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Concentated Forces in Two-dimensional
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Well-developed methods of the classical elasticity break down at small
distances from crystal defects and points of aplication of singular forces.
This situation has given rise to the regular attempts to improve elastic so-
lutions obtained in the frame-work of classical elasticity, for instant, combi-
ning elastic and discrete approaches for better description of high distorted
regions.

In the past two decades, a considerable research efforts has been expen-
ded to develop the nonlocal theory of elasticity and to solve various pro-
blems of continuum mechanics using this theory. The essentials of the
nonlocal theory were established by Kréner (1], Pidstryhach (2], Eringen
(3], Edelen [4], Kunin [5] and others. Starting from interrelated equations
describing elasticity and diffusion Pidstryhach [2] excluded the chemical
potential from the constitutive equation for the stress tensor and obtained
the nonlocal stress—strain relation. Kroner [1] and Kunin [5] started from
discrete lattice and interpolated functions of discrete argument by special
continuous functions. The stress—strain relation obtained in such a quasi-
continuum is non-local.

The nonlocal theory reduces to the classical theory of elasticity in the
long-wavelength limit and to the atomic lattice theory in the short—wave-
length limit. The nonlocal theory is effective in removing non—physical
singularities occurring at dislocations, disclinations, points of applications
of singular forces, cracks, etc.

A number of problems solved in the frame-work of nonlocal theory
indicate the power of the theory. It manifests some new physical phenomena
and overcomes difficulties in classical theory such as classical singularities.
Using this theory one can obtain more justified results.

In local elasticity the stress tensor o satisfies the equilibrium equation

V.o+f=0, (1)
and is connected with the strain tensor e by the Hooke law

o= Atrel+ 2ue, (2)
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where V is the gradient operator, f is the body force vector, A and u are
Lamé constants, I denotes the unit tensor.
Consider a concentrated force

f = Qy 6(x) (y) (3)

acting at the origin in the y-direction in a two-dimensional elastic solid
with é(z) being the Dirac delta function.

The solution of the problem (1)-(3) is well-known [6] and in polar
coordinates reads:

i Qy ‘o ='sin'@
sin 6
Orr — 0gg = ’_% serdl (4)

(1 -2v)Qy cosf
C4n(1-v) r

Org —

It is obvious that all the components of the stress tensor have non-physical
singularities at the origin r = 0.

According to a nonlocal theory of continuum mechanics, the consti-
tutive equations are obtained in such forms that the value of dependent
constitutive variable at a point is described by the values of the indepen-
dent variables at all points of the body. In particular, according to the
nonlocal theory of elasticity, the stress tensor t at a reference point x in
the body depends not only on the strains at this point but also on strains
at all other points.

In this case the stress tensor is given by a weighted integral of the
strains over the body

b{x) = /V sl xhor oA (5)

Here x and x’ are reference and running points.

The weight function (the nonlocal modulus) a(|x —x'|, ) describes the
nonlocal interaction, depends on a distance |x — x'| between the reference
x and running x points, includes the parameter 7 proportional to a cha-
racteristic length ratio a/l, where a is an internal characteristic length and
[ is an external characteristic length, is a delta—sequence, and in the the
long-wavelength limit 7 — 0 it becomes the Dirac delta—function

fim o — x|, 7) = 6(}x ~ x']).
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Eringen [7,8] has ascertained the properties of the nonlocal modulus
and found several different forms giving a perfect match with the Born-
Karman model of the atomic lattice theory and the atomic dispersion
curves. In the present paper we use the following two-dimensional non-
local modulus

alpx ~x,7) = 5 Ko (X2X1), (6)

2mc?

where Ky(z) is the modified Bessel function, ¢ = I7.

As the modulus (6) is the fundamental solution of the Helmholtz equa-
tion, then action by the Helmholtz operator on two sides of the constitutive
equation (5) it is possible to obtain the following inhomogeneous Helmholtz
equation

At -t = —0. (7)

In polar coordinates the expressions for components of Laplacian of the
symmetrical second order tensor have the following form [9]:

4 Ot,g >
(At),, = A (trr) - e 38 @ pld (trr — tog) ,
4 Ot,g 2
(At)gp = A (tee) + 2 T2 (trr — teg), (8)
20
(At),p = A(tre) — Ztro + ) (trr — top)
Let
e =g 8inf, tgg = Tggsin @, trg = Tygcosé. (9)

Then introducing three auxiliary functions
f(r) = Tpr + Ty,

g(r) = Trr o T89 s 2Tr81
h(r) =T, — Tog — 2T ¢

and using expressions (8) we obtain from equation (7) the following inho-
mogeneous modified Bessel equations:

d4f by lid 1 1 1
dr* " rde c 2n(l1-v)e? r

d’¢g 1dg 1 1 34 1
10k igotuchomrs bh NOSRIG,) (11)
det - pdr 30 i 2r(l1 —v)e? r
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d?h 1dh—3h~lh Gy 1

< ianes - = e e 12
dr?2  rdr r2 c? 2r(l-v)c? r 454

The solutions of equations (10)-(12) are expressed in terms of modified
Bessel functions I, (r/c) and K, (r/c).

As the function I,,(r) is unbounded at infinity, the term with this func-
tion should be omitted. Using the formulae describing the behaviour of
functions K, (r) for small values of r

Ki(r) ~

= | =
oo
—

3 I{‘g(f‘) i 7"—3 — ;

we arrive at the solution of equations (10)—(12) bounded both at infinity
and at the origin

sl
g(r)om (237(‘1%% [Kl (g) - ;] , (14)

h(r) = —%jy)c [1{3 G) + ; -8 (E)S] : (15)

The solution of the problem obtained in this paper in the frame-work
of nonlocal elasticity has no non-physical singularities.
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