A Note on Some Class of Locally Boolean Algebras

Andrzej Zbrzezny

In [5] J. Płonka introduced the notion of a locally Boolean algebra as an algebra $\mathbf{A} = \langle A, \vee, \wedge, ' \rangle$ of type $\langle 2, 2, 1 \rangle$ where the reduct $\langle A, \vee, \wedge \rangle$ is a distributive lattice and there exists a congruence R of \mathbf{A} such that any congruence class $[a]_R$, $a \in A$ is a Boolean algebra with respect to the operations \vee , \wedge and ' restricted to $[a]_R$. It was proved in [5] that the class of all locally Boolean algebra forms a variety. All subdirectly irreducible locally Boolean algebras were described in [6].

In this paper we consider some particular class of locally Boolean algebras defined as follows. Let U be a fixed set. An algebra $\mathbf{A} = \langle A, \vee, \wedge, ' \rangle$ of type $\langle 2, 2, 1 \rangle$ is said to be a *conditional set algebra over* U (*cs-algebra* for short) if and only if $A \subseteq \{\langle X, Y \rangle : Y \subseteq X \subseteq U\}$, and the operations \vee, \wedge and ' are defined in the following way:

$$\langle X_1, Y_1 \rangle \vee \langle X_2, Y_2 \rangle = \langle X_1 \cup X_2, Y_1 \cup Y_2 \rangle$$

$$\langle X_1, Y_1 \rangle \wedge \langle X_2, Y_2 \rangle = \langle X_1 \cap X_2, Y_1 \cap Y_2 \rangle$$

$$\langle X_1, Y_1 \rangle' = \langle X_1, X_1 \backslash Y_1 \rangle,$$

for every $\langle X_1, Y_1 \rangle, \langle X_2, Y_2 \rangle \in A$.

In the case when $A = \{X, Y\} : Y \subseteq X \subseteq U\}$, the algebra **A** is said to be a full cs-algebra over U and is denoted by fcs(U). Full cs-algebras were introduced (under the different name) by K.Hałkowska.

It is easy to observe [cf.3] that the class of all isomorphic images of cs-algebras does not form a variety. In the present paper we prove that the considered class forms a quasivariety.

Let us denote the clas of all cs-algebras by CS and the only (up to isomorphism) three element cs-algebra by C. The elements of the universe of algebra C will be denoted by -1, 0 and 1, where -1 stands for $\langle \emptyset, \emptyset \rangle$, 0 stands for $\langle U, \emptyset \rangle$ and 1 stands for $\langle U, U \rangle$.

The operations \vee , \wedge and ' in algebra C are given by the following tables:

V	-1	0	1
-1	-1	0	1
0	0	0	1
1	1	1	1

Λ	-1	0	1
-1	-1	-1	-1
0	-1	0	0
1	-1	0	1

	1
-1	-1
0	1
1	0

LEMMA. $ISP(\{\mathbf{C}\}) = I(CS)$.

Proof.

(\subseteq). In order to show that $ISP(\{\mathbf{C}\}) \subseteq I(CS)$ we shall prove that $SP(\{\mathbf{C}\}) \subseteq I(CS)$. Let us assume that algebra $\mathbf{A} \in SP(\{\mathbf{C}\})$. It means that \mathbf{A} is a subalgebra of the direct product $\prod_{t \in T} \mathbf{B}_t$, where for all $t \in T$,

 $\mathbf{B}_t = \mathbf{C}$. Let us define the mapping $\varphi \longrightarrow fcs(\overline{U})$ it the following way:

$$\varphi(\langle a_t \rangle_{t \in T}) = \langle \{t \in T : a_t \in \{0, 1\}\}, \{t \in T : a_t = 1\} \rangle$$

It is routine to prove that φ is one—to—one mapping from **A** into fcs(T). In order to prove that φ is a homomorphism we have to show that the following three conditions hold:

(1)
$$\varphi(\langle a_t \rangle_{t \in T} \vee \langle b_t \rangle_{t \in T}) = \varphi(\langle a_t \rangle_{t \in T}) \vee \varphi(\langle b_t \rangle_{t \in T})$$

(2)
$$\varphi(\langle a_t \rangle_{t \in T} \land \langle b_1 \rangle_{t \in T}) = \varphi(\langle a_t \rangle_{t \in T}) \land \varphi(\langle b_t \rangle_{t \in T})$$

(3)
$$\varphi((\langle a_t \rangle_{t \in T})') = (\varphi(\langle a_t \rangle_{t \in T}))'$$

In order to prove the condition (1) note that

$$\varphi(\langle a_t \rangle_{t \in T} \vee \langle b_t \rangle_{t \in T}) =$$

$$=\varphi(\langle a_t \vee b_t \rangle_{t \in T}) = \langle \{t \in T : a_t \vee b_t \in \{\mathbf{0}, \mathbf{1}\}\}, \{t \in T : a_t \vee b_t = \mathbf{1}\}\rangle$$

and

$$\varphi(\langle a_t \rangle_{t \in T}) \vee \varphi(\langle b_t \rangle_{t \in T}) =$$

$$\langle \{t \in T : a_t \in \{\mathbf{0}, \mathbf{1}\}\} \cup \{t \in T : b_t \in \{\mathbf{0}, \mathbf{1}\}\},$$

$$\{t \in T : a_t = \mathbf{1}\} \cup \{t \in T : b_t = \mathbf{1}\}\rangle$$

Now we see that the condition (1) is equivalent to the following two identities:

(i)
$$\{t \in T : a_t \lor b_t \in \{\mathbf{0}, \mathbf{1}\}\} =$$

= $\{t \in T : a_t \in \{\mathbf{0}, \mathbf{1}\}\} \cup \{t \in T : b_t \in \{\mathbf{0}, \mathbf{1}\}\}$

and

(ii)
$$\{t \in T : a_t \lor b_t = \mathbf{1}\} = \{t \in T : a_t = \mathbf{1}\} \cup \{t \in T : b_t = \mathbf{1}\}$$

Using the table for the operation \vee it is easy to check that these identities hold.

In order to prove the condition (2) note that

$$\varphi(\langle a_t \rangle_{t \in T} \land \langle b_t \rangle_{t \in T}) = \varphi(\langle a_t \land b_t \rangle_{t \in T}) =$$

$$= \langle \{t \in T : a_t \land b_t \in \{\mathbf{0}, \mathbf{1}\}\}, \{t \in T : a_t \land b_t = \mathbf{1}\}\rangle$$

and

$$\varphi(\langle a_t \rangle_{t \in T}) \wedge \varphi(\langle b_t \rangle_{t \in T}) =$$

$$= \langle \{t \in T : a_t \in \{\mathbf{0}, \mathbf{1}\}\} \cap \{t \in T : b_t \in \{\mathbf{0}, \mathbf{1}\}\},$$

$$\{t \in T : a_t = \mathbf{1}\} \cap \{t \in T : b_t = \mathbf{1}\} \rangle$$

Now we see that the condition (2) is equivalent to the following two identities:

(iii)
$$\{t \in T : a_t \land b_t \in \{\mathbf{0}, \mathbf{1}\}\} =$$

= $\{t \in T : a_t \in \{\mathbf{0}, \mathbf{1}\}\} \cap \{t \in T : b_t \in \{\mathbf{0}, \mathbf{1}\}\}$

and

(iv)
$$\{t \in T : a_t \wedge b_t = 1\} = \{t \in T : a_t = 1\} \cap \{t \in T : B_t = 1\}$$

Using the table for the operation \wedge it is easy to check that these identities hold.

In order to prove the condition (3) note that

$$\varphi((\langle a_t \rangle_{t \in T})') = \varphi(\langle a_t' \rangle_{t \in T}) =$$

$$= \langle \{t \in T : a_t' \in \{\mathbf{0}, \mathbf{1}\}\}, \{t \in T : a_t' = \mathbf{1}\} \rangle =$$

and

$$(\varphi(\langle a_t \rangle_{t \in T}))' = \langle \{t \in T : a_t \in \{\mathbf{0}, \mathbf{1}\}\}, \{t \in T : a_t = \mathbf{1}\} \rangle' =$$

$$= \langle \{t \in T : a_t \in \{\mathbf{0}, \mathbf{1}\}\}, \{t \in T : a_t \in \{\mathbf{0}, \mathbf{1}\}\} \setminus \{t \in T : a_t = \mathbf{1}\} \rangle =$$

$$\langle \{t \in T : a_t \in \{\mathbf{0}, \mathbf{1}\}\}, \{t \in T : a_t = \mathbf{0}\} \rangle$$

Now we see that the condition (3) is equivalent to the following two identities:

(v)
$$\{t \in T : a'_t \in \{\mathbf{0}, \mathbf{1}\} = \{t \in T : a_t \in \{\mathbf{0}, \mathbf{1}\}\}\$$

and

(vi)
$$\{t \in T : a'_t = 1\} = \{t \in T : a_t = 0\}$$

Using the table for the operation ' it is easy to check that these identities hold.

We have proved that φ is one-to-one homomorphism from **A** into fcs(T) and therefore the algebra **A** is isomorphic with some subalgebra

of the algebra fcs(T). It means that $\mathbf{A} \in I(CS)$, so we have $SP(\{\mathbf{C}\}) \subseteq I(CS)$, and eventually $ISP(\{\mathbf{C}\}) \subseteq I(I(CS)) \subseteq I(CS)$.

 (\supseteq) . In order to show that $I(CS) \subseteq ISP(\{\mathbf{C}\})$ we shall prove that $CS \subseteq ISP(\{\mathbf{C}\})$. Let us assume that $\mathbf{A} \in CS$. It means that \mathbf{A} is a cs-algebra over some set U. Let us consider the U-indexed direct product $\prod_{t \in U} \mathbf{B}_t$ of the copies of \mathbf{C} , i.e. for all $t \in U, \mathbf{B}_t = \mathbf{C}$. Now we define the mapping $\varphi : \mathbf{A} \longrightarrow \prod_{t \in U} \mathbf{B}_t$ in the following way:

$$\psi(\langle X, Y \rangle) = \langle a_t \rangle_{t \in U}, \text{ where } \forall_{t \in U} a_t = \begin{cases} \mathbf{1}, & \text{if } t \in X \\ \mathbf{0}, t \in X \end{cases} \text{ and } t \notin Y$$

$$-\mathbf{1}, & \text{otherwise} \end{cases}$$

It is routine to prove that ψ is one-to-one mapping from **A** into $\prod_{t \in T} \mathbf{B}_t$.

In order to prove that ψ is a homomorphism we have to show that the following three conditions hold:

(4)
$$\psi(\langle A, B \rangle \vee \langle C, D \rangle) = \psi(\langle A, B \rangle) \vee \psi(\langle C, D \rangle)$$

(5)
$$\psi(\langle A, B \rangle \land \langle C, D \rangle) = \psi(\langle A, B \rangle) \land \psi(\langle C, D \rangle)$$

(6)
$$\psi(\langle A, B \rangle') = (\psi(\langle A, B \rangle))'$$

In order to prove the condition (4) one have to prove that

$$(\forall t \in T)\psi(\langle A, B \rangle \vee \langle C, D \rangle)(t) = \psi(\langle A, B \rangle)(t) \vee \psi(\langle C, D \rangle)(t)$$

which is equivalent to the following condition:

$$(\forall t \in T)(\forall w \in \{\mathbf{1}, \mathbf{0}, -\mathbf{1}\})[\psi(\langle A, B \rangle \lor \langle C, D \rangle)(t) = w \Leftrightarrow$$
$$\Leftrightarrow \psi(\langle A, B \rangle)(t) \lor \psi(\langle C, D \rangle)(t) = w]$$

Eventually, in order to prove the last condition it is sufficient to show that the following three conditions hold for every $t \in T$:

(a)
$$t \in A \cup C$$
 and $T \in B \cup D \Leftrightarrow (t \in A \text{ and } t \in B)$ or $(t \in A \text{ and } t \in B)$

(b)
$$t \in A \cup C$$
 and $T \notin B \cup D \Leftrightarrow [(t \in A \text{ and } t \notin B)]$
and $(t \notin C \text{ or } t \notin D)]$ or $[(t \notin A \text{ or } t \notin B)]$ and $(t \in C \text{ and } t \notin D)]$

(c)
$$t \notin A \cup C \Leftrightarrow (t \notin A \text{ and } t \notin C)$$

The condition (c) is obvious. The conditions (a) and (b) are true as $B \subseteq A$ and $C \subseteq D$.

In order to prove the condition (5) one have to prove that

$$(\forall t \in T)\psi(\langle A, B \rangle \land \langle C, D \rangle)(t) = \psi(\langle A, B \rangle)(t) \land \psi(\langle C, D \rangle)(t)$$

which is equivalent to the following condition:

$$(\forall t \in T)(\forall w \in \{1, 0, -1\})[\psi(\langle A, B \rangle \land \langle C, D \rangle)(t) = w \Leftrightarrow \\ \Leftrightarrow \psi(\langle A, B \rangle)(t) \land \psi(\langle C, D \rangle)(t) = w]$$

Eventually, in order to prove the last condition it is sufficient to show that the following three conditions hold for every $t \in T$:

- (d) $t \in A \cap C$ and $t \in B \cap D \Leftrightarrow (t \in A \text{ and } t \in B)$ and $(t \in C \text{ and } t \in D)$
- (e) $t \in A \cap C$ and $t \notin B \cap D \Leftrightarrow [t \in A \text{ and } t \notin B \text{ and } t \in C]$ or $[t \in C \text{ and } t \notin D \text{ and } t \in A]$
- (f) $t \notin A \cap C \Leftrightarrow (t \notin A \text{ or } t \notin C)$

Clearly, these three conditions are obvious.

In order to prover the condition (6) one have to prove that

$$(\forall t \in T)\psi(\langle A, B \rangle')(t) = (\psi(\langle A, B \rangle)(t))'$$

which is equivalent to the following condition:

$$(\forall t \in T)(\forall w \in \{1, 0, -1\})\psi(\langle A, B \rangle')(t) = w \Leftrightarrow (\psi(\langle A, B \rangle)(t))' = w$$

Eventually, in order to prove the last condition it is sufficient to show that the following three conditions hold for every $t \in T$:

- (g) $t \in A$ and $t \in A \setminus B \Leftrightarrow (t \in A \text{ and } t \notin B)$
- (h) $t \in A$ and $t \notin A \setminus B \Leftrightarrow (t \in A \text{ and } t \notin B)$
- (i) $t \notin A \Leftrightarrow t \notin A$

Clearly, these three conditions are obvious.

We have proved that ψ is one-to-one homomorphism from \mathbf{A} into $\prod_{t \in T} \mathbf{B}_t$ and therefore algebra \mathbf{A} is isomorphic with some subalgebra of the algebra $\prod_{t \in T} \mathbf{B}_t$. It means that $\mathbf{A} \in ISP(\{\mathbf{C}\})$. So we have $CS \subseteq ISP(\{\mathbf{C}\})$, and therefore $I(CS) \subseteq I(ISP(\{\mathbf{C}\})) \subseteq ISP(\{\mathbf{C}\})$. \square

Now let us recall the well known fact from universal algebra that for any finite algebra $\mathbf{A}, ISP(\{\mathbf{A}\})$ is a quasivariety. As \mathbf{C} is a finite algebra, we conclude that $ISP(\{\mathbf{C}\})$ is a quasivariety and we can state the main result of our paper.

Theorem. The class of all isomorphic images of cs-algebras forms a quasievariety.

In some forthcoming paper we are going to give an axiomatization of the considered quasivariety.

References

- [1] S. Burris, H.P. Sankappanavar, A course in universal algebra, Springer Verlag, 1981
- [2] K. Hałkowska, On some generalization of Boolean algebras, Demonstratio Mathematica, No 10 (3-4) (1977), 731-749
- [3] K. Hałkowska, A note on matrices for systems of nonsense-logics, Studia Logica, No 48 (1989), pp. 461-464
- [4] K. Hałkowska, A. Zając On some three-valued propositional logic (in Polish), Acta Universitatis Wratislaviensis, No 1017, Logika 13 (1988), pp. 41-49
- [5] J. Płonka, On bounding congruences in some algebras having the lattice structure, Universal Algebra and Applications, Banach Center Publications, Volume 9, PWN, Warszawa, (1982), 203-207
- [6] T. Wesołowski, Subdirectly irreducible locally Boolean Algebras, Studia Scientiarum Mathematicarum Hungarica, No 23 (1988), 257-263
- [7] A. Zbrzezny, The sequent axiomatization of some three-valued propositional logic, Proceedings of the V Universal algebra symposium, Universal and Applied Algebra, Turawa 1988, World Scientific, Singapore, (1989), 378-388

Institute of Mathematics and Computer Science Pedagogical University of Częstochowa Al. Armii Krajowej 13/15 42-200 Częstochowa