## Several Remarks about Three-valued Kleene's Propositional Logic, without Tautologies

Grzegorz Bryll, Leszek Jaworski

In this article we give, in the syntetic way, different formal aproachings to Kleene's propositional logic. In the work [5] S. C. Kleene gives a three-valued sentential calculus characterized by the following matrix:

$$\mathfrak{M}_K = (\{0, 1/2, 1\}, \{1\}, \{\neg, \lor, \land, \Rightarrow, \Leftrightarrow\}).$$

The operators of the matrix are given by the formulas:  $\neg x = 1 - x$ ,  $x \lor y = \max(x, y)$ ,  $x \land y = \min(x, y)$   $x \Rightarrow y = \neg x \lor y$ ,  $x \Leftrightarrow y = (x \Rightarrow y) \land (y \Rightarrow x)$ .

The operators have the tables: A Valoritation of T. 2\1 = y = x

It is easy to see that the set of tautologies is an empty set.

The matrical consequence adequate for the matrix  $\mathfrak{M} = (U, V, F)$  we define as follows:

**Definition 1.** 
$$\alpha \in C_{\mathfrak{M}}(X) \Leftrightarrow \forall_{h \in Hom(S,U)}(h(X) \subseteq V \Rightarrow h(\alpha) \in V).$$

S is the set of all wellformed expressions, which have been created from sentential variables and the operators, V is the set of designated elements of U, F is the set of operators of algebra (U, F). The symbol Hom(S, U)

will be used to denote the set of all homomorphisms of the language S into the algebra (U, F).

**Definition 2.**  $E(\mathfrak{M}) = C_{\mathfrak{M}}(\emptyset)$ .

From the definitions 1 and 2 we have the following conclusion:

Conclusion 1. 
$$E(\mathfrak{M}) = \{ \alpha \in S : \forall_{h \in Hom(S,U)} (h(\alpha) \in V) \}.$$

To proof that  $E(\mathfrak{M}_K) = \emptyset$  for any expresion  $\alpha = \alpha(p_1, p_2, ..., p_n)$  we take a mapping h such that:  $h(p_1) = h(p_2) = ... = h(p_n) = 1/2$ . We have now  $h(\alpha) = 1/2 \notin \{1\}$ . The matrix  $\mathfrak{M}_K$  is not the same like the three-valued matrix of Lukasiewicz:  $\mathfrak{M}_L = (\{0, 1/2, 1\}, \{1\}, \{\neg, \lor, \land, \rightarrow_L, \leftrightarrow_L\})$ , because the operators  $\rightarrow_L, \leftrightarrow_L$  have the tables:

For x=y=1/2 we have  $x\to_L y=1, x\leftrightarrow_L y=1, x\Rightarrow y=1/2, x\Leftrightarrow y=1/2$ . The operators  $\neg, \lor, \land$  are the same like the operators of the matrix  $\mathfrak{M}_K$ . For the matrix  $\mathfrak{M}_L$  the set  $E(\mathfrak{M}_L)$  is not an empty set.

The matrix  $\mathfrak{M}_K$  is isomorphic to the following matrix given by Simons in the work [6]:

$$\mathfrak{M}_C = (\{0, 1, 2\}, \{0\}, \{\sim, +, \circ, \rightarrow, \leftrightarrow\}).$$

The operators are given by the formulas: 1

$$\sim x = 2 - x, \quad x + y = \min(x, y), \quad x \circ y = \sim (\sim x + \sim y) = \max(x, y),$$
$$x \to y = \sim x + y, \quad x \leftrightarrow y = (x \to y) \circ (y \to x).$$

The tables of those operators are following:

<sup>&</sup>lt;sup>1</sup> In the oryginal version of Simon's system somewhat different symbols are used for some operators of the Simon's matrix.

**Theorem 1.** The matrix  $\mathfrak{M}_C$  and the matrix  $\mathfrak{M}_K$  are isomorphic.

Proof. We define a mapping  $\Phi$  as follows: the operators  $\sim, +, \circ, \rightarrow, \leftrightarrow$  from  $\mathfrak{M}_C$  we map into the operators  $\neg, \vee, \wedge, \Rightarrow, \Leftrightarrow$  from the matrix  $\mathfrak{M}_K, \Phi$ :  $\{0,1,2\} \rightarrow \{0,1/2,1\} : \Phi(0) = 1, \Phi(1) = 1/2, \Phi(2) = 0$ . It is easy to see that the mapping  $\Phi$  is an isomorphism.  $\Phi$  satisfies two conditions: (1)  $\Phi$  is a bijection, (2)  $\Phi$  is a homomorphism, it means:  $\Phi(\sim x) = \neg \Phi(x), \Phi(x+y) = \Phi(x) \vee \Phi(y), \Phi(x \circ y) = \Phi(x) \wedge \Phi(y), \Phi(x \to y) = \Phi(x) \Leftrightarrow \Phi(y)$ .

In his work [6] L. Simons gives a formalization of the matrix  $\mathfrak{M}_C$  by the set of rules. The set of rules of inference is the following:<sup>2</sup>

$$r_1:rac{Klphaeta}{lpha}, \qquad r_2:rac{lpha,eta}{Klphaeta}, \qquad r_3:rac{lpha}{Alphaeta},$$

The set of rules of replacement<sup>3</sup> is the following: \_\_\_\_\_\_ managed 1

$$NK\alpha\beta \doteq AN\alpha N\beta$$
,  $A\alpha\beta \doteq A\beta\alpha$ ,  $A\alpha A\beta\gamma \doteq AA\alpha\beta\gamma$ ,  $K\alpha A\beta\gamma \doteq AK\alpha\beta K\alpha\gamma$ ,  $\alpha \doteq NN\alpha$ ,  $\alpha\beta \doteq AN\alpha\beta$ ,  $E\alpha\beta \doteq KC\alpha\beta C\beta\alpha$ ,  $E\alpha\beta \doteq AK\alpha\beta KN\alpha N\beta$ ,  $\alpha \doteq A\alpha\alpha$ ,  $A\alpha K\beta N\beta \doteq \alpha$ .

We denote the set of all rules above by the  $R_C$  symbol. In the work [6] Simons proved that:

Theorem 2. 
$$C_{\mathfrak{M}_C} = C_{R_C}$$
.

 $C_{R_C}$  is a consequence based on the set of rules  $R_C$ . In the proof of theorem 2 Simons uses the transformation of expressions to a normal form. The system above is an improved version of Copi's system (see [6]).

<sup>&</sup>lt;sup>2</sup> He uses operators of language: N - negation, A - disjunction, K - conjunction, C - implication, E - equivalence.

<sup>&</sup>lt;sup>3</sup> Rules of replacement make it possible to replace expressions or fragments of expressions by equivalent expressions in the sense of relation  $\doteq$ .