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Summary.  Let (S5,+) be a semigroup (not necessarily Abelian) and
let (X,4) be a commutative group. We deal with an axiomatically given
family B C 2% of “bounded sets” and with mappings f,g,h:S — X such
that the transformation

SxS3(z,y)r— flat+y) —gz)—h(y) e X

remains B—bounded.

Stability results existing in the literature in connection with the Pe-
xider functional equation become special cases of our theorems up to the
magnitude of approximating constants.

1. Introduction. The most prominent role in the theory of functio-
nal equations is played by the equation of Cauchy

(C) f(z+y) = f(z) + fly).
Its apparently far reaching generalization
(P) f(z+y)=g(z)+h(y),

is commonly known as the Pexider functional equation and usually it can
easily be reduced to (C) (see e.g. J. Aczél [1], J. Aczél & J. Dhombres [2]
and M. Kuczma [7]). The celebrated Hyers-Ulam stability question: given
an € > 0 does any function f with values in a normed linear space (X, ||-||)
and satisfying the functional inequality

f(z+y) = f(z) - fly)l|<e =z,y€Ss,

admit a homomorphism a : S — X such that f — a remains uniformly
bounded in norm, has extensively been studied by many authors; see the
monograph of D.H.Hyers, G.Isac and Th.M.Rassias [6] and the references
therein.
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Clearly, the corresponding stability question has also been asked in
connection with the Pexider equation (P). Under various assumptions an
affirmative answer was given by J.Tabor [9], K.Nikodem [8] and E.Glowacki
& 7Z.Kominek [5] (also applied by J.Aczél [3]). All these authors reduce a
problem in question to the stability of the Cauchy equation. Therefore, in
what follows, dealing with the stability problem of the Pexider equation in
a fairly general setting we shall restrict ourselves to such type reduction.
Then we may consider the problem as solved as long as the exactness of
approximation is disregarded. More precisely, assuming that the Pexider
difference

(z,y) 3 S xS+ f(z+y) —g(z) —h(y) e X

is bounded (in a sense) we look for a homomorphism A : S — X which
would be uniformly close to each member of the triplet (f, g, 2). The point
is that neither commutativity of the domain nor the existence of a neutral
element in S is assumed.

The results spoken of in this paper were presented by the author at
the 31-st International Symposium on Functional Equations (Debrecen,
Hungary, 1993); see [4].

2. Abstract boundedness. We begin with a definition of a general
boundedness notion. In many instances, a set bounded in our sense may
be pretty far from an intuitive feeling of boundedness. Nevertheless, classi-
cal boundedness notions in algebraic structures occurring in the literature
prove to be special cases of the boundedness considered below.

DEFINITION. Let (X,+) be a group and let B C 2% be a set family
such that

(i) B contains all singletons ;

(i) A+ B € B for any two members A, B from B ;
(ili) —B € B whenever B € B.

Then we say that the group (X, +) is endowed with a B—boundedness
structure and the members of B along with all their subsets are termed
B—bounded sets.

Let S # 0 be an arbitrary set and let (X,+) be an Abelian group
endowed with a B—boundedness structure. A map ¢ : S — X is called
B—bounded if and only if the set ¢(S) is B—bounded.
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Examples:

e (X,+) - the additive group of a linear Hausdorff topological space
X with B being the family of all bounded sets in X (in the regular
sense).

(X, +) - the additive group of an infinite dimensional (real or complex)
linear space X with

B := {Xo+c: Xp is a finite dimensional linear subspace of X, ¢ € X}.

(X, +) - the additive group of an infinite dimensional (real or com-
plex) linear space X; let Xy be a linear subspace of X with infinite
codimension. Put

B:={C+c: XoDCisconvex and ¢ € X}.

(X,+) - a non-compact Hausdorff topological group with the family
B consisting of all compact subsets of X .

(X,+) - an uncountable group with the family B of all at most coun-
table subsets of X .

(X, +) - the additive group of a vector lattice (X, <) with the totality
B of all order bounded subsets of X .

e (X,+) - a commutative group; let (X +) be a proper subgroup of
(X,4). Put
B:={Z+c:ZCXgc€X}.

3. Stability.  We begin with a definition that, roughly speaking,
matches the pairs of semigroups and groups for which the Cauchy functional
equation is stable in the sense of Hyers and Ulam.

Definition. Let (S5,+) be a semigroup and let (X,+) be a group
endowed with a B—boundedness structure. We say that the pair (S, X) is
B-stable if and only if for every function F : S — X such that the map

SxS85(z,y)— F(z+y)— F(z) - F(y) € X

is B—bounded there exists a homomorphism A : § — X such that the
function

Sozr— F(z)— A(z) € X
is B—bounded.
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In what follows we shall permanently be using the fact that the sum of
a finite number of B-bounded functions is B-bounded as well; in particular,
the sum of a B-bounded function and a constant one remains B-bounded.
Equally simple is the observation that whenever a function ¢ is B-bounded
so is the function —e.

Theorem 1. Let (S, +) be a semigroup and let (X, +) be an Abelian
group endowed with a B—boundedness structure. Let f,g,h: S — X be
such that the map

Sx83(zy)— flz+y)—g(z)-h(y) e X

is B-bounded. If the pair (S, X) is B—stable, then there exists a homo-
morphism A : S — X such that for every a € S the functions
S5z flat+z4a) —"Alz) € X
Sozvr—glat+z)—A(z) e X
S>z— h(z+a)— Az) € X

are all B—bounded; such a homomorphism is unique modulo a B—bounded
function.

Proof. Fix arbitrarily an a € S. Then the maps

S3zr— f(zr+a)—g(z)e X (1)
and
Soyr fla+y)—h(y) € X (2)
are both B—bounded whence so is also the map
Sx83(zy)— flz+y) - flz+a)- flaty) e X (3)

because it coincides with
S X853 (z,y)— [f(z+y) - g(z) - hy))
+lg(z) — f(z+a)] + [h(y) — fla+y)] € X.

Setting now
F(z):= fla+z+4+a), z€b§,

and replacing z and y in (3) by @ + z and y+a, respectively, we infer that
the Cauchy difference

SxS>3(z,y)— Flz+y)—F(z)-F(y) e X
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is B—bounded. Hence, since the pair (S, X) is B—stable, there exists a
solution
A: S — X to the Cauchy functional equation (C) such that the difference

Sz F(z)-A(z)=fla+z+a)— A(z) e X

yields a B—bounded function.
Now, since the map (1) is B—bounded so is also the difference

S35z F(z) —glat+2)= fla+z+a)—gla+2) € X.
This implies that the difference
Soz+glatz)— Alz) =[g(a+2) — F(z)] 4+ [F(z) — A(z)] € X.

remains B—bounded.
Similarly, with the aid of the B—boundedness of the map (2), we get
the B—boundedness of the difference

S35z h(z+a)— A(z) € X.

To show that the homomorphism A does not depend upon the choice
of @ assume that for some b € S there exists a homomorphism B : § — X
such that the map

Ss3zr— f(b+z+b)—B(z) e X

is B—bounded. Since for every z,y € S one has

fz+a)—f(z+b)+ fla+y) - fb+y)
=[f@+y) - f@+b) - fb+y)] - [f(z+y) - flz+a) - fla+y)]

and the differences in square brackets remain B—bounded because of (3),
we infer that the map

S3zr f(z+a)- f(z+bd)eX

is B—bounded as well. Thus, for every z € S, we obtain the B—boundedness
of the expression ;

flatz+a)-fb+z+b)=[flatz+a)- f(a) - fz+a)]
—[fo+z+b) - f(b) - fz+b)]+ [f(z+a) - f(z+b)]+[f(a) - F(b)]

with respect to the variable z € S. Consequently, the difference

A(z) — B(z) = [A(z) - f(a+ 2 +a)]
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+[fla+z+a)— f(b+z+0b)]+ [f(b+z+b) — B(z)]

considered as a function of z is B—bounded, too. Therefore, the functions
S>>z f(b+z+b)—A(z)=[f(b+z+0b) — B(z)]+[B(z) — A(z)] € X,

S>3z g(b+z)— A(z) = [g(b+ z) — B(z)] + [B(z) — A(z)] € X,

and
S3>z+— h(z+0b)— A(z) = [h(z + b) — B(z)] + [B(z) — A(z)] € X,
are all B—bounded which completes the proof.

Contrary to possible expectation, in general, a B—bounded difference
of two homomorphisms, which plainly is a homomorphism as well, need not
be identically zero even in the case where a B—boundedness structure in
question is not the trivial one (B = 2X). Actually, take for example

(S,4) = (X,4) := (R, +) — the additive group of all reals

and
B:={T C R: T is at most countable }.

Then any additive surjection of IR onto the field Q of all rationals (see e.g.
M. Kuczma [7, p. 286]) yields a nonvanishing B—bounded homomorphism
between IR and Q C R.

On the other hand, 0 is the only B—bounded homomorphism provi-
ded that the corresponding B—boundedness structure enjoyes the following
property: for every set B € B if nu € B for all positive integers n then
o = 0.

Theorem 2. Under the assumptions of Theorem 1, if for some ele-
ments a,b € S the map

Sozr fl(a+z)-flz+b)eX

is B—bounded, then there exists a homomorphism A : § — X such that
the maps

S+S 35 z+— f(z)-A(z) e X
S 5 z+—g(z)-Alz) e X
S 9 z—rh(z)-Alz) e X

are all B—bounded; such a homomorphism is unique modulo a B—bounded
function.
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Conversely, for every homomorphism A : § — X and any B—bounded
functions p: S+ S — X and ¢,r: S — X the triplet

fi= Alsys +p y = Atyg, "hi=AFT,
" | arbitrary on S\ (S + S)

has a B—bounded Pexider difference
Sx83 (z,y)— f(z+y)—g(z) - h(y) € X.
Proof. Note that the maps
Sozr— f(a+z)—g(a)—h(z) € X

and
Soz+— f(z+b)—g(z)—h(d)eX

are B—bounded; therefore, so is their difference
S3z+—[g(z) - h(z)] + [f(a+z) — fz + b)] + [a(b) — g(a)] € X.

Consequently, the difference g — h is B—bounded which implies that the
map

Sx 83 (z,y)— flz+y)—g(z)—g(y) € X
is B—bounded, too. This proves that so are also the differences
SxSxS3(zy,2)— fle+y+2)—gz)—gly+2)eX
and
SxSx83(z,y,2)— fle+y+2)—glz+y) —g(z) € X.
whence we deduce the B—boundedness of the function
SxSx853(z,y,2)—g(z)+9(y+2z) —g(z+y) —g(z) € X.

In particular, setting here z = y = a, we get the B—boundedness of the
map
S32z—g(a+2z)—g(2) € X.

On account of Theorem 1, we get the existence of a homomorphism
A :S — X such that the difference

S32—g(a+2)—A(2) e X
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remains B—bounded. Consequently, so does also the map
S3z—g(2)-A(2) e X

Now, since we know already that h — ¢ is B—bounded, so is also the diffe-
rence

h—A=(h-g)+(g-A).
Finally, for all z,y € S, one has
fle+y) - Al +y)=[f(z+y) - f(z+a) - fla+y)]
+f(z +a) - 9(@)] + [9(2) — A@@)] + [f(a+ 1) — h(w)] + [h(y) - AW))

which, by means of (3), shows that the map
S+S3z+ f(z)— A(z) € X

is B—bounded.

Thus the proof has been completed because the uniqueness of A (up
to a B—bounded summand) as well as the latter assertion of the theorem
are subjects for a straightforward verification.

4. Concluding remarks. In what follows we preserve the denota-
tions and the assumptions of Theorem 1.

1. The additional condition occurring in the statement of Theorem 2 is
automatically satisfied in each of the following situations:

(a) (S,+) is a monoid (take ¢ = b = 0);

(b) (S,+) is commutative (take any a = b);

(c) the center of (S, +) is nonvoid (take any a = b from the center);
)

(d

2. If, for a single pair (a,b) € S x S, the function

there exist a,b € S such thata+z =z +bforall z € S.

Sz fla+z)- flz+b)eX

is unbounded, then there exists no additive map A : S — X such
that the difference B := f — A were B-bounded on S + S. Indeed, if
B were B-bounded for some homomorphism A : § — X, since for
every x from S the points a + = and z + b belong to S + S, we would
get

fla+2) - f(z+b) = A(a+2) + Bla +2)
—A(z +b) — B(z +b) = B(a+z) — B(z + b) + A(a) — A(b),
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- a contradiction, because the right hand side is B-bounded whereas
the left hand side is not.

3. To compare our results with those quoted in the Introduction, let us
mention that J. Tabor [9] was assuming the domain (S,+) to be a
group with a special kind of weak commutativity, in K. Nikodem’s
paper [8] a commutative monoid was supposed to be the domain, whe-
reas E. Glowacki & Z. Kominek [5] assumed that (S,+) is a commu-
tative semigroup. In all these papers, a kind of sequentially complete
topological vector space stands for the target structure (X, +).
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