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Abstract

We investigate multi-server queueing systems with Poisson arrivals, non-identical servers and

customers of random volume, under assumption that customer’s service time having an expo-
nential distribution doesn’t depend on his volume, but service time parameters can be different

for different servers. We also assume that the total volume of customers present in the system

at arbitrary time instant is bounded by some constant value V > 0.
For such systems the stationary customers number distribution and loss probability are de-

termined.

1. Analysis of M/M/n/(m,V ) queueing system

Consider the system M/M/n/(m,V ) with identical servers [6].
Denote by η(t) the number of customers present in the system at time in-

stant t. Let σ1(t), σ2(t), . . . , ση(t)(t) be the volumes of customers numbered
by 1, 2, . . . , η(t) according to their coming to the system; a be the parameter
of Poisson arrival flow and µ be the parameter of service time distribution.
Let L(x) = P{ζ < x} be the distribution function of customers volume ζ
that is a non-negative random variable.

Then we can describe the system under consideration by the following
markovian process:

(

η(t), σ1(t), σ2(t), . . . , ση(t)(t)
)

. (1)

Process (1) can be characterized by the following functions:

Pk(t) = P{η(t) = k}, k = 0, n+m, (2)

Gk(t, x) = P{η(t) = k, σ(t) < x}, k = 1, n+m, (3)

where σ(t) =
∑η(t)

i=1 σi(t) is the total volume of customers present in the
system at time instant t.
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It is clear that for k = 1, n+m we have the relation

Pk(t) = Gk(t, V ). (4)

For the functions (2), (3) we can write down the following equations:

P ′0(t) = −aP0(t)L(V ) + µP1(t); (5)

P ′1(t) = aP0(t)L(V )− a

∫ V

0
G1(t, V − y)dL(y)− µP1(t) + 2µP2(t); (6)

P ′k(t) = a

∫ V

0
Gk−1(t, V − y)dL(y)− a

∫ V

0
Gk(t, V − y)dL(y)−

−kµPk(t) + (k + 1)µPk+1(t), k = 2, n− 1; (7)

P ′k(t) = a

∫ V

0
Gk−1(t, V − y)dL(y)− a

∫ V

0
Gk(t, V − y)dL(y)−

−nµPk(t) + nµPk+1(t), k = n, n+m− 1; (8)

P ′n+m(t) = a

∫ V

0
Gn+m−1(t, V − y)dL(y)− nµPn+m(t). (9)

In stationary mode that exists if ρ = a/(nµ) <∞, we can introduce the
following stationary analogies of the functions (2), (3):

pk = P{η = k}, k = 0, n+m, (10)

gk(x) = P{η = k, σ < x}, k = 1, n+m, (11)

where η(t)⇒ η and σ(t)⇒ σ in the sense of a weak convergence.
Then the steady state equations for the functions (10), (11) follow from

the equations (5)-(9) and take the form

0 = −ap0L(V ) + µp1; (12)

0 = ap0L(V )− a

∫ V

0
g1(V − y)dL(y)− µp1 + 2µp2; (13)

0 = a

∫ V

0
gk−1(V − y)dL(y)− a

∫ V

0
gk(V − y)dL(y)−

−kµpk + (k + 1)µpk+1, k = 2, n− 1; (14)

0 = a

∫ V

0
gk−1(V − y)dL(y)− a

∫ V

0
gk(V − y)dL(y)−

−nµpk + nµpk+1, k = n, n+m− 1; (15)

0 = a

∫ V

0
gn+m−1(V − y)dL(y)− nµpn+m. (16)
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Let us introduce the notation Lk(y) for kth order Stieltjes convolution of
the distribution function L(y), which is defined recurrently as follows:

L0(y) ≡ 1, Lk(y) =

∫ y

0
Lk−1(y − u)dL(u).

In addition, we introduce the notation

N(k) =

{

(nρ)k

k! , if k = 1, n;
nnρk

n! , if k = n+ 1, n+m.

By direct substitution, we can check that the solution of (12)-(16) has
the form

gk(x) = p0N(k)Lk(x), k = 1, n+m.

By the limiting transition in (4), we can obtain formulas for pk:

pk = gk(V ) = p0N(k)Lk(V ), k = 1, n+m. (17)

From the normalization condition
∑n+m

k=0 pk = 1 we also obtain

p0 =

[

1 +

n+m
∑

k=1

N(k)Lk(V )

]−1

. (18)

The loss probability can be obtained from the following equilibrium con-
dition:

a(1− pu) = µ

n−1
∑

k=1

kpk + nµ(1−

n−1
∑

k=0

pk),

whereas we have

pu = 1− (nρ)−1
n−1
∑

k=1

kpk − ρ−1(1−

n−1
∑

k=0

pk), (19)

where probabilities pk are determined by (17). The results for analyzed
system were presented, for example, in [6].

2. M/M/n/(m,V ) queueing system with non-identical servers

and the random choice of a server

In this section we present some generalization of the system discussed
in section 1. The purpose of our investigations is to obtain formulas for
probabilities pk and loss probabilities in the steady state and to analyze
some special cases. We use some classical results for M/M/n/m queuing
systems with non-identical servers [1-5, 8] and some basic properties of
queueing systems with non-homogeneous customers and customer’s service
time independent on its volume [6, 7].
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If the parameters of service time distribution are not identical for ev-
ery server, then the behaviour of the system is described by the following
markovian process:

(

η(t), i1(t), i2(t), . . . , il(t), σ1(t), σ2(t), . . . , ση(t)(t)
)

, (20)

where l = min(η(t), n) and i1(t), i2(t), . . . , il(t) is the sequence of the num-
bers of busy servers ordered increasingly. If η(t) = 0, the process (20)
reduces to η(t).

Process (20) is characterized by the following functions:

P0(t) = P{η(t) = 0}; (21)

Gkf1f2...fl(t, x) = P{η(t) = k, i1(t) = f1, i2(t) = f2, . . . , il(t) = fl, σ(t) < x},

k = 1, n+m. (22)

It is obvious that for k ≥ n function (22) can be rewritten as

Gk(t, x) = P{η(t) = k, σ(t) < x}.

If k < n, we have

Gk(t, x) = P{η(t) = k, σ(t) < x} =
∑

{Fn
k
}

Gkf1f2...fk(t, x), (23)

where {Fn
k } is the set of all k-element combinations of the set {f1, f2, . . . , fn}.

Assume additionally that we have only two non-identical servers. Denote
as µ1, µ2 time service parameters for first and the second server conse-
quently. Let us introduce the notation ρ = a

µ1+µ2
.

In this case the process (20) take the form
(

η(t), i1(t), . . . , il(t), σ1(t), σ2(t), . . . , ση(t)(t)
)

, (24)

where l = min(η(t), 2).
Process (24) can be characterized by the following functions:

P0(t) = P{η(t) = 0}; (25)

P11(t) = P{η(t) = 1, i1(t) = 1}; (26)

P12(t) = P{η(t) = 1, i1(t) = 2}; (27)

Pk(t) = P{η(t) = k}, k = 2,m+ 2; (28)

G11(t, x) = P{η(t) = 1, i1(t) = 1, σ(t) < x}; (29)

G12(t, x) = P{η(t) = 1, i1(t) = 2, σ(t) < x}; (30)

Gk(t, x) = P{η(t) = k, σ(t) < x}, k = 2,m+ 2. (31)

If we analyze the behaviour of the system, we can write down the follow-
ing equations:

P ′0(t) = −aP0(t)L(V ) + µ1P11(t) + µ2P12(t); (32)
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P ′11(t) = −a

∫ V

0
G11(t, V − x)dL(x)− µ1P11(t) +

a

2
P0(t)L(V ) + µ2P2(t);

(33)

P ′12(t) = −a

∫ V

0
G12(t, V − x)dL(x)− µ2P12(t) +

a

2
P0(t)L(V ) + µ1P2(t);

(34)

P ′2(t) = −a

∫ V

0
G2(t, V − x)dL(x)− (µ1 + µ2)P2(t)+

+a

(∫ V

0
G11(t, V − x)dL(x) +

∫ V

0
G12(t, V − x)dL(x)

)

+ (µ1 + µ2)P3(t);

(35)

P ′k(t) = −a

∫ V

0
Gk(t, V − x)dL(x)− (µ1 + µ2)Pk(t)+

+a

∫ V

0
Gk−1(t, V − x)dL(x) + (µ1 + µ2)Pk+1(t), k = 3,m+ 1; (36)

P ′m+2(t) = −(µ1 + µ2)Pm+2(t) + a

∫ V

0
Gm+1(t, V − x)dL(x); (37)

P0(t) + P11(t) + P12(t) +
m+2
∑

k=2

Pk(t) = 1. (38)

In the steady state (if only ρ < ∞), we obtain the following equations
for functions p0, p11, p12, pk, g11(x), g12(x), gk(x), that are the limits of
functions (25)–(31) (if t→∞) in the sense of weak convergence:

0 = −ap0L(V ) + µ1p11 + µ2p12; (39)

0 = −a

∫ V

0
g11(V − x)dL(x)− µ1p11 +

a

2
p0L(V ) + µ2p2; (40)

0 = −a

∫ V

0
g12(V − x)dL(x)− µ2p12 +

a

2
p0L(V ) + µ1p2; (41)

0 = −a

∫ V

0
g2(V − x)dL(x)− (µ1 + µ2)p2+

+a

(∫ V

0
g11(V − x)dL(x) +

∫ V

0
g12(V − x)dL(x)

)

+ (µ1 + µ2)p3; (42)

0 = −a

∫ V

0
gk(V − x)dL(x)− (µ1 + µ2)pk+

+a

∫ V

0
gk−1(V − x)dL(x) + (µ1 + µ2)pk+1, k = 3,m+ 1; (43)
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0 = −(µ1 + µ2)pm+2 + a

∫ V

0
gm+1(V − x)dL(x); (44)

p0 + p11 + p12 +
m+2
∑

k=2

pk = 1. (45)

By the direct substitution, we can check that the solution of (39)-(45)
has the form

g11(x) =
a

2µ1
p0L(x), g12(x) =

a

2µ2
p0L(x); (46)

gk(x) =
ap0
2

(

1

µ1
+

1

µ2

)

ρk−1Lk(x), k = 2,m+ 2; (47)

p11 =
a

2µ1
p0L(V ), p12 =

a

2µ2
p0L(V ); (48)

p1 = p11 + p12 =
ap0
2

(
1

µ1
+

1

µ2
)L(V ); (49)

pk =
ap0
2

(

1

µ1
+

1

µ2

)

ρk−1Lk(V ), k = 2,m+ 2. (50)

The formulas (49)–(50) can be rewritten as it follows:

pk =
ap0
2

(

1

µ1
+

1

µ2

)

ρk−1Lk(V ), k = 1,m+ 2, (51)

where p0 can be obtained from the normalization condition (45) and has
the form

p0 =

[

1 +
a

2

(

1

µ1
+

1

µ2

)m+2
∑

k=1

ρk−1Lk(V )

]−1

. (52)

The above analysis can be generalized for the arbitrary number of non-
identical servers. For example, in the case of n = 3 we obtain

p11 =
ap0
3µ1

L(V ), p12 =
ap0
3µ2

L(V ), p13 =
ap0
3µ3

L(V ); (53)

p1 = p11 + p12 + p13 =
ap0
3

(

1

µ1
+

1

µ2
+

1

µ3

)

L(V ); (54)

p212 =
a2p0
6µ1µ2

L2(V ), p213 =
a2p0
6µ1µ3

L2(V ), p223 =
a2p0
6µ2µ3

L2(V ); (55)

p2 = p212 + p213 + p223 =
a2p0
6

(

1

µ1µ2
+

1

µ1µ3
+

1

µ2µ3

)

L2(V ); (56)

pk =
a2p0
6

(

1

µ1µ2
+

1

µ1µ3
+

1

µ2µ3

)

ρk−2Lk(V ), k = 3,m+ 3, (57)

where ρ = a
µ1+µ2+µ3

.



QUEUEING SYSTEM M/M/n/(m,V ) WITH NON-IDENTICAL SERVERS 35

Formulas (56)–(57) can be rewritten as

pk =
a2p0
6

(

1

µ1µ2
+

1

µ1µ3
+

1

µ2µ3

)

ρk−2Lk(V ), k = 2,m+ 3. (58)

where we obtain the following value for p0:

p0 =

[

1 +
a

3

(

1

µ1
+

1

µ2
+

1

µ3

)

L(V )+

+
a2

6

(

1

µ1µ2
+

1

µ1µ3
+

1

µ2µ3

)m+3
∑

k=2

ρk−2Lk(V )

]−1

. (59)

The solutions of analyzed systems of equations in the steady state are
obtained using computer algebra systems (ex. Mathematica environment).

In general case we obtain the following formulas:

pkf1f2...fk =
ak(n− k)!p0

n!
∏k

i=1 µfi

Lk(V ), k = 1, n− 1; (60)

pk =











ak(n−k)!p0
n!

∑

{Fn
k
}

1
∏

xi∈F
n
k

µxi

Lk(V ), k = 1, n− 2,

an−1p0
n!

∑

{Fn
n−1

}
1

∏

xi∈F
n
n−1

µxi

ρk−n+1Lk(V ), k = n− 1, n+m,

(61)
where Fn

k denotes k-element subset of n-element set and

p0 =



1 +
1

n!

n−2
∑

k=1

ak(n− k)!
∑

{Fn
k
}

1
∏

xi∈Fn
k

µxi

Lk(V )+

+
an−1

n!

n+m
∑

k=n−1

∑

{Fn
n−1

}

1
∏

xi∈Fn
n−1

µxi

ρk−n+1Lk(V )





−1

. (62)

3. Loss probability

Assume that we have a system with two non-identical servers. Denote as
µ1, µ2 service time parameters for the first and second server consequently.
Denote as pu the loss probability for the system under consideration. To
obtain the value of pu we can write down the following equilibrium condition:

a(1− pu) = µ1p11 + µ2p12 + (µ1 + µ2)

(

1−
1
∑

k=0

pk

)

. (63)
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In the case of three servers the equilibrium condition has the form

a(1− pu) = µ1p11 + µ2p12 + µ3p13 + (µ1 + µ2)p212+

+(µ1 + µ3)p213 + (µ2 + µ3)p223 + (µ1 + µ2 + µ3)

(

1−

2
∑

k=0

pk

)

. (64)

In general we have the following formula

a(1− pu) =
n−1
∑

k=1

∑

{Fn
k
}

pkf1f2...fk

k
∑

i=1

µfi +
n
∑

k=1

µk

(

1−
n−1
∑

k=0

pk

)

. (65)

The solution of (65) leads to the following result:

pu = 1−
1

a





n−1
∑

k=1

∑

{Fn
k
}

pkf1f2...fk

k
∑

i=1

µfi +
n
∑

k=1

µk

(

1−

n−1
∑

k=0

pk

)



 , (66)

where pkf1f2...fk and pk are determined by relations (60) and (61).

4. Analysis of some special cases

1) M/M/n/(0, V ) queueing system with non-identical servers.
Consider now a queueing system with no waiting places in the

queue (m = 0). In this case formula (61) has the form

pk =
ak(n− k)!p0

n!

∑

{Fn
k
}

1
∏

xi∈Fn
k

µxi

Lk(V ), k = 1, n− 1;

pn =
an−1p0ρ

n!

∑

{Fn
n−1

}

1
∏

xi∈Fn
n−1

µxi

Ln(V ),

where

p0 =



1 +
1

n!

n−1
∑

k=1

ak(n− k)!
∑

{Fn
k
}

1
∏

xi∈Fn
k

µxi

Lk(V )+

+
an−1ρ

n!

∑

{Fn
n−1

}

1
∏

xi∈Fn
n−1

µxi

Ln(V )





−1

.

Loss probability on the base of the relation (66) has the form

pu = 1−
1

a





n−1
∑

k=1

∑

{Fn
k
}

pkf1f2...fk

k
∑

i=1

µfi + pn

n
∑

k=1

µk



 .
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Assume additionally that customer’s volume has an exponential
distribution with the parameter f i.e. L(x) = 1− e−fx. In this case
we have

Lk(x) = 1− e−fx
k−1
∑

i=0

(fx)i

i!

i.e. the function Lk(x) has the k-Erlang distribution with the pa-
rameter f . So we finally obtain the formulas

pkf1f2...fk =
ak(n− k)!p0

n!
∏k

i=1 µfi

(

1− e−fV
k−1
∑

i=0

(fV )i

i!

)

, k = 1, n− 1;

pk =
ak(n− k)!p0

n!

∑

{Fn
k
}

1
∏

xi∈Fn
k

µxi

(

1− e−fV
k−1
∑

i=0

(fV )i

i!

)

, k = 1, n− 1;

pn =
an−1p0ρ

n!

∑

{Fn
n−1

}

1
∏

xi∈Fn
n−1

µxi

(

1− e−fV
n−1
∑

i=0

(fV )i

i!

)

. (67)

Assume now that customers’s volume has geometric distribution
with the parameter f i.e. L(x) =

∑

k<x(1− f)fk. Then we have

Lk(x) =
∑

i<x

(

k + i− 1

i

)

f i(1− f)k.

So we obtain the following results:

pkf1f2...fk =
ak(n− k)!p0

n!
∏k

i=1 µfi

∑

i<V

(

k + i− 1

i

)

f i(1− f)k, k = 1, n− 1;

pk =
ak(n− k)!p0

n!

∑

{Fn
k
}

1
∏

xi∈Fn
k

µxi

∑

i<V

(

k + i− 1

i

)

f i(1−f)k, k = 1, n− 1;

pn =
an−1p0ρ

n!

∑

{Fn
n−1

}

1
∏

xi∈Fn
n−1

µxi

∑

i<V

(

n+ i− 1

i

)

f i(1− f)n. (68)

Finally we assume that customer’s volume is constant i.e. ζ = f0.
Then we have L(x) = H(x−f0), where H(x) is the Heaviside unitstep
function and Lk(x) = H(xk − f0).

So we obtain the following results:

pkf1f2...fk =
ak(n− k)!p0

n!
∏k

i=1 µfi

H

(

V

k
− f0

)

, k = 1, n− 1;



38 JACEK MAŁEK, MARCIN ZIÓŁKOWSKI

pk =
ak(n− k)!p0

n!

∑

{Fn
k
}

1
∏

xi∈Fn
k

µxi

H

(

V

k
− f0

)

, k = 1, n− 1;

pn =
an−1p0ρ

n!

∑

{Fn
n−1

}

1
∏

xi∈Fn
n−1

µxi

H

(

V

n
− f0

)

. (69)

2) M/M/n/(∞, V ) queueing system with non-identical servers.
Consider now queueing system with infinite number of waiting

places
(m =∞). In this case formula (61) has the form

pk =











ak(n−k)!p0
n!

∑

{Fn
k
}

1
∏

xi∈F
n
k

µxi

Lk(V ), k = 1, n− 2,

an−1p0
n!

∑

{Fn
n−1

}
1

∏

xi∈F
n
n−1

µxi

ρk−n+1Lk(V ), k ≥ n− 1,

where

p0 =



1 +
1

n!

n−2
∑

k=1

ak(n− k)!
∑

{Fn
k
}

1
∏

xi∈Fn
k

µxi

Lk(V )+

+

∞
∑

k=n−1

an−1

n!

∑

{Fn
n−1

}

1
∏

xi∈Fn
n−1

µxi

ρk−n+1Lk(V )





−1

.

In addition, loss probability is determined by (66).
Assume additionally that customer’s volume has exponential dis-

tribution with the parameter f . Then we have the following formulas:

pk =
ak(n− k)!p0

n!

∑

{Fn
k
}

1
∏

xi∈Fn
k

µxi

(

1− e−fV
k−1
∑

i=0

(fV )i

i!

)

, k = 1, n− 2;

pk =
an−1p0ρ

k−n+1

n!

∑

{Fn
n−1

}

1
∏

xi∈Fn
n−1

µxi

(

1− e−fV
k−1
∑

i=0

(fV )i

i!

)

, k ≥ n−1.

(70)
Assume now that customers’s volume has geometric distribution

with the parameter f . Then we have

pk =
ak(n− k)!p0

n!

∑

{Fn
k
}

1
∏

xi∈Fn
k

µxi

∑

i<V

(

k + i− 1

i

)

f i(1−f)k, k = 1, n− 2;
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pk =
an−1p0ρk−n+1

n!

∑

{Fn

n−1
}

1
∏

xi∈F
n

n−1

µxi

∑

i<V

(k + i− 1

i

)

f i(1− f)k, k ≥ n− 1. (71)

If the customer’s volume is constant (ζ = f0), then we obtain the
following results:

pk =
ak(n− k)!p0

n!

∑

{Fn
k
}

1
∏

xi∈Fn
k

µxi

H

(

V

k
− f0

)

, k = 1, n− 2;

pk =
an−1p0ρ

k−n+1

n!

∑

{Fn
n−1

}

1
∏

xi∈Fn
n−1

µxi

H

(

V

k
− f0

)

, k ≥ n− 1 (72)
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