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The Comparison of Semi-Orthogonal Wavelet
and Orthonormal Wavelet Sets for Solving
Fredholm’s Integral Equation of the Second Kind

Jana Simsovd

Abstract. The article tries to resolve Fredholm’s integral equations
of the second kind by the Galerkin method. The wavelets on the bounded
interval are used as the basic functions. Daubechies’ orthonomal wavelets
and the semi-orthogonal wavelets are used for solving Fredholm’s integral
equations of the second kind. The twofold results are evaluated in the
function of the matrix-sparsity and the error of the approximation.

1 Introduction

Wavelets are very good tool for obtaining numerical approximations, be-
cause of their special properties as they are, for example, reproduced by po-
lynomials up to the certain degree. In this section the essentials of the the-
ory of wavelets are briefly summarized. The scaling function ¢(z) € L%(R)
satisfies dilation equation, namely

$(x) =Vv2Y hip(2z — k).

keZ

The wavelet function ¥ € L?(R) satisfies wavelet identity

P(z) = V2 ) (22 — k).

keZ

Between scaling coefficients hy and wavelet coefficients g there holds the
relation gx = (=1)*"'h;_x. The translations and dilatations of wavelet
form an orthogonal base of space L%*(R). We define space Vy as Vp =
span{$x — k)}keZ' Scaling subspace V is generated by functions ¢; x(z) =

2%¢(2jm — k). The orthogonal complement of subspace V; in V;4; denoted

W; is generated by functions v, x(z) = 274)(2'z — k). We say that the
subspaces V; generate multiresolution analysis.
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The important property of wavelets is vanishing moment. A wavelet is
said to have a vanishing moment of order m if

o0
/ eleldz =0, p=0,...,m-1.
—00
All wavelets satisfy the above condition for p = 0.
The wavelets {1, x} form an orthonormal basis if

(Vjk; ¥i1) = 050k, LR E 2,

The wavelets {1; x} form a semi-orthogonal basis if

(igsig) =0,  i#34, 4,5,kl,€Z,
where (.,.) denote the scalar product in the space L%(R).

2 Orthonormal Wavelets on the Bounded Interval

In this section we present a very interesting approach to constructing ortho-
normal wavelet bases for L 0,1)" We start with family of Daubechie’s wave-
lets on the real line. These wavelets have N zero moments, and scaling func-
tion ¢ and wavelet ¢ are compactly supported on the interval (=N + 1, N).
So the width of both these functions is 2N — 1. It means that a number
of scaling coefficients hj in dilation equation and wavelet coefficients g,
respectively, is finite. Without loss of generality we will consider only the
interval (0;1) instead of general bounded interval. It is easy to restrict
the base of space L%*(R) on the interval (0;1). We can start from the base
{bio.klk € RYU{¥;klj < jojk € Z}, where jg is chosen large enough so
that support of functions ¢;, » and 1, x is included in the interval (0, 1).
Therefore the least level jo must satisfy the inequality 27°~! > N. The
number of these interior functions is equal to 2/ — 2N. Now we add N left
functions and N right functions, which are constructed on the right-half
real line (0;+o00) and on the left-half real line (—oo;0), respectively.
So scaling functions

$l'(a), if 0<k<N
¢¥,k($): ¢’gk( ), if NSk<2j—N
and wavelet functions
vilts), if 0<k<N
Vie(z) =4 ¥ik(e), if N<Ek< 23 — N
Y (@), if 2-N<k<2
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generate an orthonormal multiresolution analysis on (0;1). More deta-
ils can be found in [1]. Furthermore, there exist the sets of coefficients
{H/iejft} {hleft} left} {gleft} {Hrzght} {hrzght} Grzght} {grzght} $tel that

the followmg recursive relation are valid:

[ left left left bk <y le ft
ZH $irr(e +Zh Pit+1,(2)
) Niok
left Z Gleft iifltl + Z ge_ftqu_*_l[ )

( —-N-1

h h h
rzgt Z Hrzgt r:-qll;( )+ Z rlght¢J+ll( )

==N+1+4+24
-N-1

ht ht left ht
Z Gl @+ Y g
\ I=—N+1+2k

Complete tables of these coefficients for Daubeschies wavelet and sca-
ling function for N=2 are listed in [1]. These scaling functions and wavelets
have not got explicit form. We must evaluate these functions by using
either the cascade algorithm or recursive scheme.

3 Semi-orthogonal Wavelets on the Bounded Interval

Semi-orthogonal wavelet are derived from cardinal B-splines. B-splines

Ny, for m € N are recursively defined by integral convolution, namely
1

Nm(z) = [Nm-1(z — 7)dr, where No(z) = X(o;1) is the characteristic
0

function of the interval (0;1). This function is a suitable scaling function.

There exist compactly supported wavelets with minimal support (0;2m —1)

B-wavelets, given by %, (z) = 3 gk N (22 — k), where nonzero coefficients
k

qxr are only for k =0,---,3m — 2 given by

qr = 2m12( )N2mk+1—l)

A base for Vjq,) is given by B-spline of order m regarding the set of
points {t_mi1,t_m42, veyboigm—1}, where t_p4q - tgp=0and ty; = +++ =
t3i4m-1 = 1 are knots of multiplicity m. The other knots are given by
tr = k277, This base is defined as

B (z) = (tkam = te)[tky thar, = thgmle(t — )71,
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where [.,.,.,.,]; is the m — th divided difference of (¢t — ac)ff_l with respect
to the variable ¢. Therefore the inner scaling functions are dilatations and
translations of the cardinal B-spline, namely B[} (z) = N,.(2°z — k) for
k=0,---,2 —m. The inner wavelets v;  for k =0,---,2 —2m+ 1 are
given by

2m—2

’Lerk 22m 1 Z sz l+1)B2k+£3+1( )

The m — 1 boundary wavelets for the endpoint 0 and the m — 1 boundary
wavelets for the endpoint 1 are linear combinations of the m — 1 boundary
splines and 2m + 2k — 1 inner B-splines N,,, (272 — k).

The second-order B-spline (scaling function) are given by

Sy 2'7.’17—19 $€(3121>
(PJnk_{Q_(QJ:E—k‘) :L'E(iw 3 2J>

for :
k=81,..,2 -2

with the respective left- and right-side boundary scaling functions

: 1
(]53',_1 =3 -2z, re (0,-2—;>,

; . o d
¢j,2j__1 = 23I e 2‘7 - 1, T.€ < 2] ,1)

The second-order B-spline wavelets are given by

(22 — k z € (L —t—s-)
4—7(2z = k) z € (z—tm d‘—)
ogqus A —19 4+ 16(2’z — k) xe(—'f— —ﬂ?;——)
kT 6] 29— 16(207 — k) xe(—'t-—, 2)
-17+ 72z~ k) z€ (—-t- -t—-)
\3_(2jx—k) .’EE( ’21)

for _
k=0 ... 2253

with boundary wavelets
~6+23(27z) z € (0; 54)
1) 14-17(2z) € (557 5)

Yik=g ~10+7(2%z) z € (512
2-22 z € (3% %)
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for the left-side boundary and

Dwf ket 2P ) z € (&; E£03)
~104+7(k+2 — 2'z) xe(i%—t— —ff—)
14— 17(k + 2 - 2x) xe(m, el
—6+23(k+2—2z) ze (kLS 5. 1)

1
%,k — —6'

where k = 22 — 2 for the right-side boundary.
Therefore, scaling functions and wavelets are piecewise linear functions.

4 Wavelet Expansion on (0;1) and Integral Equation

We can approximate the function f(z) € L%O-l) by its projection Py on the

space

Vj = span{¢7 |k =0,1,. s = 13,
where 27 > 2N as
27-1

f( ) PVJ Z‘l]k‘ﬁjk

It follows from multiresolutions that we can write

2J0 —1 J P-=1
PVJf(w) 0 E Cjo,k(b;u.k(x) ¥ Z Z dj’k¢;,k(z)
k=0 J=Jo k=0

So we use small details at levels jp to J and the coarsest details at a level
jo. Now we consider Fredholm’s integral equation of the second kind in the

form
1

f@)+ [ K0 W)y = g(z), (1)
0
where g(z) is a known function, K (z,y) is a kernel of integral equation and
f(z) is an unknown function from L%O,l)’
Applying the wavelet expansion of projection Py, of unknown func-
tion f into integral equatlon and scalar multiplying by family of functions

{97, 2102 lu {v; k} o B kl o We obtain the following system of linear equa-

tions:
Xos Xow | | Yoo Youw [\ | ok | _ | Go
Xy Xyw Yoo You d; Gy |’
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where the elements of matrices X and Y are

X¢¢~fd>m,( )Bio k(z)dz

Xow = fézo, z); p(x)de,
Xy = ({wi,zf(m)ﬁbjo,k(w)dw
Bt & i@b,-,p(x)wj'k:(m)da:

Yoo = [ 60i(0)650)K (2, v)duida,
Vo = [ [ $ial@bi 0)K (2,y)dyd,
Voo = | [ i02)8500) K (2, )y
Vaw = ] [ iae) i K &, )y

and the subscripts k,I,k’,0',1, , are given as k,l = —1,...,20 — 1; k', I' =
—1,..,2 =1 and jo < j < J;ip < i < I for semi-orthogonal wavelets and
kl=0,...,29 — LEI'=0,..:.42 — 1Land jo < § < Jiig £ i < I for
orthonormal Daubechies wavelets. The elements of vector G are integrals

1 1
[ 9(x)¢iy1(x)dz and the elements Gy, are integrals [ g(z); (z)dz.
0 0

5 Numerical Example

In this section the use of introduced scaling functions and wavelets is com-
pared by numerical example. The considered integral equation is

1
0)+ [ (2 +y - 209)f()dy = o* + 2.
0

The kernel of integral equation has no singularity. A total number of unk-
nowns NNV in this system of linear equations is N = 271! 41, where J is the
highest level of decomposition, for semi-orthogonal wavelets and total num-
ber of unknowns N = 2/0+3_ where jg is the smallest level of decomposition,
for orthonormal wavelets. In both bases there is the smallest level jo = 2
and the highest level J = 4. Therefore N = 33 when the semi-orthogonal
wavelets were used and N = 32 when the orthogonal wavelets were used.
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If we remember the properties of SO-wavelets, we know that the matrix
X¢,¢ 1s a diagonal matrix, X4 4 and Xy, 4 are zero matrices and Xy, ,;, is the
block-five diagonal matrix. In a case of orthonormal D-wavelets the matrix
X is the identity matrix. Look in detail on the elements of matrix Y. Even
though the limits of integration in every element of matrix ¥ range from
zero to one, the actual integration limits are much smaller because of the
finite supports of both using bases. The matrix Y 4 is a dense matrix with
not very small elements. But this matrix occupies very small (5 x 5 for
SO-scaling function and 4 x 4 for orthonormal scaling function) part of the
matrix Y. The matrices Yy y; Yy 4 and Yy 4 are dense too. But because of
local supports and vanishing moment properties of wavelets many elements
of these matrices are very small compared to the largest element. Hence,
they can be dropped without significantly influence on the solution. So, the
elements whose magnitudes are smaller then ¢ = 0.001 can be set as zero (e
is called a threshold parameter). In figure 1 and figure 2 we can see nonzero
elements of matrix X 4+ Y as dark dots. We can see that orthonormal base
gives a sparser matrix.

If we want to evaluate the elements of matrix Y, we need not compute
the double integrals in every element of matrix. It is enough to use any
numerical quadrature only on the high level and then work only with sets of
scaling and wavelets coefficients. In this numerical example the trapezoid
rule was used.

The relative quadratic error in the form € = i (f(z:) = f(x:))?/ f(x;)?

=
(where f is an approximation and f is an exact solution) has the values
2.99 x 1075 in the case of SO-wavelets and 5.49 x 103 in the case of ortho-
normal wavelets. So SO-wavelets better approximate the exact solution.
The advantage of SO-wavelets is their explicit form, piecewise linear beha-
vior (for m=2) and their symmetry graph.
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Fig. 1 Approximation by Daubechies-orthogonal wavelets.
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Fig. 2 Approximation by semi-orthogonal wavelets on the interval (0;1).
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