordination piperazine or pyridyl group. *J. Solid State Chem.*, **2005**, *178*, 3514-3521.

[128] Kittredge, J.S.; Roberts, E. A carbon-phosphorus compounds in nature. *Science*, **1969**, *164*, 37-42.

[129] Cassaigne, A.; Lacoste, A. M.; Neuzil, E. Biochemistry of the C-P bond. *L'aqctual. Chim.*, **1979**, 19-24.

[130] Mastalerz, P.; Kafarski, P. *Naturally occurring aminophosphonic and aminophophinic acids*. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity*. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. 1, 1-32.

[131] Ryzhkov, M.I.; Kabachnik, M.I.; Tarasevich, L.M.; Medved, T.Ya.; Zeitlenok, N.A.; Marchenko, N.K.; Vagzhanova, V.A.; Ulanova, E.F.; Cheburkina, N.V. Biological activity of α-aminophosphonic acids. *Dokl. Akad. Nauk. SSSR*, **1954**, *98*, 849-852.

[132] Kleinrok, Z.; Kolasa, K.; Chodkowska, A.; Mastalerz, P.; Kafarski, P. Preliminary pharmacological investigation on 38 aminophosphonic acids and their derivatives. *Polish J. Pharmacol. Pharm.*, **1985**, *37*, 575-84.

[133] Khomutov, R.M.; Osipova, T.I.; Zhukova, Y.N.;, Gandurina, I.A. Organophosphorus analogs of optically active substances. 5. Synthesis of α -aminophosphonic acids and some of their derivatives. *Izw. Acad. Nauk SSSR, Ser. Khim.*, **1979**³, 2118-2122.

[134] Kukhar, V.P.; Solodenko, N.M.; Solodenko, V.A. Biological activity of phosphorus analogs of amino acids. *Ukr. Biokhim. Zh.*, **1988**, *60*, 95-111.

[135] Boduszek, B. Heterocykliczne kwasy aminofosfonowe – synteza i biologiczna aktywność. (Heterocyclic aminophosphonic acids - synthesis and biological activity.) *Pr. Nauk. Inst. Chem. Org. Fiz. Politech. Wrocław.*, **1997**, *38*, 1-87.

[136] Gancarz, R. Reakcja Kabachnika-Fields'a. Synteza biologicznie aktywnych aminofosfonianów. (Kabachnik-Fields reaction. Synthesis of biologically active amino-phosphonates.) *Pr. Nauk. Inst. Chem. Org. Fiz. Politech. Wrocław.*, **1997**, *39*, 1-78.

[137] Hiratake, J.; Oda, J. Aminophosphonic and aminoboronic acids as key element of a transition state analog inhibitor of enzymes. *Biosci., Biotech. Biochem.*, **1997**, *61*, 211-218.

[138] Hoffmann, M. Fosfonowe analogi estrów α -aminokwasów i α -hydroxykwasów jako substratów do syntezy fosfonopeptydów i fosfonodepsipeptydów (Phosphonic analogues of α -amino acid and α -hydroxy acid esters as substrates for the synthesis of phosphonopeptides and phosphono-depsipeptides.) *Pr. Nauk. Polit. Gdańsk.*, **1999**, *XLI*, 1-59.

[139] Volkert, W.A.; Hoffman, T.J. Therepeutic radiopharmaceuticals. *Chem. Rev.*, **1999**, 99, 2269-2292.

[140] Jane, D. Neuroactive aminophosphonic and aminophosphinic acid derivatives. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity.* Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *14*, 483-536.

[141] Oleksyszyn, J. Aminophosphonic and aminophosphinic acid derivatives in the design of transition state analogue inhibitors: biomedical opportunities and limitations. In Book: Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *15*, 537-558.

[142] Peyman, A. Aminophosphonic and aminophosphinic acids in the design and synthesis of HIV protease inhibitors. In Book: Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *16*, 559-578.

[143] Green, D.S.C.; Skordalakes, E., Scully, M.F.; Deadman, J.J. *Aminophosphonic acid derivatives as antithrombic agents.* In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity.* Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *17*, 579-596.

[144] Markwell, R. Aminophosphonic and aminophosphinic acid derivatives as inhibitors of human colagenases. In Book: Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. 18: 597-617.

[145] Zoń, J. Badania and syntezą i właściwościami inhibitorów oraz substratów ammoniakoliazy fhenylalaniny. (Research on the syntheses and properties of inhibitors and substrates of phenylalanine ammonia-lyase.) Pr. Nauk. Inst. Chem. Org. Fiz. Politech. Wrocław., **2005**, *42*, 3-60.

[146] Simon, J.; Garlich, J.R. Use of macrocyclic aminophosphonic acid complexes as imaging agents. Eur. Pat. (1992) Appl. E.P. 468634 A1 1992 0129.

[147] Mathew, B.; Chakraborty, S.; Das, T.; Sarma, H.D.; Banerjee, S.; Samuel, G.; Venkatesh, M.; Pillai, M.R.A. ¹⁷⁵Yb labeled polyaminophosphonates as potential agents for bone pain palliation. *Applied Radiation & Isotopes*, **2004**, *60*, 635-642.

[148] Franz, J.E. *Discovery, development and chemistry of glyphosate, The herbicide glyphosate* (Grossbard, E.; Atkinson, D., eds.), Butterworth: Boston, MA; **1985**, 1-17.

[149] Maier, L. Preparation, properties, and structure of bis(aminomethyl)phosphinic acid [H₂NCH₂)₂P(O)OH]. *J. Organometal. Chem.*, **1979**, *178*, 157-169.

[150] Maier, L.; Smith, M.J. Synthesis and properties of bis(N-hydroxy-carbonylmethyl-aminomethyl)-phosphinic acid, (HO₂CCH₂NHCH₂)₂P(O)OH, and derivatives. *Phosphorus & Sulfur*, **1980**, *4*, 67-72.

[151] Maier, L. Synthesis and properties of 1-amino-2-arylethylphosphonic and- phosphinic acids as well as- phosphine oxides. *Phosphorus & Sulfur*, **1990**, *51*, 7–10.

[152] Diel, P.J.; Maier, L. Synthesis and properties of *N*-phosphono-glycine derivatives. *Phosphorus & Sulfur*, **1984**, *20*, 313-330.

[153] Cameron, D.G.; Hudson, H.R.; Ojo, I.A.O.; Pianka, M. Organophosphorus compounds as potential fungicides. Part I. Aminoalkane-, guanidinoalkane-, and thioureidoalkane-phosphonic acids: preparation, spectroscopy, and fungicidal activity. *Phosphorus & Sulfur*, **1988**, *40*, 183-197.

[154] Cameron, D.G.; Hudson, H.R.; Pianka, M. Organophosphorus compounds as potential fungicides. Part II. Aminoalkane-, guanidinoalkane-, and thioureidoalkanephosphonic acids: preparation, spectroscopy, and fungicidal activity. *Phosphorus & Sulfur*, **1993**, *83*, 21-37.

[155] Hudson, H; Pianka, M. An Approach to the Development of Organophosphorus Fungicides. *Phosphorus & Sulfur*, **1996**, *109*, 345-348.

[156] Kafarski, P.; Lejczak, B.; Forlani, G. Herbicidally active aminomethylenebisphosphonic acids. *Heteroatom Chem.*, **2000**⁴, *11*, 449-453.

[157] Maier, L. Phosphoroorganic detergents. Chimia, 1969, 23, 323-330.

[158] Coveney, P.V.; Davey, R.J.; Griffin, J.L.W.; Whiting, A. Molecular design and testing of organophosphonates for inhibition of crystallisation of ettringite and cement hydration. *Chem. Commun.*, **1998**, 1467–1468.

[159] Vaarama, K.; Lehto, J.; Jaakkola, T. Removal of ²³⁴U, ²³⁸U, ²²⁶Po and ²¹⁰Pb from drinking water by ion exchange chromatography. *Radiochim. Acta*, **2000**, *88*, 361-367.

[160] Diner, P.; Amedjoukh, M. Aminophosphonates as organocatalysts in the direct asymmetyric aldol reaction: towards syn selectivity in the presence of Lewis bases. *Org. Biomol. Chem.*, **2006**, *4*, 2091-2096.

[161] Jin, Y.; Liu, J.; Yin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Dimethylamino-methyl-phosphonic acid derivatives-promoted Cul-catalyzed synthesis of aryl ethers. *Synlett*, **2006**, *1*, 564-1568.

[162] Engel, R. Synthesis of Carbon-Phosphorus Bonds. C.R.C. Press Inc.: Boca Raton, 1990.

[163] Engel, R.; Cohen, J.L.I. *Synthesis of Carbon-Phosphorus Bonds*. C.R.C. Press Inc.: Boca Raton, London, New York, **2005**.

[164] Birum, G.H. Urylenediphosphonates. A general method for the synthesis of α -ureido-phosphonatesand related structures. *J. Org. Chem.*, **1974**, *39*, 209.

[165] Birum, G.H. Nitrogen-containing organophosphorus compounds having aryloxy substituents bonded to phosphorus in ester structures. *Pat US, 4036913,* (**1973**); *Chem. Abstr.* **1977**, *87*,201764.

[166] Birum, G.H. Phosphorus compounds. *Pat. US, 4031170* (**1973**); *Chem. Abstr.* **1977**, *87*,135932.

[167] Birum, G.H. Proces for the production of sulfonamide phosphonates. *Pat US, 4032601,* (1973); *Chem. Abstr.* 1977, *87*, 135933.

[168] Birum, G.H. Urea-phosphorus compounds. *Pat. US, 3904654* (**1973**); *Chem. Abstr.* **1976**,*84*, 44349.

[169] Birum, G.H. Urea-phosphorus compounds. *Pat. US, 3965127* (**1973**); *Chem. Abstr.* **1976**,*85*, 143295.

[170] Birum, G.H. Cyclic organophosphorus amides. Pat. US, 398061809 (1976).

[171] Kudzin, Z.H.; Stec, W.J. Synthesis of 1-aminoalkanephosphonic acids via thioureidoalkanephosphonates. *Synthesis*, **1978**, 469-472.

[172] Oleksyszyn, J.; Tyka, R. An improved synthesis of 1-amino-phosphonic acids. *Tetrahedron Lett.*, **1977**, 2823-2824.

[173] Oleksyszyn, J.; Tyka, R.; Mastalerz, P. Direct synthesis of 1-amino-alkylphosphonic and – phosphinic acids from phosphorus trichloride or dichlorophosphines. *Synthesis*, **1978**, 479-480.

[174] Oleksyszyn, J. *Amidoalkilowanie związków trójwartościowego fosforu.* (*Amidoalkylation of trivalent phosphorous compounds.*) Pr. Nauk. Inst Chem. Org. Fiz. Politech. Wrocław., **1986**, *29*, 1-77.

[175] Soroka, M. The synthesis of 1-aminoalkylphosphonic acids. A revised mechanism of the reaction of phosphorus trichloride, amides and aldehydes or ketones in acetic acid solution (Oleksyszyn reaction). *Liebigs Ann. Chem.*, **1990**, *4*, 331-334.

[176] Soroka, M.; Jaworska, D.; Szczęsny, Z. Synthesis of 1-aminoalkylphosphonic acids via amidoalkylation of phosphorous amid by *N*,*N*'-alkylidenebisamides. *Liebigs Ann. Chem.*, **1990**, *4*, 1153-1155.

[177] Oleksyszyn, J.; Subotkowska, L. Aminomethanephosphonic acid and diphenyl ester. *Synthesis*, **1982**, 908.

[178] Chalmers, M.E.; Kosolapoff, G.M. The synthesis of amino-substituted phosphonic acids. III. *J. Amer. Chem. Soc.*, **1953**, *75*, 5278-5280.

[179] Chambers, J.R.; Isbell, A.F. A new synthesis of amino phosphonic acids. J. Org. Chem., **1964**, 29, 832-836.

[180] Berlin, K.D.; Roy, N.K.; Claunch, R.T.; Bude, D. A novel route to α -aminoalkylphosphonic acids and dialkyl α -aminoalkylphosphonate hydrochlorides. *J. Amer. Chem. Soc.*, **1968**, *90*, 4494-4495.

[181] Łukszo, J.; Tyka, R. New protective group in the synthesis of 1-aminoalkylphosphonic acids. Synthesis, **1977**, 239-240.

[182] Subotkowski, W.;Tyka, R.; Mastalerz, P. Phosphonic analogue of proline. *Pol. J. Chem.*, **1980**, *54*, 503-505.

[183] Subotkowski, W.; Tyka, R.; Mastalerz, P. Large scale of dialkyl 2-pyrrolidine-phosphonates. *Pol. J. Chem.*, **1983**, *57*, 1389-1391.

[184] Zygmunt, J.; Mastalerz, P. Phosphonic analogues of serine and isoserine. *Pol. J. Chem.*, **1978**, *52*, 2271-2273.

[185] Zygmunt, J.; Mastalerz, P. Phosphonic analogues of serine and isoserine. *Pol. J. Chem.*, **1981**, *55*, 411-414.

[186] Lejczak, B.; Kafarski, P.; Soroka, M.; Mastalerz, P. Synthesis of the phosphonic analogue of serine. *Synthesis*, **1984**, 577-581.

[187] Kudzin, Z.H.; Stec, W.J. Phosphohomocysteine derivatives. Synthesis, 1980, 1032-1034.

[188] Kudzin, Z.H.; Stec, W.J. Phosphocysteine and phosphohomocysteine. Synthesis and isolation. *Synthesis*, **1983**, 812-814.

[189] Baylis, E.K.; Campbell, C.D.; Dingwall, J. 1-Amino-alkylphosphonous acids. Isosteres of the protein amino acids. *J. Chem. Soc. Perkin. Trans. I*, **1984**, 2845-2853.

[190] Bongini, A.; Camerini, R.; Hoffmann, S.; Panuzio, M. Synthesis of (*1S, 2S*)-phosphonothreonine via N-TMS-silylamine of lactic aldehyde. *Tetrahedron Lett.*, **1994**, *35*, 8045-8049.

[191] Krzyżanowska, B.; Pilichowska, S. Synthesis of *O,O*-dialkyl 1-aminoalkanephosphonate via N-phosphinylated imines and enamines. *Pol. J. Chem.*, **1988**, *62*, 165-177.

[192] Drescher, M.; Li, Y.-F.; Hammerschmidt, F. Enzymes in Organic chemistry. P1: Lipasecatalyzed hydrolysis of 1-acyloxy-2-arylethylphosphonates and synthesis of phosphonic acid analogues of L-phenylalanine and L-tyrosine. *Tetrahedron*, **1995**, *51*, 4933-4936.

[193] Subotkowski, W.; Kowalik, J.; Tyka, R.; Mastalerz, P. The phosphonic analogue of tryptophan. *Pol. J. Chem.*, **1981**, *55*: 853-857.

[194] Chen, S.F.; Kumar, S.; Tishler, M. Synthesis of D,L-phosphono-tryptophane. *Tetrahedron Lett.*, **1983**, *24*, 5461-5465.

[195] Rogers, R.L.; Stern, M.K. An improved synthesius of phosphonate analog of tryptophan. *Synlett*, **1992**, 708.

[196] Merrett, J.H.; Spurden, W.C.; Thomas, W.A.; Tong, B.P.; Whitecombe, I.W.A. The synthesis and rotational isomerism of 1-amino-2-(imidazol-4-yl)ethylphosphonic [phosphono-histidine, His(P)] and 1-amino-2-(imidazol-2-yl)ethylphosphonic [phosphonoisohistidine, isoHis(P)]. *J Chem. Soc., Perkin. Trans. I*, **1988**, 61-75.

[197] McCleery, P.P.; Tuck, B. Synthesis of 1-aminoalkylphosphinic acids. Part 2. An alkylation approach. *J. Chem. Soc., Perkin Trans. I*, **1989**, 1319-1328.

[198] Khomutov, H.R. Synthesis of phosphonoanalogs of histidine and carnosine. *Bioorg. Khim*. **1990**, *16*, 1290-1293.

[199] Hamilton, R.; Walker, B.J.; Walker, B. Convenient synthesis of N-protected diphenyl phosphonate esters – analogues of ornithine, lysine and homolysine. *Tetrahedron Lett.*, **1993**¹, *34*, 2847-2850.

[200] Lacoste, A.M.; Cassaigne, A.; Neuzil, E. Synthesis and properties of phosphonyl analogue of arginine. *Compt. Rend. Acad. Sci. Ser. D*, **1972**, *275*, 3009-3012; *Chem. Abstr.*: **1973**, *78*, 124854.

[201] Smith, E.C.R.; McQuaid, L.A.; Paschal, J.W.; DeHoniesto, J. An enantioselective synthesis of D-(-) and L-(+)-2-amino-3-phosphonopropanoic acid. *J. Org. Chem.*, **1990**, *55*, 4472-4474.

[202] Soroka, M.; Mastalerz, P. Phosphonic and phosphinic analogues of aspartic acid and aspargine. *Roczn. Chem.*, **1974**, *48*, 1119-1121.

[203] Soroka, M.; Mastalerz, P. The synthesis of phosphonic and phosphinic analogues of aspargine and aspartic acid. *Roczn. Chem.*, **1976**, *50*, 661-666.

[204] Campbell, M.M.; Carruthers, N.I.; Mickel, S.J. Aminophosphonic and aminophosphinic analogues of aspartic acid. *Tetrahedron*, **1982**, *38*, 2513-2524.

[205] Issleib, K.; Dopferm, K.P.; Balszuweit, A. Aminodiphosphonic and diamino-diphosphonic acids – synthesis and transamination. *Phosphorus & Sulfur*, **1983**, *14*, 171-175.

[206] Mastalerz, P. Synthesis of γ-phosphonoglutamic acid. *Acta Biochim. Pol.*, **1957**, *4*, 19-21; *Chem. Abstr.*: **1959**, *53*, 18879.

[207] Mastalerz, P. Synthesis of phosphonic acids related to glutamic acid. *Roczn. Chem.*, **1959**¹, *33*, 985-991.

[208] Oleksyszyn, J; Gruszecka, E; Kafarski, P; Mastalerz, P. New phosphonic analogs of aspartic and glutamic-acid by aminoalkylation of trivalent phosphorus chlorides with ethyl acetyloacetate or ethyl levulinate and benzyl carbamate. *Monatsh. Chem.*, **1982**, *113*, 59-71.

[209] Antczak, K.; Szewczyk, J. Separation of phosphonic analog of glutamic acid. *Phosphorus & Sulfur*, **1985**, *22*, 247-251.

[210] Kudzin, Z.H. Phosphocysteine derivatives. Thioureidoalkane-phosphonates via acetals. *Synthesis*, **1981**, 643-645.

[211] Jakubke, H.D.; Jeschkeit, H. *Aminokwasy, peptydy, białka*. (*Aminoacids, peptides, proteins*.) PWN (Polish ed.), Warszawa, 1989.

[211a] REAXES - baza wydawnictwa Elsevier Information GmbH, z zakresu chemii organicznej, nieorganicznej i organometalicznej oraz nauk pokrewnych, która zawiera w sobie komplet danych z dotychczasowych baz Beilstein, Gmelin oraz dodatkowo Patent Chemistry Database.

[211b] SCI-FINDER. Calculated Data obtained using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2014 ACD/Labs)

[212] Moedritzer, K.; Irani, R.R. The direct synthesis of α -aminomethyl-phosphonic acids. Mannich-type reactions with orthophosphorous acid. *J. Org. Chem.*, **1966**, *31*,1603-1607.

[213] Soroka, M. Comments on the synthesis of aminomethyl-phosphonic acid. *Synthesis*, **1989**, 547-548.

[214] Asano, S.; Kitahara, T.; Ogawa, T.; Matusi, M. The new synthesis of α -amino phosphonic acids. *Agric. Biol. Chem.*, **1973**, *37*, 1193-1195.

[215] Berry, J.P.; Isbel, A.F.; Hunt, G.E. Aminophosphonic acids. Aminoalkylphosphonic acids. J. Org. Chem., **1972**, *37*, 4396-4399.

[216] Hammerschmidt, F.; Wuggenig, F. Enzymes in organic chemistry. Part 9: Chemo-enzymatic synthesis of phosphonic acid analogues of L-valine, L-leucine, L-isoleucine, L-methionine and L- α -aminobutyric acid of high enantiomeric excess: *Tetrahedron: Asymm.*, **1999**, *10* 1709-1721.

[217] Issleib, K.; Dopfer, K.; Balszuweit, A. Pyrrolidin-2-phosphonic acid. Z. Chem., **1982**, 22, 215-216.

[218] Huber, R.; Knierzinger, A.; Obrecht, J.P.; Vasella, A. Nucleophilic addition to *N*-glycosylnitrones. Asymmetric synthesis of α -aminophosphonic acids. *Helv. Chim. Acta*, **1985**, *68*, 1730-1747.

[219] Renaud, P.; Seebach, D. Preparation of chiral building blocks from amino acids and peptides via electrolytic decarboxylation and TiCl₄-induced aminoalkylation. *Angew. Chem. Int. Ed.*, **1986**, *25*, 843-844.

[220] Bongini, A.; Camerini, R.; Panuzio, M. Efficient synthesis of the four diastereomers of phosphothreonine from lactaldehyde. *Tetrahedron: Asymm.*,**1996**, *7*, 1467-1476.

[221] Belyankin, A.V.; Khomutov, A.R.; Zhukov, Yu.N.; Kartasheva, O.N.; Khomutov, R.M. Synthesis of phosphinic and phosphonic analogs of amino acids. *Izv. Akad Nauk SSSR*, **1997**, *46*, 137-140.

[222] Zygmunt, J.; Mastalerz, P. 1-Amino-2-mercaptoethanephosphonic acid, the phosphonic analogue of cysteine. *Pol. J. Chem.*, **1981**², *55*, 713-715.

[223] Cowart, M.; Kowaluk, E.A.; Kohlhaas, K.L.; Alexander, K.M.; Kerwin Jr., J.F. Synthesis of phosphorus-containing amino acid analogs as inhibitors of nitric oxide synthase. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 999-1002.

[224] Jeżowska-Bojczuk, M.; Kiss, T.; Kozłowski, H.; Decock, P.; Barycki, P. Complexes of aminophosphonates. 8. Copper(II) complxes of *N*-(phosphono-methyl)amino acids and related compounds. *J. Chem. Soc., Dalton Trans.*, **1994**, 811-817.

[225] Khomutov, A.R.; Osipova, T.I.; Khurs, E.N.; Alferov, K.V.; Khomutov, R.M. Synthesis of phosphinic and phosphonic analogs of aspartic acid. *Izv. Akad. Nauk, Ser. Khim.*, **1996**, 2066-2069.

[226] Varlet, J.-M.; Collignon, N.; Savignac, P. Reductive amination of phosphonopyruvates: preparation of 1-amino-2-carboxy-2-alkylphosphonic acid (β-phosphonoalanine.) [Synthese et amination reductrice de phosphonopyruvates: preparation d'acides amino-2-carboxy-2-alkylphosphoniques (β-phosphonoalanine)]. *Can. J. Chem.*, **1979**, *57*, 3216-3220.

[227] Kudzin, Z.H.; Majchrzak, M. 1-Aminoalkanephosphonic acids. Addition of diethyl phosphite to *N*-diisobutylaluminio-aldimines. *J. Organometal. Chem.*, **1989**, *376*, 246-248.

[228] Vasella, A.; Voeffray, R. Asymmetric synthesis of aminophosphonic acids by cycloaddition of N-glucosyl-*C*-dialkoxylphosphonoyl-nitrones. *Helv. Chim. Acta*, **1982**, *65*, 1953-1964.

[229] Soloshonok, V.A.; Belokon, Y.N.; Kuzmina, N.A.; Maleev, V.I.; Svistunova, N.Yu.; Solodenko, VA, Kukhar P Asymmetric synthesis of phosphorous analogues of dicarboxylic amino acids. *J. Chem. Soc., Perkin Trans.* 1, **1992**, 1525-1530.

[230] Tyka, R. Kwasy α -aminofosfonowe i związki pochodne. (α -Aminophosphonic acids and related compounds.) Pr. Nauk. Inst. Chem. Org. Fiz. Politech. Wrocław., **1972**, 4,1-54.

[231] Belov, Yu.P.; Davankov, V.A.; Rogozhin, S.V. Optically active α -aminoethyl-phosphonic acids and their ethyl esters. *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1977**, 1596-1599.

[232] Richtarski, G; Soroka, M; Mastalerz, P; Starzemska, H. Deamination and rearrangement of 1hydroxy-1-phenyl-2-aminoethylphosphonic acid. *Roczn. Chem.*, **1975**, *49*, 2001-2005.

[233] Oleksyszyn, J; Subotkowska, L; Mastalerz, P. Diphenyl 1-aminoalkanephosphonates. *Synthesis*, **1979**, 985-986.

[234] Crutchfield, M.M.; Dungan, C.H.; Letcher, J.H.; Mark, V.; Van Wazer, J. R.: P 31 Nuclear Magnetic Resonance. *Top. Phosphorus Chem.*, **1967**, 5, 227-457.

[235] Kuhl, O., *Phosphorus-31 NMR Spectroscopy. A Concise introduction for the synthetic organic and organometallic chemist.* Springer-Verlag Berlin Heidelberg, **2008**.

[236] Kudzin, Z.H.; Andrijewski, G.; W. Kopycki, W. *Fosforoorganiczne kompleksony. II. Badania kompleksujacych właściwości fosfonocysteiny, fosfonohomocysteiny oraz ich S-alkilowych pochodnych.* Zjazd PTCh i SITPCh: Vol. IA (**1988**) 88; (poster IA-85).

[237] Robitaille, P.M.L.; Robitaille, P.A.; Brown, G.G.; Brown, G.G. An analysis of the pH-dependent chemical shift behavior of phosphorus-containing metabolites. *J. Magn. Res.*, **1991**, *92*, 73-84.

[238] Kudzin, M.H.; Kudzin, Z.H.; Urbaniak, P.; Drabowicz J.; Perlikowska, W. ω-Aminoalkylphosphonic acids. Investigations of selected physical and chemical properties. P-35. XV International Symposium *"Advances in the Chemistry of Heteroorganic Compounds*", CBMM PAN, Łódź, 2012.11.16.

[239] Berlin, K.D.; Gaudy, E.T. α -Aminoarylmethylphosphonic acids and diethyl α -aminoarylmethylphosphonate hydrochlorides. Aluminum-amalgam reduction of oximes of diethyl aroylphosphonates. *J. Org. Chem.*, **1968**, *33*, 3090-3095.

[240] Oshikawa, T.; Yamashita, M. Preparation of optically active 1-amino-alkylphosphonic acids from chiral carbamates using chiral ureas. *Bull. Chem. Soc. Jpn.*, **1989**, *62*, 3177-3181.

[241] Kudzin, Z.H.; Saganiak, M.; Drabowicz, J.; Andrijewski. G. Oxidative transformations of phosphonocysteine and phosphonohomocysteine. Synthesis and isolation of phosphonocysteic and phosphonohomocysteic acids. *Pol. J. Chem.*, **2005**, *79*, 499-513.

[242] Kudzin, Z.H.; Depczyński, R.; Andrijewski, G.; Drabowicz, J. 1-(*N*-acylamino)alkane-phosphonates. *N*-acylation of 1-aminoalkanephosphonic acids. *Pol. J. Chem.*, **2005**, *79*, 529-539.

[243] Kudzin, Z.H.; Depczyński, R.; Kudzin, M.H.; Drabowicz, J.; Łuczak, J.: 1-(*N*-Trifluoroacetyl-amino)alkylphosphonic acids. Synthesis and properties. *Amino Acids*, **2007**, *33*, 663–667.

[244] Kudzin, Z.H.; Depczyński, R.; Kudzin, M.H.; Drabowicz, J. 1-(*N*-Chloroacetylamino)alkyl-phosphonic acids - synthetic precursors of glycylo-phosphonopeptides and related compounds. *Amino Acids*, **2008**, *34*, 163-168.

[245] Berte-Verrando, S.; Nief, F.; Patois, C.; Savignac, Ph. Preparation of α-dideuterated aminomethylphosphonic acid. *Phosphorus & Sulfur*, **1995**, *103*, 91-100.

[246] Harris, R.K.; Merwin, L.H.; Haegele, G. Solid-state NMR study of a series of aminophosphonic acids. *Magn. Res. Chem.*, **1989**, *27*, 470-475.

[247] Głowacki, Z.; Topolski, M. ¹³C NMR spectra of amino-alkylphosphonic acids. 897–899. *Magn. Res. Chem.*, **1989**, *27*, 897–899.

[248] Hanessian, S.; Bennani, Y.L. Electrophilic amination and azidation of chiral α -alkyl phosphonamides: asymmetric syntheses of α -amino α -alkyl phosphonic acids. *Synthesis*, **1994**,1272-1274.

[249] Huber, R.; Vasella, A. Nucleophilic addition to N-glycosyl-nitrones. P. IV. Asymmetric synthesis of *N*-hydroxy- α -aminophosphonic and α -amino-phosphinic acids. *Helv. Chim. Acta*, **1987**, 70, 1461-1476.

[250] Seebach, D.; Charczuk, R.; Gerber, Ch.; Renaud, Ph.; Berner, H.; Schneider, H. Electrochemical decarboxylation of L-threonine and oligopeptide derivatives with formation of *N*-acyl-*N*,*O*-acetals: preparation of oligopeptides with amide or phosphonate *C*-terminus. *Helv. Chim. Acta*, **1989**, *72*, 401-425.

[251] Kaname, M.; Mashige, H.; Yoshifuji, S. Chemical conversion of cyclic amino acids to cyclic αaminophosphonic acids. *Chem. Pharm. Bull.*, **2001**, *49*, 531-536.

[252] Green, D.; Patel, G.; Elgendy, S.; Baban, J.A.; Cleason, G.; Kakkar, V.V,; Deadman, J. The synthesis of 1-aminobenzylphosphonic acids from benzylidenemethylamines for use as structural inits in Anthitrombotic tripeptides. *Tetrahedron*, **1994**, *50*, 5099-5108.

[253] Hammerschmidt, F.; Lindner, W.; Wuggenig, F.; Zarbl, E. Enzymes in organic chemistry. Part 10.1. Chemo-enzymatic synthesis of L-phosphaserine and L-phosphaisoserine and enantioseparation of amino-hydroxyethylphosphonic acids by non-aqueous capillary electrophoresis with quinine carbamate as chiral ion pair agent. *Tetrahedron: Asymm.,* **2000**, *11*, 2955-2964.

[254] Matczak-Jon, E.; Barycki, J.; Milewska, M.; Sawka-Dobrowolska, W. The phosphonic analogues of threonine and β -phenylserine: Preparation and analysis of stereoisomers. *Phosphorus & Sulfur*, **1998**, *142*, 101-116.

[255] Simov, B.P.; Wuggenig, F.; Lämmerhofer, M.; Lindner, W. ; Zarbl, E.; Hammerschmidt, F., Indirect evidence for the biosynthesis of (1s,2s)-1,2-epoxypropyl-phosphonic acid as a co-metabolite of fosfomycin [(*1R*,2S)-1,2-epoxypropylphosphonic acid] by *Streptomyces fradiae*. *Eur. J. Org. Chem.* **2002**, *7*, 1139-1142.

[256] Yokamatsu, T.; Sato, T.; Shibuya, S. Lipase-catalyzed enantioselective acylation of prochiral 2-(ω -phosphono)alkyl-1,3-propanediols: Application to the enantioselective synthesis of ω -phosphono- α -amino acids. *Tetrahedron: Asymm.*, **1996**, *7*, 2743-2754.

[257] Myers, T.C.; Jibril, A.O. A series of ω -trimethylammoniumalkylphosphonic acids and their diethyl ester iodides. *J. Org. Chem.*, **1957**, *22*, 181-182.

[258] Isbell, A.F.; Berry, J.P.; Tansey, L.W. Amino phosphonic acids. III. The synthesis and properties of 2-aminoethylphosphonic and 3-aminopropylphosphonic acids. *J. Org. Chem.*, **1972**, *37*, 4399-4401.

[259] Yamauchi, K.; Une, F.; Kinoshita, M. Aminophosphonic acids. Synthesis of (2-dimethylaminoethyl phosphonic acids and (2-phosphonoethyl)trimethyl-ammonium hydroxide inner salt. *Chem. Express*, **1987**, *2*, 305-308.

[260] Dalton, J.B.; Schmidt, C.L.A. The solubilities of certain amino acids in water, the densities of their solutions at twenty five degrees, and the calculated heats of solution and the partial molar volumes. *J. Biol. Chem.* **1933**, *103*, 549–578.

[261] Dalton, J.B.; Schmidt, C.L.A. The solubilities of certain amino acids and related compounds in water, the densities of their solutions at twenty-five degrees, and the calculated heats of solution and partial molar volumes. *J. Biol. Chem.* **1935**, *10*9, 241–248.

[262] Dunn, M.S.; Ross, F.J. Quantitative investigations of amino acids and peptides. IV. The solubility of the amino acids in water–etyl alcohol mixtures. *J. Biol. Chem.* **1938**, *125*, 309–332.

[263] Dunn, M.S.; Ross, F.J.; Read, L.S. The solutibility of the amino acids in water. *J. Biol. Chem.* **1933**, *91*, 579-595.

[264] Chen, C.C.; Zhu, Y.; Evans, L.B.. Phase partitioning of biomolecules: solubilities of amino acids. *Biotechnology Progress* **1989**, *5*, 111–118.

[265] Liu, J.; Lu, J.; Li, Y., Study on the activity coedicients and solubilities of amino acids in water by the perturbation theory. *Fluid Phase Equilibria* **1998**, *142*, 67–82.

[266] Gekko, K., Mechanism of polyol-induced protein stabilization:solubility of amino acids and diglycine in aqueous polyol solution. J. Biochem. **1981**, 90, 1633–1641.

[267] Cohn, E.J.; McMeekin, T.L.; Edsall, J.T.; Weare, J.H. Studies in the physical chemistry of amino acids, peptides and related substances.II. The solubility of α -amino acids in water and in alcohol–water mixtures. *J. Amer. Chem. Soc.* **1934**, *56*, 2270–2282.

[268] Nozaki, Y.; Tanford, C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. *J. Biol Chem.* **1971**, *246*, 2211–2217.

[269] Orella, C.J.; Kirwan, D.J. The solubility of amino acids in mixtures of water and aliphatic alcohols. *Biotechnol. Progress* **1989**, *5*, 89–91.

[270] Orella, C.J., Kirwan, D.J. Correlation of amino acid solubilities in aqueous aliphatic alcohol solutions. *Ind. Eng. Chem. Res.* **1991**, *30*, 1040–1045.

[271] Ferreira, L.A.; Macedo, E.A.; Pinho, S.P. Solubility of amino acids and diglycine in aqueousalkanol solutions. *Chem. Eng. Sci.* **2004**, *59*, 3117-3124.

[272] Gude, M.T.; Meuwissen, H.H.J.; Wielen, L.A.M.; Luyben, K.Ch.A.M. Partition coeGcients and solubilities of α -amino acids in aqueous 1-butanol solutions. *Ind. Eng. Chem. Res.* **1996**, *35*, 4700–4712.

[273] Yang, X.; Wang, X.; Ching, C.B. Solubility of form α and form γ of glycine in aqueous solutions. *J. Chem. Eng. Data*, **2008**, *53*, 1133–1137.

[274] Deya, B.P.; Lahirib, S.C Studies on the dissociation constants and solubility of amino acids in water + urea mixtures at 298 K, interaction of urea with amino acids and the role of urea in the denaturation of proteins in terms of structural aspects of water. *J. Indian Chem. Soc.* **2010**, *87*, 29-41.

[275]Pałecz, B.; Grala, A.; Kudzin, Z. Interaction of Some Aminophosphonic Acids with Urea in Aqueous Solutions at 298.15 K. *J. Chem. Eng. Data* **2012**, *57*, 1515–1519.

[276] Pałecz, B.; Grala, A.; Kudzin, Z. Calorimetric Studies of the Interactions between Several Aminophosphonic Acids and Urea in Aqueous Solutions at 298.15 K. J. Chem. Eng. Data, **2014**, 59, 426-432.

[277] Preliminary results on the solubility of some 1-aminoalkylophosphonic acids were presented by Kudzin, M.H; Kudzin, Z.H.; ł Urbaniak, P.; Drabowicz, J.: Investigations on the solubility of aminoalkylphosphonic acids. 16th International Symposium *"Advances in the Chemistry of Heteroorganic Compounds*", P-085. CBMM PAN, Łódź, 2013.11.15.

[278] Wozniak, M.; Nowogrocki, G. Acidites et complexes des acides (alkyl- et aminoalkyl-) phosphoniques—IV Acides aminoalkylphosphoniques $R^1R^2N(CH_2)_nCR^3R^4PO_3H_2$. *Talanta*, **1979**, *26*, 1135-1141.

[279] Gallacher, P.K. *Thermogravimetry and Thermomagnetometry, w P.K. Gallacher (ed.serii), Handbook of Thermal Analysis and Calorimetry.* 1. Principles and Practice, Brown, M.E. (ed.). Elsevier, **1998**, 225-278.

[280] Wójcik K. *Termograwimetria – przegląd metody*. http://laboratoria.net/pl/artykul/ chemia-analityczna/15901.html. [2013.07.23]

[281] Witryna internetowa: Ca oxalate thermogram.jpg: http://pl.wikipedia.org/w/index.php? title.

[282] Hoffmann, T.; Friedel, P.; Harnisch, C.; Häußler, L.; Pospiech, D. Investigation of thermal decomposition of phosphonic acids. *J. Anal. App. Pyrolysis*, **2012**, *96*, 43–53.

[283] Kudzin, M.H.; Mrozińska, Z.: Investigation of Thermal Decomposition of 1-Aminoalkylphosphonic Acids. P-88. XV Międzynarodowe Sympozjum "Postępy w Chemii Związków Heteroorganicznych", CBMM PAN, Łódź, 16 listopada 2012 r.

[284] Kudzin, M.H.; Kudzin, Z.H.; Drabowicz, J. Investigation of thermal decomposition of representative 1-(*N*-acylamino)alkylphosphonic acids and phosphonopeptides. European Polymer Congress, P2-89. Piza, Italy, 2013.06.16-21.

[285] Kudzin, M.H.; Kudzin, Z.H.; Piestrzeniewicz, J.; Mrozińska, Z.; Drabowicz, J.: Investigation of thermal decomposition of representative 1-aminoaralkylphosphonic acids. 16th International Symposium *"Advances in the Chemistry of Heteroorganic Compounds"*, P-086. CBMM PAN, Łódź, 2013.11.15.

[286] Kudzin, M.H.; Kudzin, Z.H.; Mrozińska, Z.; Drabowicz, J.: Investigation of thermal decomposition of representative 1-(*N*-alkylamino)alkylphosphonic acids. 16th International

Symposium "Advances in the Chemistry of Heteroorganic Compounds", P-087. CBMM PAN, Łódź, 2013.11.15.

[287] Gancarz, R. Reakcja Kabachnika-Fieldsa. Synteza biologicznie aktywnych aminofosfonianów. (Kabachnik-Fields reaction. Synthesis of biologically active aminophosphonates). *Pr. Nauk. Inst. Chem. Org. Biochem. Biotechnol. Polit. Wrocław.*, **1997**, *39*, 1-78.

[287.1.] Gancarz, R. Praca doktorska, Polit. Wrocławska, **1978**.

[287.2.] Kiersnowska, A. Praca doktorska, *Polit. Wrocławska*, 2003.

[288] Boduszek, B.; Halama, A.; Zoń, J. The cleavage of 1-amino-2'-nitrobenzylphosphonates in a basic medium. Formation of the 3-amino-2,1-benzisoxazole derivatives. *Tetrahedron*, **1997**, *53*, 11399-11410.

[289] Boduszek, B.; Halama, A. Nitrobenzyl (α -amino)phosphonates. Part 2[1]. Cleavage of 4nitrobenzyl(α -amino)phosphonic acids in aqueous sodium hydroxide solution. *Phosphorus & Sulfur*, **1998**, 141, 239-250.

[290] Boduszek, B.; Halama, A. A cleavage of some hydroxybenzyl(α -amino)-phosphonates in a basic medium. *Phosphorus & Sulfur*, **1998**, *143*, 151-158.

[291] Boduszek, B. The acidic cleavage of pyridylmethyl(amino)-phosphonates. Formation of the corresponding amines. *Tetrahedron*, **1996**, *52*, 12483-12494.

[292] Boduszek, B.; Latajka, R.; Leśniak, W. Acid-catalyzed cleavage of 2-pyridyl and 4-pyridyl derivatives of aminomethylphosphonic acid. Kinetic and chemical arguments for a mechanism with A-SE2 character. *Phosphorus & Sulfur*, **2000**, *165*, 53-75.

[293] Boduszek, B., Latajka, R., Walkowiak, U. Acid-catalyzed cleavage of some chromone, coumarin and pyrone derivatives of aminomethylphosphonic acid. Products and kinetics of the reaction. *Polish J. Chem.*, **2001**, *75*, 63-69.

[294] Boduszek, B.; Olszewski, T.K.; Goldeman, W.; Grzegolec, K.; Blazejewska, P. Preparation of new imidazol-2-yl-(amino)methylphosphonates, phosphinates and phosphine oxides and their unexpected cleavage under acidic conditions. *Tetrahedron*, **2012**, *68*, 1223-1229.

[295] Michalska, J.; Boduszek, B.; Olszewski, T.K. New quinoline-2, -3, and 4-yl-(amino) methylphosphonates: Synthesis and study on the C-P bond cleavage in quinoline-2 and -4 derivatives under acidic conditions. *Tetrahedron*, **2010**, *66*, 8661-8666.

[296] Olszewski, T.K.; Boduszek, B. Synthesis of new thiazole-2, -4, and -5-yl-(amino)methylphosphonates and phosphinates: Unprecedented cleavage of thiazole-2 derivatives under acidic conditions. *Tetrahedron*, **2010**, *66*, 8661-8666.

[297] Olszewski, T.K.; Boduszek, B. Synthesis of new thiazole-2, -4, and -5-yl- (amino)methylphosphonates and phosphinates: Unprecedented cleavage of thiazole-2 derivatives under acidic conditions. *Heteroatom Chem.*, **2011**, *22*, 617-624.

[298] Doskocz, M.; Miziak, P.; Gancarz, R. The protonation site in aminophosphonates. *Polish J. Chem.*, **2005**, *79*, 547-552.

[299] Doskocz, M.; Gancarz, R.; Roszak, S. The protonation equilibrium and decomposition of amino- and hydroxyphosphonates, phosphine oxides and phosphonic acid. *Polish J. Chem.*, **2007**, *81*, 2013-2021.

[300] Doskocz, M.; Roszak, S.; Majumdar, D.; Doskocz, J.; Gancarz, R.; Leszczynski, J. Theoretical studies on the mechanism of C-P bond cleavage of a model α-aminophosphonate in acidic condition. *J. Physical Chem. A*, **2008**, *112*, 2077-2081.

[301] Zoń, J.; Miziak, P.; Rychlewski, T.; Gancarz, R. Unexpected non-stability of aminophosphonates: Limitation of their synthesis using diphenylmethyl-amine procedure. *Polish. J. Chem.*, **2007**, *81*, 2023-2030.

[302] Warren, S.G. Metaphosphate formation from phosphono-amino acids and ninhydrine. *J. Chem. Soc., C. – Org. Chem. Commun.*, **1966**, 1349-1350.

[303] Calvo, K.C. Pyridoxal-mediated dephosphonylation of 1-amino-phosphono acids. *J. Org. Chem.*, **1987**, *52*, 3654-3658.

[304] Szpoganicz, B.; Martell, A. (1989) Comperative mechanisms of vitamin B_6 -catalyzed β -decarboxylation and β -dephosphonylation in model systems. *Biochimie*, **1989**, *71*, 591-597.

[305] Drąg, M.; Jezierski, A.; Kafarski, P. First example of the chemical, oxidative cleavage of the C-P bond in aminophosphonate chemistry. The oxidation of 1-amino-1-(3,4-dihydroxyphenyl)-methylphosphonic acid by NaIO₄. Chem. Commun., **2004**, 1132-1133.

[306] Kudzin, M.H.; Kudzin, Z.H.; Urbaniak, P.; Drabowicz, J.; Saganiak, M. Oxidative dephosphonylation of 1-aminoalkylphosphonic acids by aqueous bromine. P-X. IX International Symposium *"Advances in the Chemistry of Heteroorganic Compounds"* CBMM PAN, Lodz, Poland, 2006.

[307] Kudzin, M.H.; Kudzin, Z.H.; Urbaniak, P.; Drabowicz, J.; Stevens, Ch.V. Oxidative Dephosphonylation of 1-Aminoalkylphosphonic Acids by Aqueous Bromine. 2014 (in preparation).

[308] Kudzin, M.H.; Kudzin, Z.H.; Urbaniak, P.; Drabowicz, J. Reaction of 1-aminoalkyl-phosphonic acids with hydrogen peroxide. Oxidative dephosphonylation. P-36. XV Międzynarodowe Sympozjum "Postępy w Chemii Związków Heteroorganicznych", CBMM PAN, Łódź, 2012.11.12.

[309] Drabowicz, J; Mikolajczyk, M. Synthesis of sulfoxides. Org. Prep. Proc. Inter., 1982, 14, 45-89.

[310] Drabowicz, J; Mikolajczyk, M. Facile and selective oxidation of organic sulfides to sulfoxides with hydrogen peroxide-selenium dioxide system. *Synthesis*, **1978**, 758-759.

[311] Eucast definitive dokument Methods of the determination of susceptibility of bacteria to antimicribial agents. Terminology. *Clin. Microbiol. Infect.*, **1998**, *4*, 291-341.

[312] A.A.; Whitt, D.D. Mikrobiologia. Różnorodność, chorobotwórczość i środowisko WN PWN, Warszawa, 2012.

[313] Flemming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of b. influenzae. *Brit. J. Exp. Path.*, **1929**, *10*, 226-236.

[314] Andrews, J.M. Determination of minimum inhibitory concentration. *J. Antimcrob. Chemother.*, **2001**, *48*, (S1) 5-16.

[315] Witryna internetowa: http://en.wikipedia.org/w/index.php?title=File: Serial dilution and plating of bacteria.jpg.

[316] Witryna internetowa: http://en.wikipedia.org/w/index.php?title=File:Manual_CFU _counting.jpg

[317] McFarland, J. The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index for vaccines. *JAMA*, **1907**, *49*, 1176-1178.

[318] Witryna internetowa:http://en.wikipedia.org/w/index.php?title =File:McFarland_standards. jpg.

[319] Roessler, W.G.; Brewer, C.R. Permanent turbidity standards. *Appl. Microbiol.*, **1967**, *15*, 1114-1121.

[320] Pugh, T.L.; Heller, W. Density of polystyrene and polyvinyl toluene latex particles. *J. Colloid Sci.*, **1957**, *12*, 173-180.

[321] Mallette, M.F. Evaluation of growth by physical and chemical means, w książce *Methods in microbiology*, [Norris, J.D. & Ribbons, D.W. (ed.)]. **1969**, *vol. 1.*, & XV., 521-566, Academic Press Inc., New York.

[322] Bauer, R.W.; Kirby, M.D.K.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by standard single disc diffusion method. *Amer. J. Clin. Pathol.*, **1966**, *45*, 493-496.

[323] Witryna internetowa: http://pl.wikipedia.org/w/index.php? File: Bacterial lawn 01.jpg

[324] Witryna internetowa: http://en.wikipedia.org/w/index.php? File: Staphylococcus aureus (AB test). jpg

[325] Witryna internetowa: http://pl.wikipedia.org/w/index.php? File: MIC_microbroth_dilution. jpg

[326] Witryna internetowa: http://www.abbiodisk.com/].

[327] Witryna internetowa: http://pl.wikipedia.org/w/index.php?title=Plik:E-test_Ngono.jpg

[328] spilatrs@marietta.edu.

[329] Joyce, L.F.; Downes, J.; Stockman, K.; Andrew, J.H. Comparison of five methods, including the PDM Epsilometer Test (E Test), for Antimicrobial Susceptibility Testing of Pseudomonas aeruginosa. *J. Clin. Microbiol.*, **1992**, *30*, 2709-2713.

[330] NCCLS (**1997**). Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard M2-A7. National Committee for Clinical Laboratory Standards, Wayne, PA, USA.

[331] Kelly, L.M.; Jacobs, M.R.; Appelbaum, P.C. Comparison of agar dilution, microdilution, e-test, and disk diffusion methods for testing activity of Cefditoren against *Streptococcus pneumoniae*. *J. Clin. Microbiol.*, **1999**, *37*, 3296–3299.

[332] Mc Gowan, A.P.; Wise, R.: Establishing MIC breakpoints and the interpretation of in vitro sesceptibility tests. *J. Antimicrob. Chemother*. **2001**, *48-S1*, 17-28.

[333] Witryna internetowa: http://en.wikipedia.org/w/index.php?title=File:Staphylococcus aureus VISA_2.jpg

[334] Witryna internetowa:: http://en.wikipedia.org/w/index.php?title File:Escherichia Coli _ NIAID.jpg

[335] Kudzin M.H., Kudzin Z.H., Drabowicz J. *Derivatives of aminoalkylphosphonic acids and glycylaminoalkylphosphonic acids as antibacterial additives in biopolymers*. European Polymer Congress EPF-2011; Grenada 2011.06.26.

[336] ALDRICH Chemistry 2009-2010.

[337] SIGMA Life Science **2011-2012**.

[338] Gancarz, R.; Wieczorek, J.S. A useful method for the preparation of 1aminoalkanephosphonic acids. *Synthesis*, **1977**, 625.

[339] Zoń, J.; Amrhein, N.; Gancarz, R. Inhibitors of phenylalanine ammania-lyase: 1-amino-benzyl-phosphonic acids substituted in the benzene ring. *Phytochemistry*, **2002**, 59, 9-21.

[340] Maier, L.; Diel, P.J. Preparation, physical and biological properties of aminoarylmethylphosphonic- and-phosphonous acids. *Phosphorus & Sulfur*, **1991**, *57*, 57-64.

[341] Hellmann, H. New methods of organic preparative chemistry. 8. Amido-metylation. *Angew. Chem.*, **1957**, *69*, 463.

[342] Redmore, D. *N*-benzyl-α-aminophosphonic acids. *J. Org. Chem.*, **1978**, *43*, 996-997.

[343] Instrukcja spektrometru UV-VIS JASCO V-630].

[344] Instrukcja spektrometru JASCO FT/IR serii 6000.

[345] Witryna internetowa: http://pl.wikipedia.org/w/index. php? File: Thermogravimetric analyser.jpg.

[346] Witryna internetowa: http://www.tainst.com; File: TA-023B. High Resolution Thermogravimetric Analysis - A New Technique For Obtaining Superior Analytical Results.

[347] Witryna internetowa: http://laboratoria.net/pl/artykul/ chemia-analityczna/15901. html.

[348] Instrukcja Pirolizera w układzie Py-GC-MS - model Termal Analysis System 2020 firmy Shimadzu.

[349] Struszyński, M. Analiza Ilościowa i Techniczna. Tom I. PWT Warszawa, 1954.

[350] Vogel, A.I. *Preparatyka Organiczna (Vogel's Textbook of Practical Organic Chemistry)*. 4-th Ed. WNT, Warszawa, **1984**.

6.2. LITERATURA ALFABETYCZNIE

Adams, E.; Mukharjee, K.A.; Dunathan, H.C. Alanine racemase of *Pseudomonas*. Substrate and inhibitor specifity. *Arch. Biochem. Biophys.*, **1974**, *165*, 126-132; *Chem. Abstr.*: **1975**, *82*, 27847. [65]

ALDRICH Chemistry **2009-2010**. [336]

Alhadeff, J.A.; Daves Jr., G.D. 2-Aminoethylphosphonic acid. Distribution in human tissues. *Biochem. Biophys. Acta*, **1971**, 244, 211-213. [46]

Alhadeff, J.A.; Daves, G.D. Jr. Occurrence of 2-aminoethylphosphonic acid in human brain. *Biochemistry*, **1970**, *9*, 4866-4869. [45]

Allen, J.G.; Atherton, F.R.; Hall, M.J.; Hassall, C.H.; Holmes, S.W.; Lambert, R.W.; Nisbet, L.J.; Ringrose, P.S. Phosphonopeptides, a new class of synthetic antibacterial agents. *Nature (London)* **1978**, *272*, 56-58. [66]

Anderson, J.W.; Fowden, L. 1-Amino-2-phenylethane-1-phosphonic acid: a specific competitive inhibitor of phenylalanyl-^tRNA synthetase. *Chem.-Biol. Interactions*, **1970**, *2*, 53-55; *Chem. Abstr*: **1970**, *73*, 73264f. [72]

Andrews, J.M. Determination of minimum inhibitory concentration. *J. Antimcrob. Chemother.*, **2001**, *48*, (S1) 5-16. [314]

Antczak, K.; Szewczyk, J. Separation of phosphonic analog of glutamic acid. *Phosphorus & Sulfur*, **1985**, *22*, 247-251. [209]

Asano, S.; Kitahara, T.; Ogawa, T.; Matusi, M. The new synthesis of α-amino phosphonic acids. *Agric. Biol. Chem.*, **1973**, *37*, 1193-1195. [214]

Atherton, F.R.; Hall, M.J.; Hassall, C.H.; Lambert, R.W.; Ringrose, P.S. Phosphonopeptides as antibacterial agents: rationale, chemistry, and structure-activity relationships. *Antimicrob. Agents Chemother.*, **1979**, *15*, 677-683. [67]

Badet, B.; Walsh, C.T. Purification of an alanine racemase frog *Streptococcus faecalis* and analysis of its inactivation by (1-aminoethyl)phosphonic acid enantiomers. *Biochemistry*, **1985**, *24*, 1333-1341. [68]

Bauer, H. Synthesis of *p*-aminobenezenephosphonic acid (phosphanilic acid). *J. Amer. Chem. Soc.*, **1941**, *63*, 2137-2138. [31]

Bauer, R.W.; Kirby, M.D.K.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by standard single disc diffusion method. *Amer. J. Clin. Pathol.*, **1966**, *45*, 493-496. [322]

Bayer, E.; Gugel, K.H.; Haegele, K.; Hagenmaier, H.; Jessipov, S.; Koenig, W.A.; Zaehner, H. Metabolic products of microorganisms. 98. Phosphinothricine and phosphinothricylo-alanylo-alanine. *Helv. Chim. Acta*, **1972**, *55*, 224-239. [51]

Baylis, E.K.; Campbell, C.D.; Dingwall, J. 1-Amino-alkylphosphonous acids. Isosteres of the protein amino acids. *J. Chem. Soc. Perkin. Trans. I*, **1984**, 2845-2853. [189]

Belov, Yu.P.; Davankov, V.A.; Rogozhin, S.V. Optically active α -aminoethyl-phosphonic acids and their ethyl esters. *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1977**, 1596-1599. [231]

Belyankin, A.V.; Khomutov, A.R.; Zhukov, Yu.N.; Kartasheva, O.N.; Khomutov, R.M. Synthesis of phosphinic and phosphonic analogs of amino acids. *Izv. Akad Nauk SSSR*, **1997**, *46*, 137-140. [221]

Benda, L.; Schmidt, W. Dialkylamino aryl phosphinous acids. US Pat. 1.607.113 (1926); *Chem. Abstr.*: **1927**, *21*, P249. [28]

Berlin, K.D.; Gaudy, E.T. α-Aminoarylmethylphosphonic acids and diethyl α-aminoarylmethylphosphonate hydrochlorides. Aluminum-amalgam reduction of oximes of diethyl aroylphosphonates. J. Org. Chem., **1968**, *33*, 3090-3095. [239]

Berlin, K.D.; Roy, N.K.; Claunch, R.T.; Bude, D. A novel route to α -aminoalkylphosphonic acids and dialkyl α -aminoalkylphosphonate hydrochlorides. *J. Amer. Chem. Soc.*, **1968**, *90*, 4494-4495. [180]

Berry, J.P.; Isbel, A.F.; Hunt, G.E. Aminophosphonic acids. Aminoalkylphosphonic acids. J. Org. Chem., **1972**, *37*, 4396-4399. [215]

Berte-Verrando, S.; Nief, F.; Patois, C.; Savignac, Ph. Preparation of α -dideuterated aminomethylphosphonic acid. *Phosphorus & Sulfur*, **1995**, *103*, 91-100. [245]

Birum, G.H. Cyclic organophosphorus amides. Pat. US, 398061809 (1976). [170]

Birum, G.H. Nitrogen-containing organophosphorus compounds having aryloxy substituents bonded to phosphorus in ester structures. *Pat US, 4036913*, (**1973**); *Chem. Abstr.* **1977**, *87*,201764. [165]

Birum, G.H. Phosphorus compounds. *Pat. US, 4031170* (**1973**); *Chem. Abstr.* **1977**, *87*,135932. [166]

Birum, G.H. Proces for the production of sulfonamide phosphonates. *Pat US, 4032601,* (**1973**); *Chem. Abstr.* **1977**, *87*, 135933. [167]

Birum, G.H. Urea-phosphorus compounds. *Pat. US, 3904654* (**1973**); *Chem. Abstr.* **1976**,*84*, 44349. [168]

Birum, G.H. Urea-phosphorus compounds. *Pat. US, 3965127* (**1973**); *Chem. Abstr.* **1976**,*85*, 143295. [169]

Birum, G.H. Urylenediphosphonates. A general method for the synthesis of α -ureido-phosphonatesand related structures. *J. Org. Chem.*, **1974**, *39*, 209. [164]

Boduszek, B. Heterocykliczne kwasy aminofosfonowe – synteza i biologiczna aktywność. (Heterocyclic aminophosphonic acids - synthesis and biological activity.) *Pr. Nauk. Inst. Chem. Org. Fiz. Politech. Wrocław.*, **1997**, *38*, 1-87. [135]

Boduszek, B. The acidic cleavage of pyridylmethyl(amino)-phosphonates. Formation of the corresponding amines. *Tetrahedron*, **1996**, *52*, 12483-12494. [291]

Boduszek, B., Latajka, R., Walkowiak, U. Acid-catalyzed cleavage of some chromone, coumarin and pyrone derivatives of aminomethylphosphonic acid. Products and kinetics of the reaction. *Polish J. Chem.*, **2001**, *75*, 63-69. [293]

Boduszek, B.; Halama, A. A cleavage of some hydroxybenzyl(α-amino)-phosphonates in a basic medium. *Phosphorus & Sulfur*, **1998**, *143*, 151-158. [290]

Boduszek, B.; Halama, A.; Zoń, J. The cleavage of 1-amino-2'-nitrobenzylphosphonates in a basic medium. Formation of the 3-amino-2,1-benzisoxazole derivatives. *Tetrahedron*, **1997**, *53*, 11399-11410. [288]

Boduszek, B.; Latajka, R.; Leśniak, W. Acid-catalyzed cleavage of 2-pyridyl and 4-pyridyl derivatives of aminomethylphosphonic acid. Kinetic and chemical arguments for a mechanism with A-SE2 character. *Phosphorus & Sulfur*, **2000**, *165*, 53-75. [292]

Boduszek, B.; Olszewski, T.K.; Goldeman, W.; Grzegolec, K.; Blazejewska, P. Preparation of new imidazol-2-yl-(amino)methylphosphonates, phosphinates and phosphine oxides and their unexpected cleavage under acidic conditions. *Tetrahedron*, **2012**, *68*, 1223-1229. [294]

Bongini, A.; Camerini, R.; Hoffmann, S.; Panuzio, M. Synthesis of (*1S, 2S*)-phosphonothreonine via N-TMS-silylamine of lactic aldehyde. *Tetrahedron Lett.*, **1994**, *35*, 8045-8049. [190]

Bongini, A.; Camerini, R.; Panuzio, M. Efficient synthesis of the four diastereomers of phosphothreonine from lactaldehyde. *Tetrahedron: Asymm.*,**1996**, *7*, 1467-1476. [220]

Bourneuf, M. Action of halides of phosphorous on certain aromatic amines. *Bull. Soc. Chim. Fr.*, **1923**, *33*, 1808-1823. [27]

Calvo, K.C. Pyridoxal-mediated dephosphonylation of 1-amino-phosphono acids. J. Org. Chem., **1987**, *52*, 3654-3658. [303]

Cameron, D.G.; Hudson, H.R.; Ojo, I.A.O.; Pianka, M. Organophosphorus compounds as potential fungicides. Part I. Aminoalkane-, guanidinoalkane-, and thioureidoalkane-phosphonic acids: preparation, spectroscopy, and fungicidal activity. *Phosphorus & Sulfur*, **1988**, *40*, 183-197. [153]

Cameron, D.G.; Hudson, H.R.; Pianka, M. Organophosphorus compounds as potential fungicides. Part II. Aminoalkane-, guanidinoalkane-, and thioureidoalkanephosphonic acids: preparation, spectroscopy, and fungicidal activity. *Phosphorus & Sulfur*, **1993**, *83*, 21-37. [154]

Campbell, M.M.; Carruthers, N.I.; Mickel, S.J. Aminophosphonic and aminophosphinic analogues of aspartic acid. *Tetrahedron*, **1982**, *38*, 2513-2524. [204]

Cassaigne, A.; Lacoste, A. M.; Neuzil, E. Biochemistry of the C-P bond. *L'aqctual. Chim.*, **1979**, 19-24. [129]

Cassaigne, A.; Lacoste, A.M.; Neuzil, E. Aminoalkylphosphonic acids. I. Effect of tyrosinase on the phosphonic analog of tyrosine. *Bull. Soc. Chim. Biol.*, **1967**, *49*, 1813-1825; *Chem. Abstr.*: **1968**, *68* 84550. [81]

Cassaigne, A.; Lacoste, A.M.; Neuzil, E. Nonenzymatic transamination of aminophosphonic acids. *Biochim. Biophys. Acta*, **1971**, *252*, 506-513. [58]

Chalmers, M.E.; Kosolapoff, G.M. The synthesis of amino-substituted phosphonic acids. III. J. Amer. Chem. Soc., **1953**, 75, 5278-5280. [178]

Chambers, J.R.; Isbell, A.F. A new synthesis of amino phosphonic acids. J. Org. Chem., **1964**, 29, 832-836. [179]

Chavane, V. Aliphatic phosphonic acids and their amino derivatives. IV. Electrometric titration studies. *Ann. chim.*, **1949**, *12*, 383-392. [35]

Chavane, V. Aliphatic phosphonic acids and their amino derivatives. III. Synthesis of aliphatic aminophosphonic acids. *Ann. chim.*, **1949**, 12, 372-382. [36]

Chavane, V. Aminophosphonic acids. Compt. rend., 1947, 224, 406-408. [33]

Chen, C.C.; Zhu, Y.; Evans, L.B.. Phase partitioning of biomolecules: solubilities of amino acids. *Biotechnology Progress* **1989**, *5*, 111–118. [264]

Chen, S.F.; Kumar, S.; Tishler, M. Synthesis of D,L-phosphono-tryptophane. *Tetrahedron Lett.*, **1983**, *24*, 5461-5465. [194]

Choi, N.; McPartlin, M. *X-Ray crystallographic studies*. In Book: *Aminophosphonic and aminophosphinic acids*. *Chemistry and biological activity*. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *10*, 327-362. [118]

Cohn, E.J.; McMeekin, T.L.; Edsall, J.T.; Weare, J.H. Studies in the physical chemistry of amino acids, peptides and related substances.II. The solubility of α -amino acids in water and in alcohol–water mixtures. *J. Amer. Chem. Soc.* **1934**, *56*, 2270–2282. [267]

Collinsova, M.; Jiracek, J. Phosphinic acid compounds in biochemistry, biology and medicine. *Curr. Med. Chem.*, **2000**, *7*, 629-647. [18]

Copie, V.; Faraci, W.S.; Walsh, C.T.; Griffin, R.G. Inhibition of alanine racemase by alanine phosphonate: detection of an imine linkage to pyridoxal 5'-phosphate in the enzyme-inhibitor complex by solid-state nitrogen-15 nuclear magnetic resonance. *Biochemistry*, **1988**, *27*, 4966-4970. [69]

Coveney, P.V.; Davey, R.J.; Griffin, J.L.W.; Whiting, A. Molecular design and testing of organophosphonates for inhibition of crystallisation of ettringite and cement hydration. *Chem. Commun.*, **1998**, 1467–1468. [158]

Cowart, M.; Kowaluk, E.A.; Kohlhaas, K.L.; Alexander, K.M.; Kerwin Jr., J.F. Synthesis of phosphorus-containing amino acid analogs as inhibitors of nitric oxide synthase. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 999-1002. [223]

Crutchfield, M.M.; Dungan, C.H.; Letcher, J.H.; Mark, V.; Van Wazer, J. R.: P 31 Nuclear Magnetic Resonance. *Top. Phosphorus Chem.*, **1967**, 5, 227-457. [234]

Dalton, J.B.; Schmidt, C.L.A. The solubilities of certain amino acids in water, the densities of their solutions at twenty five degrees, and the calculated heats of solution and the partial molar volumes. *J. Biol. Chem.* **1933**, *103*, 549–578. [260]

Dalton, J.B.; Schmidt, C.L.A. The solubilities of certain amino acids and related compounds in water, the densities of their solutions at twenty-five degrees, and the calculated heats of solution and partial molar volumes. *J. Biol. Chem.* **1935**, *10*9, 241–248. [261]

De Clercq, E. The clinical potential of the acyclic (and cyclic) nucleoside phosphonates: the magic of the phosphonate bond. *Biochem. Pharmacol.*, **2011**, *82*, 99-109. [94]

De Clercq, E.; Holy, A.; Rosenberg, I.; Sakuma, T.; Balzarini, J.; Maudgal, P.C. A novel selective broad-spectrum anti-DNA virus agent. *Nature (London)*, **1986**, *323*, 464-467. [93]

De Tinguy-Moreaud, E.; Bioulac, B.; Vincent, J.D.; Neuzil, E. Neuroactive properties of some phosphonic analogs of natural guanido compounds. *Gen. Pharmacol.*, **1980**, *11*, 513-519. [91]

Delgado, R.; Siegfried, L.C.; Kaden, T.A. Metal complexes with macrocyclic ligands. 14. Protonation studies and complexation properties of tetra-azamacrocyclic methylene-phosphonates with earth-alkali ions. *Helv. Chim Acta*, **1990**, *73*, 140-148. [121]

Deya, B.P.; Lahirib, S.C Studies on the dissociation constants and solubility of amino acids in water + urea mixtures at 298 K, interaction of urea with amino acids and the role of urea in the denaturation of proteins in terms of structural aspects of water. *J. Indian Chem. Soc.* **2010**, *87*, 29-41. [274]

Dhavan, B.; Redmore, D. Optically active 1-aminoalkylphosphonic acids. *Phosphorus & Sulfur*, **1987**, *32*, 119-144. [101]

Dicklay, J.B.; McNally, J.G. (Eastman Kodak) Acylamino derivatives of hydroxyl aliphatic phosphonic acids. US Pat. 2.374.807 (1945); *Chem. Abstr.*: **1945**, *39*, P3008. [30]

Diel, P.J.; Maier, L. Synthesis and properties of *N*-phosphono-glycine derivatives. *Phosphorus & Sulfur*, **1984**, *20*, 313-330. [152]

Diner, P.; Amedjoukh, M. Aminophosphonates as organocatalysts in the direct asymmetyric aldol reaction: towards syn selectivity in the presence of Lewis bases. *Org. Biomol. Chem.*, **2006**, *4*, 2091-2096. [160]

Doskocz, M.; Gancarz, R.; Roszak, S. The protonation equilibrium and decomposition of aminoand hydroxyphosphonates, phosphine oxides and phosphonic acid. *Polish J. Chem.*, **2007**, *81*, 2013-2021. [299]
Doskocz, M.; Miziak, P.; Gancarz, R. The protonation site in aminophosphonates. *Polish J. Chem.*, **2005**, *79*, 547-552. [298]

Doskocz, M.; Roszak, S.; Majumdar, D.; Doskocz, J.; Gancarz, R.; Leszczynski, J. Theoretical studies on the mechanism of C-P bond cleavage of a model α -aminophosphonate in acidic condition. *J. Physical Chem. A*, **2008**, *112*, 2077-2081. [300]

Drabowicz, J; Mikolajczyk, M. Facile and selective oxidation of organic sulfides to sulfoxides with hydrogen peroxide-selenium dioxide system. *Synthesis*, **1978**, 758-759. [310]

Drabowicz, J; Mikolajczyk, M. Synthesis of sulfoxides. *Org. Prep. Proc. Inter.*, **1982**, *14*, 45-89. [309]

Drąg, M.; Jezierski, A.; Kafarski, P. First example of the chemical, oxidative cleavage of the C-P bond in aminophosphonate chemistry. The oxidation of 1-amino-1-(3,4-dihydroxyphenyl)-methylphosphonic acid by NaIO₄. Chem Commun, **2004**, 1132-1133. [305]

Drescher, M.; Li, Y.-F.; Hammerschmidt, F. Enzymes in Organic chemistry. P1: Lipase-catalyzed hydrolysis of 1-acyloxy-2-arylethylphosphonates and synthesis of phosphonic acid analogues of L-phenylalanine and L-tyrosine. *Tetrahedron*, **1995**, *51*, 4933-4936. [192]

Dunn, M.S.; Ross, F.J. Quantitative investigations of amino acids and peptides. IV. The solubility of the amino acids in water–etyl alcohol mixtures. *J. Biol. Chem.* **1938**, *125*, 309–332. [262]

Dunn, M.S.; Ross, F.J.; Read, L.S. The solutibility of the amino acids in water. J. Biol. Chem. **1933**, *91*, 579-595. [263]

Engel, R. Handbook in organophosphorus chemistry. Marcel Dekker Inc, New York; 1981. [11]

Engel, R. Synthesis of Carbon-Phosphorus Bonds. C.R.C. Press Inc.: Boca Raton, 1990. [162]

Engel, R.; Cohen, J.L.I. *Synthesis of Carbon-Phosphorus Bonds*. C.R.C. Press Inc.: Boca Raton, London, New York, **2005**. [163]

Eucast definitive dokument Methods of the determination of susceptibility of bacteria to antimicribial agents. Terminology. *Clin. Microbiol. Infect.*, **1998**, *4*, 291-341. [311]

Ferreira, L.A.; Macedo, E.A.; Pinho, S.P. Solubility of amino acids and diglycine in aqueous-alkanol solutions. *Chem. Eng. Sci.* **2004**, *59*, 3117-3124. [271]

Flemming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of b. influenzae. *Brit. J. Exp. Path.*, **1929**, *10*, 226-236. [313]

Franz, J.E. *Discovery, development and chemistry of glyphosate, The herbicide glyphosate* (Grossbard, E.; Atkinson, D., eds.), Butterworth: Boston, MA; **1985**, 1-17. [148]

Franz, J.E.; Mao, K.K.; Sikorski, J.A.: *Glyphosate: A unique global herbicide*. ACS Monograph 189, Amer. Chem. Soc., Washington, DC, **1997**. [85]

Fredenhagen, A.; Angst, Ch.; Peter, H.H. Digestion of rhizocticins to (Z)-L-2-amino-5-phosphono-3-pentenoic acid: revision of the absolute configuration of plumbemycins A and B J. *Antibiot.*, **1995**, *48*, 1043-1045. [57]

Gallacher, P.K. *Thermogravimetry and Thermomagnetometry, w P.K. Gallacher (ed.serii), Handbook of Thermal Analysis and Calorimetry.* 1. Principles and Practice, Brown, M.E. (ed.). Elsevier, **1998**, 225-278. [279]

Galushko, S.V. Column chromatography of aminophosphonic acids and peptides. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity.* Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. 7, 205-216. [111]

Gancarz, R. Reakcja Kabachnika-Fields'a. Synteza biologicznie aktywnych amino-fosfonianów. (Kabachnik-Fields reaction. Synthesis of biologically active amino-phosphonates.) *Pr. Nauk. Inst. Chem. Org. Fiz. Politech. Wrocław.*, **1997**, *39*, 1-78. [136]

Gancarz, R. Reakcja Kabachnika-Fieldsa. Synteza biologicznie aktywnych aminofosfonianów. (Kabachnik-Fields reaction. Synthesis of biologically active aminophosphonates). *Pr. Nauk. Inst. Chem. Org. Biochem. Biotechnol. Polit. Wrocław.*, **1997**, *39*, 1-78. [287.1.] Gancarz, R. Praca doktorska, Polit. Wrocławska, **1978**.[287.2.] Kiersnowska, A. Praca doktorska, *Polit. Wrocławska*, **2003**. [287]

Gancarz, R.; Wieczorek, J.S. A useful method for the preparation of 1-aminoalkanephosphonic acids. *Synthesis*, **1977**, 625. [338]

Gekko, K., Mechanism of polyol-induced protein stabilization:solubility of amino acids and diglycine in aqueous polyol solution. *J. Biochem.* **1981**, *90*, *1633–1641*. [266]

Głowacki, Z.; Topolski, M. ¹³C NMR spectra of amino-alkylphosphonic acids. 897–899. *Magn. Res. Chem.*, **1989**, *27*, 897–899. [247]

Green, D.; Patel, G.; Elgendy, S.; Baban, J.A.; Cleason, G.; Kakkar, V.V.; Deadman, J. The synthesis of 1-aminobenzylphosphonic acids from benzylidenemethylamines for use as structural inits in Anthitrombotic tripeptides. *Tetrahedron*, **1994**, *50*, 5099-5108. [252]

Green, D.S.C.; Skordalakes, E., Scully, M.F.; Deadman, J.J. *Aminophosphonic acid derivatives as antithrombic agents*. In Book: *Aminophosphonic and aminophosphinic acids*. *Chemistry and biological activity*. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *17*, 579-596. [143]

Gude, M.T.; Meuwissen, H.H.J.; Wielen, L.A.M.; Luyben, K.Ch.A.M. Partition coeGcients and solubilities of α -amino acids in aqueous 1-butanol solutions. *Ind. Eng. Chem. Res.* **1996**, *35*, 4700–4712. [272]

Hagele, G. *Physical properties and NMR characterization of aminophosphonates and aminophosphinates*. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity*. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *8*, 217-284. [104]

Hamilton, R.; Walker, B.J.; Walker, B. Convenient synthesis of N-protected diphenyl phosphonate esters – analogues of ornithine, lysine and homolysine. *Tetrahedron Lett.*, **1993**¹, *34*, 2847-2850. [199]

Hammerschmidt, F.; Wuggenig, F. Enzymes in organic chemistry. Part 9: Chemo-enzymatic synthesis of phosphonic acid analogues of L-valine, L-leucine, L-isoleucine, L-methionine and L- α -aminobutyric acid of high enantiomeric excess: *Tetrahedron: Asymm.*, **1999**, *10* 1709-1721. [216]

Hammerschmidt, F.; Lindner, W.; Wuggenig, F.; Zarbl, E. Enzymes in organic chemistry. Part 10.1. Chemo-enzymatic synthesis of L-phosphaserine and L-phosphaisoserine and enantioseparation of amino-hydroxyethylphosphonic acids by non-aqueous capillary electrophoresis with quinine carbamate as chiral ion pair agent. *Tetrahedron: Asymm.,* **2000**, *11*, 2955-2964. [253]

Hanessian, S.; Bennani, Y.L. Electrophilic amination and azidation of chiral α -alkyl phosphonamides: asymmetric syntheses of α -amino α -alkyl phosphonic acids. *Synthesis*, **1994**,1272-1274. [248]

Harris, R.K.; Merwin, L.H.; Haegele, G. Solid-state NMR study of a series of aminophosphonic acids. *Magn. Res. Chem.*, **1989**, *27*, 470-475. [246]

Hellmann, H. New methods of organic preparative chemistry. 8. Amido-metylation. *Angew. Chem.*, **1957**, *69*, 463. [341]

Hildenbrand, R.L.; Curley-Joseph, J.; Lubansky, H.J.; Henderson, T.O., Biology of alkyl-phosphonic acids. *A review of the distribution, metabolism and structure of naturally occurring alkylphosphonic acids*. Topics in Phosphorus Chemistry, Eds. Grayson, M.; Griffith, E.J.; Wiley-Intersci, Vol. XI, New York, **1983**, 297-338. [17]

Hiratake, J.; Oda, J. Aminophosphonic and aminoboronic acids as key element of a transition state analog inhibitor of enzymes. *Biosci., Biotech. Biochem.*, **1997**, *61*, 211-218. [137]

Hoffmann, M. Fosfonowe analogi estrów α -aminokwasów i α -hydroxykwasów jako substratów do syntezy fosfonopeptydów i fosfonodepsipeptydów (Phosphonic analogues of α -amino acid and α -hydroxy acid esters as substrates for the synthesis of phosphonopeptides and phosphono-depsipeptides.) *Pr. Nauk. Polit. Gdańsk.*, **1999**, *XLI*, 1-59. [138]

Hoffmann, T.; Friedel, P.; Harnisch, C.; Häußler, L.; Pospiech, D. Investigation of thermal decomposition of phosphonic acids. *J. Anal. App. Pyrolysis*, **2012**, *96*, 43–53. [282]

Horiguchi, M. Natural carbon-phosphorus compounds. In Hallmann, M. (ed.): Analytical Chemistry of Phosphorus Chemistry, Wiley-Intersci., New York; **1972**, Chpt. *18*, 703-721. [109]

Horiguchi, M.; Kandatsu, M. Isolation of 2-aminoethyl phosphonic amid from rumen protozoa. *Nature (London)*, **1959**, *184*, 901-902. [40]

Huber, R.; Knierzinger, A.; Obrecht, J.P.; Vasella, A. Nucleophilic addition to *N*-glycosyl-nitrones. Asymmetric synthesis of α-aminophosphonic acids. *Helv. Chim. Acta*, **1985**, *68*, 1730-1747. [218]

Huber, R.; Vasella, A. Nucleophilic addition to N-glycosyl-nitrones. P. IV. Asymmetric synthesis of *N*-hydroxy- α -aminophosphonic and α -amino-phosphinic acids. *Helv. Chim. Acta*, **1987**, *70*, 1461-1476. [249]

Hudson, H.R. Aminophosphonic and aminophosphinic acids and their derivatives as agrochemicals. In Book: Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. 13, 443-482. [89]

Hudson, H; Pianka, M. An Approach to the Development of Organophosphorus Fungicides. *Phosphorus & Sulfur*, **1996**, *109*, 345-348. [155]

Instrukcja Pirolizera w układzie Py-GC-MS - model Termal Analysis System 2020 firmy Shimadzu. [348]

Instrukcja spektrometru JASCO FT/IR serii 6000. [344]

Instrukcja spektrometru UV-VIS JASCO V-630]. [343]

Iron, A.; Ruart, M.; Duboy, J.P.; Beranger, M.; Cassaigne, A.; Neuzil, E. The phosphonic analog of tyrosine: a tool in metabolic studiem. *Biochem. Soc. Trans.*, **1981**, *9*, 246; *Chem. Abstr.*: **1981**, *95*, 198358. [83]

Isbell, A.F.; Berry, J.P.; Tansey, L.W. Amino phosphonic acids. III. The synthesis and properties of 2-aminoethylphosphonic and 3-aminopropylphosphonic acids. *J. Org. Chem.*, **1972**, *37*, 4399-4401. [258]

Issleib, K.; Dopfer, K.; Balszuweit, A. Pyrrolidin-2-phosphonic acid. Z. Chem., **1982**, 22, 215-216. [217]

Issleib, K.; Dopferm, K.P.; Balszuweit, A. Aminodiphosphonic and diamino-diphosphonic acids – synthesis and transamination. *Phosphorus & Sulfur*, **1983**, *14*, 171-175. [205]

Izbicka-Dimitrijevic, E.; Mastalerz, P.; Kochman, M. Dual effects of phenylalanine analogs on rabbit muscle pyruvate kinase activity. *Eur. J. Biochem.*, **1981**, *114*, 565-568; *Chem. Abstr.*: **1981**, *94*, 170114. [78]

Jakubke, H.D.; Jeschkeit, H. *Aminokwasy, peptydy, białka*. (*Aminoacids, peptides, proteins*.) PWN (Polish ed.), Warszawa, 1989. [211]

Janas, K.; Filipiak, A.; Kowalik, J.; Mastalerz, P.; Knypl, J.S. 1-Amino-2-phenylethyl-phosphonic acid: an inhibition of L-phenylalanine ammonialyse *in vitro*. *Acta Biochim. Polonica*, **1985**, *32*, 131-143. [79]

Jane, D. Neuroactive aminophosphonic and aminophosphinic acid derivatives. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity.* Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *14*, 483-536. [140]

Jeżowska-Bojczuk, M.; Kiss, T.; Kozłowski, H.; Decock, P.; Barycki, P. Complexes of aminophosphonates. 8. Copper(II) complxes of *N*-(phosphono-methyl)amino acids and related compounds. *J. Chem. Soc., Dalton Trans.*, **1994**, 811-817. [224]

Jin, Y.; Liu, J.; Yin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Dimethylamino-methyl-phosphonic acid derivatives-promoted Cul-catalyzed synthesis of aryl ethers. *Synlett*, **2006**, *1*, 564-1568. [161]

Joyce, L.F.; Downes, J.; Stockman, K.; Andrew, J.H. Comparison of five methods, including the PDM Epsilometer Test (E Test), for Antimicrobial Susceptibility Testing of Pseudomonas aeruginosa. *J. Clin. Microbiol.*, **1992**, *30*, 2709-2713. [329]

Kabachnik, M.I.; Medved, T.Y.; Dyatlova, N.M.; Archipova, O.G.; Rudomino, M.W. Phosphoroorganic complexones. *Usp. Khim.*, **1968**, *37*, 1161-1191. [5]

Kabachnik, M.I.; Medved, T.Y.; Dyatlova, N.M.; Rudomino, M.V. Phosphoroorganic complexones. *Usp. Khim.*, **1974**, *43*, 1554-1574. [6]

Kafarski P.; Lejczak, B.; Mastalerz, P. Phosphonopeptides. Synthesis and biological activity. *Beitr. Wirkst. Forsch.*, **1985**, *25*, 1-77. [86]

Kafarski, P.; Lejczak, B. Aminophosphonic Acids of Potential Medical Importance. *Curr. Med. Chem. – Anti-Cancer Agents*, **2001**, *1*, 301-312. [4]

Kafarski, P.; Lejczak, B. Biological activity of aminophosphonic acids. *Phosphorus & Sulfur*, **1991**, *63*, 193-215. [23]

Kafarski, P.; Lejczak, B. *Synthesis of phosphono- and phosphino-peptides*. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity*. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *6*, 172-204. [87]

Kafarski, P.; Lejczak, B. *The biological activity of phosphono- and phosphonopeptides*. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity*. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *12*, 407-442. [88]

Kafarski, P.; Lejczak, B.; Forlani, G. Herbicidally active aminomethylenebisphosphonic acids. *Heteroatom Chem.*, **2000**, *11*, 449-453. [156]

Kafarski, P.; Mastalerz, P. Aminophosphonates: natural occurrence, biochemistry and biological properties. *Beitr. Wirkst. Forsch.*, **1984**, *21*, 1-110. [22]

Kafarski, P.; Zoń, J. Synthesis of α -aminoalkanephosphonic and α -aminoalkanephosphinic acids. In Book: Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *2*, 33-74. [97]

Kamecka, A.; Kurzak, B. Coordination properties of phosphonate ligands with some metal ions. *Wiad. Chem.*, **2003**, *57*, 797-825. [126]

Kaname, M.; Mashige, H.; Yoshifuji, S. Chemical conversion of cyclic amino acids to cyclic α -aminophosphonic acids. *Chem. Pharm. Bull.*, **2001**, *49*, 531-536. [251]

Kandatsu, M.; Horiguchi, M. Occurrence of ciliatine (2-aminoethylphosphonic acid) in Tetrahymena. *Agric. Biol. Chem.*, **1962**, *26*, 721-722. [41]

Karanewsky, D.S.; Badia, M.C.; Cushman, D.W.; De Forrest, J.M.; Dejneka, T.; Loots, M.J.; Pern, M.G.; Petrillo Jr, R.D.; Powell, R.J. (Phosphinyloxy)acyl amino acid inhibitors of angiotensin converting enzyme (ACE). 1. Discovery of (*S*)-1-[6-amino-2-[[hydroxy(4-phenylbutyl)phosphinyl]oxy]-1-oxohexyl]-L-proline, a novel orally active inhibitor of ACE. *J. Med. Chem.*, **1988**, *31*, 204-2012. [90]

Kasa, H.; Yamato, M.; Koguchi, T.; Okachi, R.; Kasai, M.; Shirahata, K.; Kawamoto, I.; Shuto, K.; Karasawa, A.; Deguchi, T.; Nakayama, K. Phosphorus containing oligopeptides, and a pharmaceutical composition containing them. *Eur. Pat. Appl.* 0.061.1982, **1983**; *Chem. Abstr.*: **1983**, *98*, 107793. [54]

Kelly, L.M.; Jacobs, M.R.; Appelbaum, P.C. Comparison of agar dilution, microdilution, e-test, and disk diffusion methods for testing activity of Cefditoren against *Streptococcus pneumoniae*. J. Clin. Microbiol., **1999**, *37*, 3296–3299. [331]

Khomutov, A.R.; Osipova, T.I.; Khurs, E.N.; Alferov, K.V.; Khomutov, R.M. Synthesis of phosphinic and phosphonic analogs of aspartic acid. *Izv. Akad. Nauk, Ser. Khim.*, **1996**, 2066-2069. [225]

Khomutov, H.R. Synthesis of phosphonoanalogs of histidine and carnosine. *Bioorg. Khim.* **1990**, *16*, 1290-1293. [198]

Khomutov, R.M.; Osipova, T.I.; Zhukova, Y.N.;, Gandurina, I.A. Organophosphorus analogs of optically active substances. 5. Synthesis of α -aminophosphonic acids and some of their derivatives. *Izw. Acad. Nauk SSSR, Ser. Khim.*, **1979**³, 2118-2122. [133]

Kiss T., Lazar I. *Stability constants of metal complexes in solution*. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity*. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *9*, 285-326. [125]

Kiss, T.; Lazar, I.; Kafarski, P. Chelating tendencies of bioactive aminophosphonates. *Met.-Based Drugs*, **1994**, *1*, 247-264. [123]

Kittredge, J.S.; Hughes, R.R. Occurence of "alfa"-amino-"beta"-phosphonopropionic acid in the zoanthid, zoanthus sociatus, and the ciliate, *Tetrahymena pyrifornis. Biochemistry*, **1964**, *3*, 991-996. [43]

Kittredge, J.S.; Isbell, A.F.; Hughes, R.R. Isolation and characterization of the N-Me derivatives of 2-aminoethylophosphonic acid from the sea anemone. *Biochemistry*, **1967**, *6*, 289-295. [49]

Kittredge, J.S.; Roberts, E. A carbon-phosphorus compounds in nature. *Science*, **1969**, *164*, 37-42. [128]

Kittredge, J.S.; Roberts, E.; Simonsen, D.G. Occurrence of free 2-aminoethyl-phosphonic acid in the sea anemone, *Anthopluera elegantissima*. *Biochemistry*, **1962**, *1*, 624-628. [42]

Kleinrok, Z.; Kolasa, K.; Chodkowska, A.; Mastalerz, P.; Kafarski, P. Preliminary pharmacological investigation on 38 aminophosphonic acids and their derivatives. *Polish J. Pharmacol. Pharm.*, **1985**, *37*, 575-84. [132]

Korn, E.D.; Deaborn, D.G.; Falles, H.M.; Sokoloski, E.A. A major polysaccharide constituents of the amoeba plasma membrane contains 2-aminoethylphosphonic acid and 1-hydroxy-2-aminoethylphosphonic acid. *J. Biol. Chem.*, **1973**, *248*, 2257-2259. [53]

Krzyżanowska, B.; Pilichowska, S. Synthesis of *O,O*-dialkyl 1-aminoalkanephosphonate via N-phosphinylated imines and enamines. *Pol. J. Chem.*, **1988**, *62*, 165-177. [191]

Kudzin M.H., Kudzin Z.H., Drabowicz J. *Derivatives of aminoalkylphosphonic acids and glycylaminoalkylphosphonic acids as antibacterial additives in biopolymers*. European Polymer Congress EPF-2011; Grenada 2011.06.26. [335]

Kudzin, M.H.; Kudzin, Z.H.; Drabowicz, J. Investigation of thermal decomposition of representative 1-(*N*-acylamino)alkylphosphonic acids and phosphonopeptides. European Polymer Congress, P2-89. Piza, Italy, 2013.06.16-21. [284]

Kudzin, M.H.; Kudzin, Z.H.; Mrozińska, Z.; Drabowicz, J.: Investigation of thermal decomposition of representative 1-(*N*-alkylamino)alkylphosphonic acids. 16th International Symposium *"Advances in the Chemistry of Heteroorganic Compounds"*, P-087. CBMM PAN, Łódź, 2013.11.15. [286]

Kudzin, M.H.; Kudzin, Z.H.; Piestrzeniewicz, J.; Mrozińska, Z.; Drabowicz, J.: Investigation of thermal decomposition of representative 1-aminoaralkylphosphonic acids. P-086. 16th International Symposium *"Advances in the Chemistry of Heteroorganic Compounds*", CBMM PAN, Łódź, 2013.11.15. [285]

Kudzin, M.H.; Kudzin, Z.H.; Urbaniak, P.; Drabowicz J.; Perlikowska, W. ω-Aminoalkylophosphonic acids. Investigations of selected physical and chemical properties. P-35. XV International Symposium *"Advances in the Chemistry of Heteroorganic Compounds"*, CBMM PAN, Łódź, 2012.11.16. [238]

Kudzin, M.H.; Kudzin, Z.H.; Urbaniak, P.; Drabowicz, J. Reaction of 1-aminoalkyl-phosphonic acids with hydrogen peroxide. Oxidative dephosphonylation. P-36. XV International Symposium *"Advances in the Chemistry of Heteroorganic Compounds"*, CBMM PAN, Łódź, 2012.11.12. [308]

Kudzin, M.H.; Kudzin, Z.H.; Urbaniak, P.; Drabowicz, J.; Saganiak, M. Oxidative dephosphonylation of 1-aminoalkylphosphonic acids by aqueous bromine. P-X. IX International Symposium *"Advances in the Chemistry of Heteroorganic Compounds"* CBMM PAN, Lodz, Poland, 2006.16.11. [306]

Kudzin, M.H.; Kudzin, Z.H.; Urbaniak, P.; Drabowicz, J.; Stevens, Ch.V. Oxidative Dephosphonylation of 1-Aminoalkylphosphonic Acids by Aqueous Bromine. Polyhedron, 2014 (in preparation). [307]

Kudzin, M.H.; Mrozińska, Z.: Investigation of Thermal Decomposition of 1-Aminoalkylphosphonic Acids. P-88. XV International Symposium *"Advances in the Chemistry of Heteroorganic Compounds"*, CBMM PAN, Łódź, 2012.11.16. [283]

Kudzin, Z.H. 1-Aminoalkanephosphonic acids: six decades of exploration. *Sci. Issues, Acad. J. Długosza, Częstochowa*, **2005**, IX, 29-76. [13]

Kudzin, Z.H. Phosphocysteine derivatives. Thioureidoalkane-phosphonates via acetals. *Synthesis*, **1981**, 643-645. [210]

Kudzin, Z.H., *Investigations in the domain of aminophosphonic acids*. W.N.U.Ł., Łódź, **1996**, pp. 1-110. [12]

Kudzin, Z.H.; Andrijewski, G.; Drabowicz, J. 1-Aminothiaalkane-phosphonic acids – sulphinyl and sulphonyl derivatives. Synthesis and acidic properties. *Heteroatom Chem.*, **1994**, *5*, 1-6. [113]

Kudzin, Z.H.; Andrijewski, G.; W. Kopycki, W. *Fosforoorganiczne kompleksony. II. Badania kompleksujacych właściwości fosfonocysteiny, fosfonohomocysteiny oraz ich S-alkilowych pochodnych.* Zjazd PTCh i SITPCh: Vol. IA (**1988**) 88; (poster IA-85). [236]

Kudzin, Z.H.; Depczyński, R.; Andrijewski, G.; Drabowicz, J. 1-(*N*-acylamino)alkane-phosphonates. *N*-acylation of 1-aminoalkanephosphonic acids. *Pol. J. Chem.*, **2005**, *79*, 529-539. [242]

Kudzin, Z.H.; Depczyński, R.; Kudzin, M.H.; Drabowicz, J. 1-(*N*-Chloroacetylamino)alkylphosphonic acids - synthetic precursors of glycylo-phosphonopeptides and related compounds. *Amino Acids*, **2008**, *34*, 163-168. [244]

Kudzin, Z.H.; Depczyński, R.; Kudzin, M.H.; Drabowicz, J.; Łuczak, J.: 1-(*N*-Trifluoroacetyl-amino)alkylphosphonic acids. Synthesis and properties. *Amino Acids*, **2007**, *33*, 663–667. [243]

Kudzin, Z.H.; Drabowicz, J.; Sochacki, M.; Wiśniewski, W. Characterization of 1-aminoalkanephosphonic acids by means of chemical ionization mass spectrometry. *Phosphorus & Sulfur*, **1994**, *92*, 77-93. [106]

Kudzin, Z.H.; Gralak, D.; Andrijewski, G.; Drabowicz, J.; Łuczak, J. Simulataneous determination of biologically active aminophosphonates and aminophosphinates. *J. Chromatogr. A* **2003**, *99*8, 183-199. [115]

Kudzin, Z.H.; Gralak, D.; Drabowicz, J.; Łuczak, J. A novel approach for simulataneous determination of glyphosate and its metabolites. *J. Chromatogr. A*, **2002**, *947*, 129-141. [114]

Kudzin, Z.H.; Kotyński, A. Andrijewski, G. Aminoalkane-diphosphonic acids. Synthesis and acidic properties. *J. Organometal. Chem.*, **1994**, *477*, 199-205. [112]

Kudzin, Z.H.; Kudzin, M.H.; Drabowicz, J. Thioureidoalkylphosphonates in the synthesis of 1aminoalkyl-phosphonic acids. The Ptc-aminophosphonate method. *Arkivoc*, **2011**, *VI*, 227-269. [15]

Kudzin, Z.H.; Kudzin, M.H.; Drabowicz, J.; Stevens, Ch. Aminophosphonic acids - phosphorus analogues of natural amino acids. *Curr. Org. Chem.*, **2011**, *15*, 2015-2071. [14]

Kudzin, Z.H.; Majchrzak, M. 1-Aminoalkanephosphonic acids. Addition of diethyl phosphite to *N*diisobutylaluminio-aldimines. *J. Organometal. Chem.*, **1989**, *376*, 246-248. [227]

Kudzin, Z.H.; Mokrzan, J.; Skowroński, R. Long chain aminothiaalkane-phosphonates, their sulphinyl and sulphonyl derivatives. A new class of complexane type surfactants. *Phosphorus & Sulfur*, **1989**², *42*, 41-46. [105]

Kudzin, Z.H.; Saganiak, M.; Drabowicz, J.; Andrijewski. G. Oxidative transformations of phosphonocysteine and phosphonohomocysteine. Synthesis and isolation of phosphonocysteic and phosphonohomocysteic acids. *Pol. J. Chem.*, **2005**, *79*, 499-513. [241]

Kudzin, Z.H.; Skrzypek, S.W.; Skowroński, R.; Ciesielski, W.; Cristau, H.J.; Plenat, F. Polarographic investigations of functionalized alkanephosphonic acids. P. II. *Phosphorus & Sulfur*, **1996**, *119*, 201-207. [107]

Kudzin, Z.H.; Sochacki, M. Mass Spectrometry and Gas Chromatography-Mass Spectrometry of aminoalkanephosphonic acids. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity*. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *11*, 363-406. [108]

Kudzin, Z.H.; Stec, W.J. Phosphohomocysteine derivatives. Synthesis, 1980, 1032-1034. [187]

Kudzin, Z.H.; Stec, W.J. Phosphocysteine and phosphohomocysteine. Synthesis and isolation. *Synthesis*, **1983**, 812-814. [188]

Kudzin, Z.H.; Stec, W.J. Synthesis of 1-aminoalkanephosphonic acids via thioureidoalkanephosphonates. *Synthesis*, **1978**, 469-472. [171]

Kuhl, O., *Phosphorus-31 NMR Spectroscopy. A Concise introduction for the synthetic organic and organometallic chemist.* Springer-Verlag Berlin Heidelberg, **2008**. [235]

Kukhar V.P. Asymmetric synthesis of aminophosphonic and aminophosphinic acids. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity.* Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *5*, 127-172. [102]

Kukhar, V.P. Synthesis of α -aminoalkanephosphonic and α -aminoalkanephosphinic acids with the amino substituents in other than α -position. In Book: Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**¹, Chpt. 3: 75-102. [99]

Kukhar, V.P.; Hudson, H.R. In Book: *Aminophosphonic and aminophosphinic acids. Chemistry and biological activity.* Eds. Kukhar, V.P.; Hudson, H.R.; Wiley& Sons Ltd: Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, **2000**. [1]

Kukhar, V.P.; Solodenko, N.M.; Solodenko, V.A. Biological activity of phosphorus analogs of amino acids. *Ukr. Biokhim. Zh.*, **1988**, *60*, 95-111. [134]

Kukhar, V.P.; Solodenko, V.A. The phosphorus analogues of aminocarboxylic acids. *Usp. Khim.*, **1987**, *56*, 1504-1532. [10]

Laber, B.; Kiltz, H.H.; Amrhein, N. Inhibition of phenylalanine ammonia-lyase *in vitro* and *in vivo* by (1-amino-2-phenylethyl)-phosphonic acid, the phosphonic analog of phenylalanine. *Z. Naturforsch. C Biosci.*, **1985**, *41*, 49-55; *Chem. Abstr.:* **1986**, *104*, 183299. [80]

Lacoste, A.M.; Cassaigne, A.; Neuzil, E. Aminophosphonic acids and growth of Pseudomonas aeruginosa. *Compt. Rend. Acad. Sci., Paris, Ser. D*, **1975**, *280*, 1173-1176; *Chem. Absr.*: **1975**, *82*, 165298j. [76]

Lacoste, A.M.; Cassaigne, A.; Neuzil, E. Synthesis and properties of phosphonyl analogue of arginine. *Compt. Rend. Acad. Sci. Ser. D*, **1972**, *275*, 3009-3012; *Chem. Abstr.*: **1973**, *78*, 124854. [200]

Lall, Sh.; Engel, R. α-Amino acid analogues bearing side-chain C-P linkages. In Book: Aminophosphonic and aminophosphinic acids. In Book: Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt 4, 103-126. [98]

Lambert, M.P.; Neuhaus, F.C. Factors affecting the level of alanine racemase in *Escherichia coli*. *J. Bacteriol.*, **1972**, *109*, 1156-1161; *Chem. Abstr.*: **1972**, *76*, 150837. [64]

Landt, M.; Boltz, S.C.; Butler, L.C. Alkaline phosphatase: affinity chromatography and inhibition by phosphonic acids. *Biochemistry*, **1978**, *17*, 915-919. [60]

Lejczak, B. Biologiczna aktywność aminofosfonianów i fosfonopeptydów. (Biological activities of aminophosphonates and phosphono-peptides.) *Pr. Nauk. Inst. Chem. Org. Fiz. Politech. Wrocław.*, **1988**, *35*, 3-81. [59]

Lejczak, B.; Kafarski, P. Biological activity of aminophosphonic acids and their short peptides. *Top Heterocycl. Chem.*, **2009**, *20*, 31–63. [24]

Lejczak, B.; Kafarski, P.; Makowiecka, E. Phosphonic analogs of tyrosine and 3,4dihydroxyphenylalanine (DOPA) influence mushroom tyrosinase activity. Antimelanoic agents. *Biochem. J.*, **1987**, *242*, 81-88. [82]

Lejczak, B.; Kafarski, P.; Soroka, M.; Mastalerz, P. Synthesis of the phosphonic analogue of serine. *Synthesis*, **1984**, 577-581. [186]

Lilja, H.; Csopak, H.; Lindman, B.; Folsch, G. Fluorine-19 NMR studies of the binding of a fluorinelabelled phosphonate ion to Escherichia coli alkaline phosphatase. *Biochem. Biophys.* Acta, **1975**, *384*, 277-282; *Chem. Abstr.*: **1975/6**, *82*, 151250a. [70]

Liu, J.; Lu, J.; Li, Y., Study on the activity coeGcients and solubilities of amino acids in water by the perturbation theory. *Fluid Phase Equilibria* **1998**, *142*, 67–82. [265]

Logusch, E.W.; Walker, D.M.; McDonald, J.F.; Franz, J.E. Substrate variability as a factor in enzyme inhibitor design: inhibition of ovine brain glutamine synthetase by α - and γ -substituted phosphinotricins. *Biochemistry*, **1989**, *28*, 3043-3051. [75]

Łukszo, J.; Tyka, R. New protective group in the synthesis of 1-aminoalkylphosphonic acids. Synthesis, **1977**, 239-240. [181]

Ma, J.-N. Catalytic asymmetric synthesis of α - and β -amino phosphonic acid derivatives. *Chem. Soc. Rev.*, **2006**, *35*, 630-636. [103]

Maier, L. Advances in the chemistry of aminophosphinic acids. *Phosphorus & Sulfur*, **1983**, 14,295-322. [95]

Maier, L. Phosphoroorganic detergents. Chimia, 1969, 23, 323-330. [157]

Maier, L. Preparation, properties, and structure of bis(aminomethyl)phosphinic acid [H₂NCH₂)₂P(O)OH]. *J. Organometal. Chem.*, **1979**, *178*, 157-169. [149]

Maier, L. Synthesis and properties of 1-amino-2-arylethylphosphonic and- phosphinic acids as well as- phosphine oxides. *Phosphorus & Sulfur*, **1990**, *51*, 7–10. [151]

Maier, L.; Diel, P.J. Preparation, physical and biological properties of aminoarylmethylphosphonic- and-phosphonous acids. *Phosphorus & Sulfur*, **1991**, *57*, 57-64. [340] Maier, L.; Smith, M.J. Synthesis and properties of bis(N-hydroxy-carbonylmethyl-aminomethyl)phosphinic acid, (HO₂CCH₂NHCH₂)₂P(O)OH, and derivatives. *Phosphorus & Sulfur*, **1980**, *4*, 67-72. [150]

Mallette, M.F. Evaluation of growth by physical and chemical means, w książce *Methods in microbiology*, [Norris, J.D. & Ribbons, D.W. (ed.)]. **1969**, *vol. 1.*, & XV., 521-566, Academic Press Inc., New York. [321]

Markwell, R. Aminophosphonic and aminophosphinic acid derivatives as inhibitors of human colagenases. In Book: Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. 18: 597-617. [144]

Mastalerz, P. Inhibition of glutamine synthetase by phosphonic analogs of glutamic acid. *Arch. Immun. Ter. Dośw.*, 1959², 7, 201-210; *Chem. Abstr.*: **1960**, *54*, 6843. [39]

Mastalerz, P. Synthesis of phosphonic acids related to glutamic acid. *Roczn. Chem.*, **1959**¹, *33*, 985-991. [207]

Mastalerz, P. Synthesis of γ-phosphonoglutamic acid. *Acta Biochim. Pol.*, **1957**, *4*, 19-21; *Chem. Abstr.*: **1959**, *53*, 18879. [206]

Mastalerz, P. *α-Substituted phosphonates. Handbook in organo-phosphorus chemistry.* Marcel Dekker Inc., New York; **1988**, Chpt. *7*, 276-375. [96]

Mastalerz, P.; Kafarski, P. *Naturally occurring aminophosphonic and aminophophinic acids*. In Book: *Aminophosphonic and aminophosphinic acids*. *Chemistry and biological activity*. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. 1, 1-32. [130]

Matczak-Jon, E.; Barycki, J.; Milewska, M.; Sawka-Dobrowolska, W. The phosphonic analogues of threonine and β-phenylserine: Preparation and analysis of stereoisomers. *Phosphorus & Sulfur*, **1998**, *142*, 101-116. [254]

Mathew, B.; Chakraborty, S.; Das, T.; Sarma, H.D.; Banerjee, S.; Samuel, G.; Venkatesh, M.; Pillai, M.R.A. ¹⁷⁵Yb labeled polyaminophosphonates as potential agents for bone pain palliation. *Applied Radiation & Isotopes*, **2004**, *60*, 635-642. [147]

Mc Gowan, A.P.; Wise, R.: Establishing MIC breakpoints and the interpretation of in vitro sesceptibility tests. *J. Antimicrob. Chemother*. **2001**, *48-S1*, 17-28. [332]

McCleery, P.P.; Tuck, B. Synthesis of 1-aminoalkylphosphinic acids. Part 2. An alkylation approach. *J. Chem. Soc., Perkin Trans. I*, **1989**, 1319-1328. [197]

McFarland, J. The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index for vaccines. *JAMA*, **1907**, *49*, 1176-1178. [317]

Merrett, J.H.; Spurden, W.C.; Thomas, W.A.; Tong, B.P.; Whitecombe, I.W.A. The synthesis and rotational isomerism of 1-amino-2-(imidazol-4-yl)ethylphosphonic [phosphono-histidine, His(P)] and 1-amino-2-(imidazol-2-yl)ethylphosphonic [phosphonoisohistidine, isoHis(P)]. *J Chem. Soc., Perkin. Trans. I*, **1988**, 61-75. [196]

Michaelis, A.; Schenk, A., Über die Enwirkung von Phosphorchlorüd mit tertiäre aromatische Amine. *Justus Liebigs Annalen der Chemie*; **1890**, *260*, 1-39. [25]

Michalska, J.; Boduszek, B.; Olszewski, T.K. New quinoline-2, -3, and 4-yl-(amino) methylphosphonates: Synthesis and study on the C-P bond cleavage in quinoline-2 and -4 derivatives under acidic conditions. *Tetrahedron*, **2010**, *66*, 8661-8666. [295]

Moedritzer, K.; Irani, R.R. The direct synthesis of α -aminomethyl-phosphonic acids. Mannich-type reactions with orthophosphorous acid. *J. Org. Chem.*, **1966**, *31*,1603-1607. [212]

Myers, T.C.; Jibril, A.O. A series of ω -trimethylammoniumalkylphosphonic acids and their diethyl ester iodides. *J. Org. Chem.*, **1957**, *22*, 181-182. [257]

NCCLS (**1997**). Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard M2-A7. National Committee for Clinical Laboratory Standards, Wayne, PA, USA. [330]

Neale, S. Amino acid analogs of as substrates of a rabbit reticulocyte aminoacyl-tRNA synthetase preparation. *Chem.-Biol. Interactions*, **1970**, *2*, 349-367; *Chem. Abstr*: **1971**, *74*, 94700. [71]

Neuzil E., Cassaigne A. Antibacterial phosphonates. *Exp. Ann. Biochim. Med.*, **1980**, *34*, 181-215; *Chem. Abstr.*: **1980**, *93*, 198358j. [61]

Neuzil, E.; Cassaigne, A.; Lacoste, A.M. Transamination non enzymatique des acides aminoalkylphosphoniques par l'acide glyoxylique. [Non enzymatic transamination of aminoalkylphosphonic acids by glyoxylic acid]. *Compt. Rend. Acad. Sci. Ser. D*, **1970**, *270*, 2724-2726. [63]

Nijk, D.R. Comperative study of phenyl phosphonic acids and arsene phenyl acids substituted in the ring. *Rec. Trav. Chim.*, 41, 461-4500; *Chem. Abstr.*: **1923**, *17*, 1793. [26]

Nozaki, Y.; Tanford, C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. *J. Biol Chem.* **1971**, *246*, 2211–2217. [268]

Okuhara, M.; Kuroda, Y.; Goto, T.; Okamoto, M.; Terano, H.; Kohsaka, M.; Aoki, H.; Imanaka, H. Studies on new phosphonic acid antibiotics. I. FR-900098, isolation and characterization. *J. Antibiot.*, **1980**, *33*, 13-17. [55]

Okuhara, M.; Kuroda, Y.; Goto, T.; Okamoto, M.; Terano, H.; Kohsaka, M.; Aoki, H.; Imanaka, H. Studies on new phosphonic acid antibiotics. III. Isolation and characterization of FR-31564, FR-32863 and FR-33289. *J. Antibiot.*, **1980**, *33*, 24-28. [56]

Oleksyszyn, J. Amidoalkilowanie związków trójwartościowego fosforu. (Amidoalkylation of trivalent phosphorous compounds.) Pr. Nauk. Inst Chem. Org. Fiz. Politech. Wrocław., **1986**, *29*, 1-77. [174]

Oleksyszyn, J. Aminophosphonic and aminophosphinic acid derivatives in the design of transition state analogue inhibitors: biomedical opportunities and limitations. In Book: Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *15*, 537-558. [141]

Oleksyszyn, J.; Subotkowska, L. Aminomethanephosphonic acid and diphenyl ester. Synthesis, **1982**, 908. [177]

Oleksyszyn, J.; Tyka, R. An improved synthesis of 1-amino-phosphonic acids. *Tetrahedron Lett.*, **1977**, 2823-2824. [172]

Oleksyszyn, J.; Tyka, R.; Mastalerz, P. Direct synthesis of 1-amino-alkylphosphonic and – phosphinic acids from phosphorus trichloride or dichlorophosphines. *Synthesis*, **1978**, 479-480. [173]

Oleksyszyn, J; Gruszecka, E; Kafarski, P; Mastalerz, P. New phosphonic analogs of aspartic and glutamic-acid by aminoalkylation of trivalent phosphorus chlorides with ethyl acetyloacetate or ethyl levulinate and benzyl carbamate. *Monatsh. Chem.*, **1982**, *113*, 59-71. [208]

Oleksyszyn, J; Subotkowska, L; Mastalerz, P. Diphenyl 1-aminoalkanephosphonates. *Synthesis*, **1979**, 985-986. [233]

Olszewski, T.K.; Boduszek, B. Synthesis of new thiazole-2, -4, and -5-yl-(amino)methylphosphonates and phosphinates: Unprecedented cleavage of thiazole-2 derivatives under acidic conditions. *Tetrahedron*, **2010**, *66*, 8661-8666. [296]

Olszewski, T.K.; Boduszek, B. Synthesis of new thiazole-2, -4, and -5-yl-(amino)methylphosphonates and phosphinates: Unprecedented cleavage of thiazole-2 derivatives under acidic conditions. *Heteroatom Chem.*, **2011**, *22*, 617-624. [297] Orella, C.J., Kirwan, D.J. Correlation of amino acid solubilities in aqueous aliphatic alcohol solutions. *Ind. Eng. Chem. Res.* **1991**, *30*, 1040–1045. [270]

Orella, C.J.; Kirwan, D.J. The solubility of amino acids in mixtures of water and aliphatic alcohols. *Biotechnol. Progress* **1989**, *5*, 89–91. [269]

Orsini F., Sello G., Sisti M. Aminophosphonic acids and derivatives. Synthesis and biological applications. *Curr. Med. Chem.*, **2010**, *17*, 264-289. [21]

Oshikawa, T.; Yamashita, M. Preparation of optically active 1-amino-alkylphosphonic acids from chiral carbamates using chiral ureas. *Bull. Chem. Soc. Jpn.*, **1989**, *62*, 3177-3181. [240]

Pałecz, B.; Grala, A.; Kudzin, Z. Calorimetric Studies of the Interactions between Several Aminophosphonic Acids and Urea in Aqueous Solutions at 298.15 K. J. Chem. Eng. Data, **2014**, 59, 426-432. [276]

Pałecz, B.; Grala, A.; Kudzin, Z. Interaction of Some Aminophosphonic Acids with Urea in Aqueous Solutions at 298.15 K. *J. Chem. Eng. Data* **2012**, *57*, 1515–1519. [275]

Pallacios, F.; Alonso, C.; Santos, J.M. Synthesis of β -aminophosphonates and -phosphinates. Chem. Rev., **2005**, *105*, 899-931. [100]

Petrillo, E.W.; Spitzmiller, E. Synthesis of 2-phosphono-pyrrolidine and its substitution for proline as an inhibitor of angiotensine-converting enzyme. *Tetrahedron Lett.*, **1979**, 4929-4933. [77]

Petrov, K.A.; Chauzov, V.A.; Erokhina, T.E. Aminoalkyl organo-phosphorus compounds. *Usp. Khim.*, **1974**, *43*, 2045-2087. [7]

Peyman, A. Aminophosphonic and aminophosphinic acids in the design and synthesis of HIV protease inhibitors. In Book: Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Eds. Kukhar, V.P.; Hudson, H.R.; Wiley&Sons Ltd., Chichester; **2000**, Chpt. *16*, 559-578. [142]

Pikl, J. Amino- and methylaminomethanephosphonic acids and derivatives. Pat. US, 2328358, **1943**; *Chem. Abstr.:* **1944**, *38*, 754. [32]

Plazek, S.; Sasyk, Z. About some of phosphoroorganic compounds. (O pewnych związkach fosforoorganicznych). *Roczn. Chem.*, **1934**, *14*, 73-76. [29]

Prajer, K.; Rachoń, J. α-Aminophosphonic acids. *Z. Chem.*, **1975**, *15*, 209-215. [8]

Preliminary results on the solubility of some 1-aminoalkylophosphonic acids were presented by Kudzin, M.H; Kudzin, Z.H.; ł Urbaniak, P.; Drabowicz, J.: Investigations on the solubility of aminoalkylphosphonic acids. 16th International Symposium *"Advances in the Chemistry of Heteroorganic Compounds*", P-085. CBMM PAN, Łódź, 2013.11.15. [277]

Pugh, T.L.; Heller, W. Density of polystyrene and polyvinyl toluene latex particles. *J. Colloid Sci.*, **1957**, *12*, 173-180. [320]

Quin, L.D.; Quin, G.S. Screening for carbon-bound phosphorus in Marine animals by high-resolution ³¹P-NMR spectroscopy: coastal and hydrothermal vent invertebrates. *Comp. Bioch. Physiol. Part B*, **2001**, *128*, 173-185. [48]

REAXES - baza wydawnictwa Elsevier Information GmbH, z zakresu chemii organicznej, nieorganicznej i organometalicznej oraz nauk pokrewnych, która zawiera w sobie komplet danych z dotychczasowych baz Beilstein, Gmelin oraz dodatkowo Patent Chemistry Database. [211a]

Redmore, D. *N*-benzyl-α-aminophosphonic acids. *J. Org. Chem.*, **1978**, *43*, 996-997. [342]

Redmore, D. *The chemistry of P-C-N systems*. Topics in Phosphorus Chemistry, Eds.; Grayson M., Griflith E.J., Wiley-Intersci.; New York, **1976**; Vol. VIII. [9]

Renaud, P.; Seebach, D. Preparation of chiral building blocks from amino acids and peptides via electrolytic decarboxylation and TiCl₄-induced aminoalkylation. *Angew. Chem. Int. Ed.*, **1986**, *25*, 843-844. [219]

Richtarski, G; Soroka, M; Mastalerz, P; Starzemska, H. Deamination and rearrangement of 1hydroxy-1-phenyl-2-aminoethylphosphonic acid. *Roczn. Chem.*, **1975**, *49*, 2001-2005. [232]

Rizkalla, E.N. Metal chelates of phosphonate-containing ligands. *Rev. Inorg. Chem.*, **1983**, *5*, 223-304. [120]

Robitaille, P.M.L.; Robitaille, P.A.; Brown, G.G.; Brown, G.G. An analysis of the pH-dependent chemical shift behavior of phosphorus-containing metabolites. *J. Magn. Res.*, **1991**, *92*, 73-84. [237]

Roessler, W.G.; Brewer, C.R. Permanent turbidity standards. *Appl. Microbiol.*, **1967**, *15*, 1114-1121. [319]

Rogers, R.L.; Stern, M.K. An improved synthesius of phosphonate analog of tryptophan. *Synlett*, **1992**, 708. [195]

Romanenko, V.D.;, Kukhar, V.P. Fluorinated Phosphonates: Synthesis and Biomedical Application. *Chem. Rev.*, **2006**, *106*, 3868-3935. [19]

Rumpf, P.; Chavane, V. An electrochemical study of some phosphonic acid amines. *Compt. rend*. **1947**, *224*, 919-920. [34]

Russell, G.R.G. Bisphosphonates: The first 40 years. Bone, 2011, 49, 2-19. [92]

Ryglowski, A.; Kafarski, P. Preparation of 1-aminoalkylphosphonic acids and 2aminoalkylphosphonic acids by reductive amination of oxoalkylphosphonates. *Tetrahedron*, **1996**, *53*, 10685-10692. [3]

Ryzhkov, M.I.; Kabachnik, M.I.; Tarasevich, L.M.; Medved, T.Ya.; Zeitlenok, N.A.; Marchenko, N.K.; Vagzhanova, V.A.; Ulanova, E.F.; Cheburkina, N.V. Biological activity of α-aminophosphonic acids. *Dokl. Akad. Nauk. SSSR*, **1954**, *98*, 849-852. [131]

Salyers, A.A.; Whitt, D.D. Mikrobiologia. Różnorodność, chorobotwórczość i środowisko WN PWN, Warszawa, 2012. [312]

Schwarzenbach, G.; Ackermann, H.; Ruckstuhl, P. Complexones. XV. A new derivative of iminodiacetic acid and its complexes with alkali earth metals. Correlation between acidity and chelating properties. *Helv. Chim. Acta*, **1949**, *32*, 1175-1186. [37]

SCI-FINDER. Calculated Data obtained using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2014 ACD/Labs). [211b]

Seebach, D.; Charczuk, R.; Gerber, Ch.; Renaud, Ph.; Berner, H.; Schneider, H. Electrochemical decarboxylation of L-threonine and oligopeptide derivatives with formation of *N*-acyl-*N*,*O*-acetals: preparation of oligopeptides with amide or phosphonate *C*-terminus. *Helv. Chim. Acta*, **1989**, *72*, 401-425. [250]

Sekura, R.; Meister, A. γ-Glutamylcysteine synthetase. Further purification, "half of the sites" reactivity, subunits and specificity. *J. Biol. Chem.*, **1977**, *252*, 2599-2605. [74]

Seto, H.; Imai, S.; Tsuruoka, T.; Ogawa, H.; Satoh, A.; Sasaki, T.; Otake, N. Studies in the synthesis of Bialaphos (SF-1293). P. 3. Production of phosphinic acid derivatives MP-103, MP-104 and MP-105 by a blocked mutant of *Strypomyces hygroscopicus* SF-12903 and their roles in the biosyntheses of Bialaphos. *Biochem. Biophys. Res. Commun.*, **1983**, *111*, 1008-1014. [50]

Seto, H.; Sasaki, T.; Imai, S.; Tsuruoka, T.; Ogawa, H.; Satoh, A.; Inoue, S.; Nida, T.; Otake, N. Studies in the synthesis of Bialaphos. P. 2. Isolation of the first natural products with the C-P-H bond and their influent on the C-P-C bond formation. *J. Antibiot.*, **1983**, *36*, 96-98. [52]

Shimizu, H.; Kakimoto, Y.; Nakajima, T.; Kazanawa, A.; Sano, I. Isolation and identification of 2aminoethylphosphonic acid from the bovine brain. *Nature (London)*, **1965**, *207*, 1197-1198. [44]

SIGMA Life Science **2011-2012**. [337]

Sikorski, J.A; Logush, E.W. *Aliphatic carbon-phosphorus compound as herbicides*. In Book: *Handbook in organophosphorus chemistry*. Ed Engel R, Marcel Dekker Inc, New York **1988**, *15* Chpt., 737-806. [84]

Simon, J.; Garlich, J.R. Use of macrocyclic aminophosphonic acid complexes as imaging agents. Eur. Pat. (1992) Appl. E.P. 468634 A1 1992 0129. [146]

Simov, B.P.; Wuggenig, F.; Lämmerhofer, M.; Lindner, W. ; Zarbl, E.; Hammerschmidt, F., Indirect evidence for the biosynthesis of (1s,2s)-1,2-epoxypropyl-phosphonic acid as a co-metabolite of fosfomycin [(*1R,2S*)-1,2-epoxypropylphosphonic acid] by *Streptomyces fradiae. Eur. J. Org. Chem.* **2002**, *7*, 1139-1142. [255]

Sinyavskaya, E.I. Coordination compounds with aminophosphonic acids. *Koord. Khim*, **1991**, *17*, 1599-1626. [122]

Smith, E.C.R.; McQuaid, L.A.; Paschal, J.W.; DeHoniesto, J. An enantioselective synthesis of D-(-) and L-(+)-2-amino-3-phosphonopropanoic acid. *J. Org. Chem.*, **1990**, *55*, 4472-4474. [201]

Soloshonok, V.A.; Belokon, Y.N.; Kuzmina, N.A.; Maleev, V.I.; Svistunova, N.Yu.; Solodenko, VA, Kukhar P Asymmetric synthesis of phosphorous analogues of dicarboxylic amino acids. *J. Chem. Soc., Perkin Trans.* 1, **1992**, 1525-1530. [229]

Song, J.L.; Mao, J.G. New metal phosphonates containing coordination piperazine or pyridyl group. *J. Solid State Chem.*, **2005**, *178*, 3514-3521. [127]

Soper, T.S.; Manning, J.M. different modes of action of inhibitors of bacterial d-amino acid transaminase. *J. Biol. Chem.*, **1981**, *256*, 4263-4268. [62]

Soroka, M. Comments on the synthesis of aminomethyl-phosphonic acid. *Synthesis*, **1989**, 547-548. [213]

Soroka, M. The synthesis of 1-aminoalkylphosphonic acids. A revised mechanism of the reaction of phosphorus trichloride, amides and aldehydes or ketones in acetic acid solution (Oleksyszyn reaction). *Liebigs Ann. Chem.*, **1990**, *4*, 331-334. [175]

Soroka, M. Wybrane problemy chemii kwasów aminofosfonowych (Selected problems of chemistry of aminophosphonic acids). Pr. Nauk. Inst. Chem. Org. Fiz. Politech. Wrocław., **1987**, *32*, 1-92. [2]

Soroka, M.; Jaworska, D.; Szczęsny, Z. Synthesis of 1-aminoalkylphosphonic acids via amidoalkylation of phosphorous amid by *N*,*N*'-alkylidenebisamides. *Liebigs Ann. Chem.*, **1990**, *4*, 1153-1155. [176]

Soroka, M.; Mastalerz, P. Phosphonic and phosphinic analogues of aspartic acid and aspargine. *Roczn. Chem.*, **1974**, *48*, 1119-1121. [202]

Soroka, M.; Mastalerz, P. The synthesis of phosphonic and phosphinic analogues of aspargine and aspartic acid. *Roczn. Chem.*, **1976**, *50*, 661-666. [203]

spilatrs@marietta.edu. [328]

Stalikas, C.D.; Konidari, C.N. Analytical methods to determine phosphonic and amino acid groupcontaining pesticides. *J. Chromatogr. A*, **2001**, *907*, 1-19. [117]

Stalikas, C.D.; Pilidis, G.A. Development of a method for the simultaneous determination of phosphonic and amino amid group containing pesticides by gas chromatography with mass-selective detection. Optimization of the derivatization procedure using an experimental design approach. *J. Chromatogr. A*, **2000**, *872*, 215-225. [116]

Strater, N.; Lipscomb, W.N. Transition state analog L-Leucinephosphonic acid bound to bovine lens leucine aminopetidase: X-ray structure as 1.65 Å resolution in a new crystal form. *Biochemistry*, **1995**, *34*, 9200-9210. [73]

Struszyński, M. Analiza Ilościowa i Techniczna. Tom I. PWT Warszawa, 1954. [349]

Subotkowski, W.; Kowalik, J.; Tyka, R.; Mastalerz, P. The phosphonic analogue of tryptophan. *Pol. J. Chem.*, **1981**, *55*: 853-857. [193]

Subotkowski, W.; Tyka, R.; Mastalerz, P. Large scale of dialkyl 2-pyrrolidine-phosphonates. *Pol. J. Chem.*, **1983**, *57*, 1389-1391. [183]

Subotkowski, W.;Tyka, R.; Mastalerz, P. Phosphonic analogue of proline. *Pol. J. Chem.*, **1980**, *54*, 503-505. [182]

Szczepaniak, W.; Siepak, J. Phosphoroorganic complexones. *Wiad. Chem.*, **1975**, *29*, 193-210. [119]

Szczepaniak, W.; Siepak, J.; Kuczyński, J. Phosphoro-organic complexones in chemical analysis. *Chem. Anal.*, **1978**, *23*, 210-223. [110]

Szpoganicz, B.; Martell, A. (1989) Comperative mechanisms of vitamin B_6 -catalyzed β -decarboxylation and β -dephosphonylation in model systems. *Biochimie*, **1989**, *71*, 591-597. [304]

Tan, S.A.; Tan, L.G. Distribution of ciliatine (2-aminoethylphosphonic acid) and phosphonoalanine (2-amino-3-phosphonopropionic acid) in human tissues. *Clin. Physiol. Biol. Chem.*, **1989**, *7*, 303-309. [47]

Tyka, R. Kwasy α-aminofosfonowe i związki pochodne. (α-Aminophosphonic acids and related compounds.) Pr. Nauk. Inst. Chem. Org. Fiz. Politech. Wrocław., **1972**, 4,1-54. [230]

Uziel, J.; Genet, J.P. Synthesis of racemic and optically active α -aminophosphonic acids. *Zh. Org. Khim.*, **1997**, *33*, 1605-1627. [16]

Vaarama, K.; Lehto, J.; Jaakkola, T. Removal of ²³⁴U, ²³⁸U, ²²⁶Po and ²¹⁰Pb from drinking water by ion exchange chromatography. *Radiochim. Acta*, **2000**, *88*, 361-367. [159]

Varlet, J.-M.; Collignon, N.; Savignac, P. Reductive amination of phosphonopyruvates: preparation of 1-amino-2-carboxy-2-alkylphosphonic acid (β-phosphonoalanine.) [Synthese et amination reductrice de phosphonopyruvates: preparation d'acides amino-2-carboxy-2- alkylphosphoniques (β-phosphonoalanine)]. *Can. J. Chem.*, **1979**, *57*, 3216-3220. [226]

Vasella, A.; Voeffray, R. Asymmetric synthesis of aminophosphonic acids by cycloaddition of N-glucosyl-*C*-dialkoxylphosphonoyl-nitrones. *Helv. Chim. Acta*, **1982**, *65*, 1953-1964. [228]

Vogel, A.I. *Preparatyka Organiczna (Vogel's Textbook of Practical Organic Chemistry)*. 4-th Ed. WNT, Warszawa, **1984**. [350]

Volkert, W.A.; Hoffman, T.J. Therepeutic radiopharmaceuticals. *Chem. Rev.*, **1999**, 99, 2269-2292. [139]

Wainwright, K.P. Synthetic and structural aspects of the chemistry of saturated polyaza macrocyclic ligands bearing pendant coordinating groups attached to nitrogen. *Coord. Chem. Rev.*, **1997**, *166*, 35-90. [124]

Wardle, N.J.; Bligh, S.W.A.; Hudson, H.R. Omega-Phosphinyl-alpha-amino acids: synthesis and development towards use as therapeutic agents. *Curr. Org. Chem.*, **2007**, *11*, 1635-1651. [20]

Warren, S.G. Metaphosphate formation from phosphono-amino acids and ninhydrine. *J. Chem. Soc., C. – Org. Chem. Commun.*, **1966**, 1349-1350. [302]

Westerback, S.J.; Martell, A.E. Ethylenediaminetetra(methylene-phosphonic acid). *Nature* (*London*), **1956**, *178*, 321-322. [38]

Witryna internetowa: Ca oxalate thermogram.jpg: http://pl.wikipedia.org/w/index. php? title. [281]

Witryna internetowa: http://en.wikipedia.org/w/index.php? File: Staphylococcus aureus (AB test). jpg [324]

Witryna internetowa: http://en.wikipedia.org/w/index.php?title=File: Serial dilution and plating of bacteria.jpg. [315]

Witryna internetowa: http://en.wikipedia.org/w/index.php?title=File:Manual_CFU _counting. jpg[316]

Witryna internetowa: http://en.wikipedia.org/w/index.php?title=File:Staphylococcus aureus VISA_2.jpg [333]

Witryna internetowa: http://laboratoria.net/pl/artykul/ chemia-analityczna/15901. html. [347]

Witryna internetowa: http://pl.wikipedia.org/w/index. php? File: Thermogravimetric analyser.jpg. [345]

Witryna internetowa: http://pl.wikipedia.org/w/index.php? File: Bacterial lawn 01.jpg [323]

Witryna internetowa: http://pl.wikipedia.org/w/index.php? File: MIC_microbroth_dilution. jpg [325]

Witryna internetowa: http://pl.wikipedia.org/w/index.php?title=Plik:E-test_Ngono.jpg [327] Witryna internetowa: http://www.abbiodisk.com/]. [326]

Witryna internetowa: http://www.tainst.com; File: TA-023B. High Resolution Thermogravimetric Analysis - A New Technique For Obtaining Superior Analytical Results. [346]

Witryna internetowa:: http://en.wikipedia.org/w/index.php?title File:Escherichia Coli _ NIAID.jpg [334]

Witryna internetowa:http://en.wikipedia.org/w/index.php?title =File:McFarland_standards. jpg. [318]

Wójcik K. *Termograwimetria – przegląd metody*. http://laboratoria.net/pl/artykul/ chemia-analityczna/15901.html. [2013.07.23] [280]

Wozniak, M.; Nowogrocki, G. Acidites et complexes des acides (alkyl- et aminoalkyl-) phosphoniques—IV Acides aminoalkylphosphoniques R¹R²N(CH₂)_nCR³R⁴PO₃H₂. *Talanta*, **1979**, *26*, 1135-1141. [278]

Yamauchi, K.; Une, F.; Kinoshita, M. Aminophosphonic acids. Synthesis of (2-dimethylaminoethyl phosphonic acids and (2-phosphonoethyl)trimethyl-ammonium hydroxide inner salt. *Chem. Express*, **1987**, *2*, 305-308. [259]

Yang, X.; Wang, X.; Ching, C.B. Solubility of form α and form γ of glycine in aqueous solutions. *J. Chem. Eng. Data*, **2008**, *53*, 1133–1137. [273]

Yokamatsu, T.; Sato, T.; Shibuya, S. Lipase-catalyzed enantioselective acylation of prochiral 2-(ω -phosphono)alkyl-1,3-propanediols: Application to the enantioselective synthesis of ω -phosphono- α -amino acids. *Tetrahedron: Asymm.*, **1996**, *7*, 2743-2754. [256]

Zoń, J. Badania and syntezą i właściwościami inhibitorów oraz substratów ammoniakoliazy fhenylalaniny. (Research on the syntheses and properties of inhibitors and substrates of phenylalanine ammonia-lyase.) Pr. Nauk. Inst. Chem. Org. Fiz. Politech. Wrocław., **2005**, 42, 3-60. [145]

Zoń, J.; Amrhein, N.; Gancarz, R. Inhibitors of phenylalanine ammania-lyase: 1-amino-benzyl-phosphonic acids substituted in the benzene ring. *Phytochemistry*, **2002**, 59, 9-21. [339]

Zoń, J.; Miziak, P.; Rychlewski, T.; Gancarz, R. Unexpected non-stability of aminophosphonates: Limitation of their synthesis using diphenylmethyl-amine procedure. *Polish J. Chem.*, **2007**, *81*, 2023-2030. [301]

Zygmunt, J.; Mastalerz, P. 1-Amino-2-mercaptoethanephosphonic acid, the phosphonic analogue of cysteine. *Pol. J. Chem.*, **1981**, *55*, 713-715. [222]

Zygmunt, J.; Mastalerz, P. Phosphonic analogues of serine and isoserine. *Pol. J. Chem.*, **1978**, *52*, 2271-2273. [184]

Zygmunt, J.; Mastalerz, P. Phosphonic analogues of serine and isoserine. *Pol. J. Chem.*, **1981**¹, *55*, 411-414. [185]