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A Note on Some Class of Locally Boolean Algebras

Andrzej Zbrzezny

In [5] J. Plonka introduced the notion of a locally Boolean algebra as
an algebra A = (A,V,A/)) of type (2,2,1) where the reduct (A, V,A) is
a distributive lattice and there exists a congruence R of A such that any
congruence class [a]r,a € A is a Boolean algebra with respect to the ope-
rations V, A and ’ restricted to [a]g. It was proved in [5] that the class of all
locally Boolean algebra forms a variety. All subdirectly irreducible locally
Boolean algebras were described in [6].

In this paper we consider some particular class of locally Boolean alge-
bras defined as follows. Let U be a fixed set. An algebra A = (A4,V,A,) of
type (2,2,1) is said to be a conditional set algebra over U (cs-algebra for
short) if and only if A C {(X,Y) : Y C X C U}, and the operations V, A
and ’ are defined in the following way:

(X1, Y1) V (X2, Ye) = (X1 U X3, Y1 UYR)
(XI,Y1> A (Xz, Yg) — (Xl ﬂ XQ,YI ﬂ Yz)
(X1, Y =1 X5 X1\Y1)s

for every (X1, Y1), (X2,Y2) € A.

In the case when A = {X,Y) :Y C X C U}, the algebra A is said to
be a full cs-algebra over U and is denoted by fes(U). Full cs—algebras were
introduced (under the different name) by K.Hatkowska.

It is easy to observe [cf.3] that the class of all isomorphic images of
cs—algebras does not form a variety. In the present paper we prove that the
considered class forms a quasivariety.

Let us denote the clas of all cs—algebras by CS and the only (up to
isomorphism) three element cs-algebra by C. The elements of the universe
of algebra C will be denoted by —1,0 and 1, where —1 stands for (§,0), 0
stands for (U, () and 1 stands for (U, U).

The operations V, A and ’ in algebra C are given by the following tables:
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vV i-1i0i1 Al1-1]0,1 ¥
mdifml |0 ]1 -1]-1]-1|-1 =1 |~1
00|01 0(-1{01] 0 0|1
kudde Y31 1{-1101]1 10

LEMMA. ISP({C}) = I(CS).

Proof.
(€). In order to show that ISP({C}) C I(CS) we shall prove that
SP({C}) C I(CS). Let us assume that algebra A € SP({C}). It means

that A is a subalgebra of the direct product [] B, where for all t € T,
teT

B; = C. Let us define the mapping ¢ — fes(U) it the following way:

p({at)ter) =({t €T :a; € {0,1}},{t €T : 0, = 1})

It is routine to prove that ¢ is one-to—one mapping from A into fes(T').
In order to prove that ¢ is a homomorphism we have to show that the
following three conditions hold:

(1) e((at)ter V (be)ter) = p({at)ier) V 0((bt)teT)
(2) w((at)ter A (br)ier) = ©({at)ier) A ©((be)teT)
(3) w(({at)ter)’) = (¢({at)ter))

In order to prove the condition (1) note that

e({at)ter V (bi)ter) =
= QD((at V bt)tET) = ({t €eT: at V bt e {0, 1}}, {t eTl: ai V bt = 1})

and
e({at)ter) V @((be)ter) =
({teT:a:€{0,1}}U{teT:b € {0,1}},
{teT:a;=1}U{teT: b =1})
Now we see that the condition (1) is equivalent to the following two iden-
tities:

(i) {teT:a;vb €{0,1}} =
={teT:a;€{0,1}}U{teT:b € {0,1}}
and
(11) {tGT:atVbt=1}={tET:at=1}U{tETibt=1}
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Using the table for the operation V it is easy to check that these identities
hold.

In order to prove the condition (2) note that

e({athier A (be)ter) = p((as A behter) =
=({t€T:a;Nb€{0,1}},{t €T :a: Ab =1})
and
¢((at)ter) A p((bt)ter) =
=({teT:a:€{0,1}}N{t €T : b € {0,1}},
{teT:a;=1}N{t €T : b =1})

Now we see that the condition (2) is equivalent to the following two iden-
tities:

(iii) {t €T :ar A by € {0,1}} =
={teT:a,€{0,1}}N{teT:b € {0,1}}
and
(IV) {tET:at/\bt=1}={t€T:at=1}ﬂ{t€T:Bt=1}
Using the table for the operation A it is easy to check that these identities
hold.

In order to prove the condition (3) note that

e(({aeher)’) = p((athier) =
=llteT €I} UET al=1})=
and
(e({at)ter)) = ({t €T : a1 € {0,1}},{t €T :a; = 1}) =
=({teT:a:€{0,1}},{t€T:a; € {0,1}}\{t €T :0: =1}) =
({teT:a,€{0,1}},{t €T :a; =0})

Now we see that the condition (3) is equivalent to the following two iden-
tities:

(v){teT:a;€{0,1} ={t €T :a; € {0,1}}
and

(vi) {teT:a; =1} ={t €T :a; =0}
Using the table for the operation ’ it is easy to check that these identities
hold.

We have proved that ¢ is one~to—one homomorphisn from A into
fes(T) and therefore the algebra A is isomorphic with some subalgebra
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of the algebra fcs(T'). It means that A € I(CS). so we have SP({C}) C
I(CS), and eventually ISP({C}) C I(I(CS)) C I(CS).

(2). In order to show that I(C'S) C ISP({C}) we shall prove that C'S C
ISP({C}). Let us assume that A € CS. It means that A is a cs-algebra

over some set U. Let us consider the U-indexed direct product [[ B; of
teU
the copies of C, i.e. for all ¢t € U,B; = C. Now we define the mapping

@ : A — [] B; in the following way:
teU

: 1, ifte X and t€Y
Y((X,Y)) = (at)tev, where Vicpa; = ¢ 0,1 € X and t¢Y
—1, otherwise

It is routine to prove that ¢ is one-to-one mapping from A into [] B;.
teT
In order to prove that % is a homomorphism we have to show that the

following three conditions hold:

(4) ¥((4,B) Vv (C, D)) = 4((4, B)) V4((C,D})
(5) ¥((A,B) A (C,D)) =9((A,B)) ANp((C, D))
(6) ¥((4,B)) = (¥((4,B)))
In order to prove the condition (4) one have to prove that
(vt € T)y((A, B) V (C, D))(t) = 9({4, B))(t) V %({C, D))(t)
which is equivalent to the following condition:

(Vt € T)(Vw € {1,0,-1})[((4, B) V (C, D))(t) = w

& P((4, B))(t) V ¥((C, D))(t) = w]

Eventually, in order to prove the last condition it is sufficient to show that
the following three conditions hold for every t € T :

(a) te AUCandT e BUD & (t€ Aandt€ B)or (t€ Aand t € B)

(b) te AUCandT¢ BUD & [(t€ Aandt ¢ B)
and (t¢ Cort ¢ D)) or[(t¢ Aort ¢ B) and (t € C and t ¢ D))

(c) t¢ AUC & (t¢ Aand t ¢ C)
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The condition (c) is obvious. The conditions (a) and (b) are true as B C A
and C C D.
In order to prove the condition (5) one have to prove that

(vt € T)({4, B) A (C, D))(t) = $((4, B))(t) A4 ((C, D))(t)

which is equivalent to the following condition:
(Vi € T)(Yw € {1,0,-1})[%((4, B) A (C, D))(t) = w &
 ¥((4, B))(t) Ay((C, D))(t) = w]

Eventually, in order to prove the last condition it is sufficient to show that
the following three conditions hold for every ¢t € T :

(d) teAnNCandte BND <« (t€ Aandt€ B)and (t€ Candt € D)

(e) te ANCandt¢ BND & [t€ Aandt ¢ Bandt € C|or
feCandt¢ D andte A

f) t¢ ANC & (t¢ Aort ¢ C)

Clearly, these three conditions are obvious.

In order to prover the condition (6) one have to prove that
(Vi € T)¥((4, B))(t) = (¥((A, B))(t))’
which is equivalent to the following condition:
(Vt € T)(Vw € {1,0,-1})9((4, B))(t) = w & (¥((4,B))(t)) = w

Eventually, in order to prove the last condition it is sufficient to show that
the following three conditions hold for every ¢t € T :

(g) tEAanthA\B@(teAandt¢B)
(h) te Aandt ¢ A\B< (t€ Aandt ¢ B)
i)t Aetg A

Clearly, these three conditions are obvious.

We have proved that 1 is one-to-one homomorphism from A into [] By
teT
and therefore algebra A is isomorphic with some subalgebra of the algebra

[I B:. It means that A € ISP({C}). So we have C'S C ISP({C}), and
teT
therefore I(CS) C I(ISP({C})) C ISP({C}). O
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Now let us recall the well known fact from universal algebra that for
any finite algebra A, ISP({A}) is a quasivariety. As C is a finite algebra,
we conclude that ISP({C}) is a quasivariety and we can state the main
result of our paper.

THEOREM. The class of all isomorphic images of cs-algebras forms a
quasievariety.

In some forthcoming paper we are going to give an axiomatization of
the considered quasivariety.
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