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Nonelementary Notes on Elementary Events*
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Abstract. Our goal is to present simple examples illustrating the
nature and role of elementary events and random variables in probability
theory, both classical and operational (fuzzy).

As stated in Plocki [10], in teaching probability we should concentrate
on the construction of probability spaces and their properties, and not on
the calculation of probability of various strange events (like hitting a bear
if we can shoot three times, etc.). On a rather advanced level, Lo$ [8]
analyzed the constructions of probability spaces in the classical probabi-
lity. J. Lo$ explained the nature and underscored the role of elementary
events. Roughly, the events form a Boolean algebra, but some probability
properties of the algebra depend on its representation via subsets and this
is done via the choice of some fundamental subset of events and the choice
of elementary events. Remember, choice!

There are situations in which the classical probability model is not quite
suitable (quantum physics, fuzzy models, c.f. Dvurecenskij and Pulman-
nova [3], Fri¢ [5]), and I would like to present simple examples and simple
models of such situations. In order to understand the generalizations, let
me start with a well-known example of throwing two dice.

Example 1. When throwing two dice, we are in fact interested in events
like: the resulting sum s is equal to k, the sum s is greater than k, or
1 < s <k, where I,k = 2,3,...,12. To describe what is going on, we start
with elementary events (called outcomes) and we try to assign them probabi-
lities in a reasonable way. Instead of working with seemingly indecomposa-
ble “numerical” outcomes of the form “s = k”, we (clever mathematicians)
define the elementary events as ordered pairs (i,j) - we declare which die
of the two dice will “ act” independently on the first coordinate stage and
then the other die will “act” independently on the second coordinate stage.
Further, each pair “has the same probability”, hence p((3, j)) = 35 and, con-

sequently, the probability of “s = k” is equal to 35, where n is the number
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of pairs (1, j) such that i+ j = k. Finally, the probability of 1 < s < k” s

equal to 35, where n is the number of all pairs (i, j) such thatl < 1+ j < k.

Now, the sum sending (¢,j) — 7+ j = s yields a map s of the set
Q={(i,5);1,7 € {1,2,...,6}} of elementary events to the real line R (onto
{2,3,...,12} C R); in general such a map is called a random variable.
More explicitly:

(a) We have two dice: A and B.

(b) We carry out two experiments: we throw die A and, independently,
we throw die B.

(c) We measure (describe) the results: there are 36 relevant mutually
exclusive results - ordered pairs of squares with dots, e.g. (B, @),
indicating the number of dots on the top side of the die A and the die
B (we are not interested in other details - e.g. the location of dice).

(d) We assign a nonnegative number to each pair so that their total sum
is 1. Since we assume that each die is regular and the experiments
are independent, all numbers are the same: 3% (if a die is irregular,
then some other assignment is appropriate). The assignment yields a
probability measure on the set of all events (all subsets of pairs).

(e) The sum s sends each pair of dotted squares into the real line R and
the preimage s sends “ numerical” events (i.e. Borel measurable sets
of real numbers) into the original events (subsets of ordered pairs).

(f) The sum sends each probability measure p on the set of all events
to the probability measure ps on the “ numerical” events B C R via
ps(B) = p(s*(B)) = p({(4,7);i4+ j € B}); ps is called the distribu-
tion of s.

In the classical probability theory, we have a sample probability
space (£,S,p), a random variable f : @ — R (a measure preserving
(Borel) measurable function on ), and the “numerical” probability
space (R,B(R),ps) such that f© : B(R) — S is a Boolean homomo-
rhism (preserves set operations: union, intersection, complementation) and
p7(B) = p(f<(B)). Observe, that f (via he preimage f¢) transforms each
probability measure g on S into a probability measure gy, the distribution
of f (w.r.t. q). Remember, f sends elementary events to elementary events
(real numbers) and probability measures to probability measures.

Next we are going to present a situation in which the classical proba-
bility theory is not suitable.
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Example 2. Consider a digital display - for the simplicity showing only
one digit. There are ten objects O;, drawn at random with probability P;,
i =1,2,..,10. On our display we can see seven segments s;,1 = 1,2,...,7,
four vertical (upper left, upper right, lower left, lower right) and three ho-
rizontal (upper, middle, lower) and each of them is either “on” or “o

In the classical case, if O; is drawn, then the display shows its “code” ,
e.g. Oy is indicated by the two right vertical segments “on” and all other
segments “off 7 (the digital version of number one). If there is a “noise”,
causing that with some probability a segment is “off ” instead of being “on”,
then the display shows not the “code” of the object, but its distorted ver-
sion, e.g. in a case of Oy it can happen that, instead of two right vertical
segments, only one of them is “on” (or none). Then, in fact, there are 27
possible outcomes w;, @ = 1,2,...,128, on the display, each indicating the
particular object O; only with some probability p;j, j = 1,2,...,10. This
sends the outcome w; not to a real number j € R indicating the occurrence
of Oj, but to some probability measure p; on subsets of {1 2,...,10} such

that p;({7}) = pij, pi({J, k}) = pij + pix, ete.

From the formal point of view, the situation can be handled by a ge-
neralized random variable f sending w;, ¢ = 1,2,...,128, to a probability
measure p; on the (Borel) measurable subsets of the real line R, provided
that there is a satisfactory generalized probability theory guaranteeing that
[ sends each measure p on subsets of @ = {w;,ws, ...,w;28} into a proba-
bility measure ps on the (Borel) measurable subsets of R in a “consistent”
way. A suitable theory has been (partly) developed and it is known as
operational, or fuzzy, probability theory; observe that then f has a quan-
tum nature. More information can be found in Bugajski [1, 2] and Gudder
[6]. Some related results will be presented at the FSTA 2004 conference by
myself and my PhD student M. Papco (cf. Papéo [9]).

We can identify each elementary event (point) and the degenerated
(point) measure concentrated at it. Then, roughly, each operational ran-
dom variable sends probability measures on the sample space to probabi-
lity measures on the “numerical” probability space and it can happen that
(unlike in the classical case) a degenerated measure is sent to a nondegene-
rated one. The price we have to pay for the generalization is that instead of
events represented by sets we have to work with events represented by fuzzy
sets. We close with a simple example of an operational random variable.

Example 3. Assume that we randomly choose one of two objects Oy, 0,.
Assume that on a display there are two independent segments s; and s,. If
O is chosen, then we try to activate s; and if Oy is chosen, then we try
to activate (independently) both s; and s,. However, each time we activate
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a segment, for some reason the segment can remain “off ” . This yields
four possible results on the display: (i,j), t,j = 0,1 (e.g. (0,1) means that
that only the second segment is “on” ). Question: if (i,j) appears on the
display, what can be said about the occurrence of O1,03% According to the
Bugajski-Gudder model, we try to assign each (i, j) a reasonable probability
that Oy resp. Oy has been chosen.

First, we construct a classical probability space (A, S, P) which is a
model of our experiments. Put A = {\;, Ay, ..., A¢}, where H; = {\;, Ay}
is the event “O; has been chosen” and Hy = {A3, A4, As, A6} is the com-
plementary event “O, has been chosen”. Further, {1} means that O; has
been chosen and s; is “on”, {A;} means O; and s; is “off”, {\3} means
O3 and both s; and s; are “on”, {A\4} means O3 and s; is “off” and s, is
“on”, {As} means O, and s; is “on” and s is “off”, {\¢} means O, and
both s; and s; are “off”. Then S; = {A, A3, As} means that s; is “on”,
S2 = {A2, A4, A6} means that s; is “off”, S3 = {3, \4} means that s, is
“on”, 84 = {A1, A2, A5, A6} means that sy is “off”.

Second, let p, g, be positive real numbers less than 1. Let P(H;) = p
and P(H;) = 1 — p, let ¢ be the probability that s; is “on” whenever we
try to activate it, let r be the probability that s; is “on” whenever we try
to activate it, and assume that s; and s, are independent. Then P({)})
= pg, P({A2}) = p(1 - q), P({As}) =(1 = p)ar, P{Ad}) = (1 = p)(1 - g)r,
P({As}) = (1=p)g(1—r), P({X6}) = (1 —p)(1 — q)(1 —r) yields a suitable
probability measure on the events of our model.

Clearly, we can identify w; = (0,0) and {A2, A6} = S9N\ Ss, wy =
(1,0) and {)\1, /\5} =l Slﬂ54, W3 = (0, 1) and {/\4} - SgﬂSg, Wy = (1, 1)
and {A3} = S1NS3. Finally, define the (generalized) operational random
variable f as a mapping of Q = {w;, w,, w3, w4} into the set of all probability
measures on the “numerical” field of events {0, {1}, {2}, {1,2}} as follows:
flwi) = pi, where p;i({1}) = P(Hi|wi), pi({2}) = P(H|wi), and P(Hj|w;)
is the conditional probability of O; given w;; it can be calculated using the
Bayes rule for the probability of causes in (A, S, P). Observe that f(w3) and
f(w4) are degenerated measures, but f(w;) and f(w;) are nondegenerated
probability measures.

Remark 4. Observe that D-posets (Kopka and Chovanec [7]) and effect
algebras (Foulis and Bennett [4]), two (equivalent) types of quantum events
defined only recently (cf. Dvuecenskij and Pulmannovd [3]), are in their
nature similar to the calculation on fingers: a © b is defined (it is equal to
a—"b)iffb < a, resp. a@® b is defined (it is equal to a +b) iff a + b < 10.
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