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Abstract

In this note we present algorithm of fast checking tautology and/or
satisfiability for the classical propositional logic, which is due to Martin
Davis and Hilary Putnam. A new wave of interest in classical logic has
been stimulated by recent impressive technological advances, particularly
the significant increase of computers’ capacity and speed. It opens entirely
new perspectives of applications of classical logic on industrial scale, be-
cause many important technical and hardware problems can be expressed
in the form of propositional formulas, often of length well exceeding human
potential to deal with them. One of the most important tasks is to check
quickly if a given (sometimes excessively long) formula is a tautology. Fast
tautology/satisfiability verification relies not only on hardware, but first of
all on good choice of feasible cases and fast algorithms.

I Introduction.

Testing tautology /satisfiability for classical propositional logic is one of
the well known NP - complete problem (i.e., ,,nondeterministic polynomial
time”). The complexity of the classical methods, like the truth tables, is
exponential in the size of an input formula. There is no known general
algorithm that can verify the tautology/satisfiability problem much faster.
(The interested reader is referred to [6]) But in certain simple cases, fast
algorithm for testing tautology/satisfiability give a derivation in linear or
polynomial time.

Some effective algorithms for testing tautology/satisfiability are: the
Davis-Putnam procedure [5][4], SATO [14], the Stalmarck method [11] and
GRASP [9] (Generic seaRch Algorithm for the Satisfiability Problem). In
this paper we present the Davis-Putnam procedure, because which has long
been a major practical tool for solving satisfiability problems. The other
algorithms mentioned above are recent modifications of that one. Those
methods are used in many situations in mathematics, computer science and
in verification of large scale industrial systems. (e. g., see, Birnbaum and
Lozinskii [2], Urbie and Stickel [13], SYRF [12], Bordlv and Stalmarck [3],
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Silva and Sakallah [10])

II Propositional Logic.

First we recall some notions of propositional logic which are used in
the next section. After syntax and semantic we present the axiom system
(following A. Grzegorczyk [7]) with Modus Ponens rule as the only rule
of derivation. For this system we formulate the completness theorem. We
don’t supply a proof of this theorem because it is not a goal of this paper.
Reader can find it in Bell and Slomson [1].

1. Syntax:
- p,q,T,...1s a infinite list of propositional letters
- =, V, A, =, = are logical connectives
— 0,1 two constans.
The propositional formulas form the smallest set such that:
— All atomic formulas are the formulas.
— If a is a formula then —a is a formula.
- If @ and 3 are formulas then a V B,a A B,a — B,a = [ are
formulas.

2. Truth values:

Tr ={f,t}

3. Semantics:
A valuation is a mapping v : F' — T'r meeting the conditions:
-v(0)=f; (1) =t
- v(-a) = w(a)
- v(a e B) = v(a) e v(B), where ,,0” is a one of the binary
connectives.

A propositional formula « is a tautology if v(a) = t, for every valuation v.

= a denote that a propositional formula « is a tautology.

A propositional formula « is satisfiable if v(a) = t, for some valuation v.

The axioms of Classical Propositional Logic

(A1)
(A2)
(A3)
(A4)
(A5)
(A6)

p—(g—p)
p=(@g—=r)—=2(p=4q) =2 (1))
(0= W' avy)

(p=q) > (g—p)

(p—=q) = ((g—=p)—(p=9q)
(pVvg) — (gVp)
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(A7) (pAgq)— (gAD)

( (pAg)—p

(A9) p—(pVy)

(A10) p—(g— (pAQ))
(

(

(

>
=

)
All) (p—or)A(g—r)—>((pVg =)
Al12) (p— (gA—q)) = —p

Al13) (pA-p)—q

Modus Ponens

a,a— 3
MP i M o
(MP) 5
A proof of a formula « is a finite sequence a, . .., a,, of formulas such that

an, =« and foreach 7 <n:

1) a; is either an axiom or

2) for some i < j and k < j,a; is an immediate consequence of o; and
oy according to the rule modus ponens (MP).

F a denote that exists a proof of a.

The Completeness Theorem = a ©F .

4. Normal Forms

Def.1
a1VagV.. . Vay is the disjunction of propositional formulas a1, ag, . . . , oy,
ogAazgA\. . . Aay, is the conjunction of propositional formulas a1, as, . . ., ay,.
Remarks:
1. We denote a disjunction a1 Vaa V... Va, by [o,as,...,04]
2. We denote a conjunction oy AasA...Aa, by < aj,a9,...,an >

3. If v is a valuation we get:
v(eg VagV...Vay) =t if v maps some member of the list
&1y 0095 o VO.T,
vy VagV...Vay) =f otherwise;
v(og Aag A...ANayp) =t if v maps every member of the list
Ry BBy« s & 4 Oy 1O t,
v AazA...ANay) = f otherwise.
4. Empty Lists
v([]) = f and v(<>) =t sothat [ =0 and <>=1
are tautologies.
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Def.2 A literal L is a propositional letter or the negation of a propositional
letter, or a constant 0 or 1.

Def.3 A propositional formula is in the conjunctive normal form (CNF) if it
is a conjunction < D;, D, ..., D, > in which each member is a disjunction
of literals.

A propositional formula is in the disjunctive normal form (DNF) if it
is a disjunction [C},Cs,...,Cy] in which each member is a conjunction of
literals.

II The Davis - Putnam Procedure.

The Davis - Putnam Procedure was introduced in 1960 [5]. The propo-
sitional version is still among the fastest of the automatic theorem-proving
technique. The Davis - Putnam procedure is a refutation method. (follo-
wing [6]) To prove a, start with -« and derive a contradiction. The first
phase is: a conversion to the conjunctive normal form and then test the
unsatisfiability of a CNF.

First we introduce some basic notions.

Def. 1 A clause is a disjunction of literals.
Def. 2 A block is a disjunction of CNF.

Def. 3 For a propositional letter p, we set p = —p and =p = p. The
literals L and L are complementary literals.

Def.4 A clause C; subsumes a clause C, if every literal in C; also
occurs in Cs.

There are two families of rules. The first are preliminary rules that
are not strictly necessary but that can considerably speed up later steps.
Then there are the primary rules that are the essence of the Davis-Putnam
procedure.

Preliminary Rules:
Preliminary Step 1 (PS1) Remove any repetitions from the clauses in
a block, and (maybe) arrange the literals into some standard order.

Preliminary Step 2 (PS2) Delete any clause that contains both a lite-
ral and its complement. Delete any clause that contains 1. Delete every
occurence of 0.

Primary Rules:

One-Literal Rule (OLR) Suppose B is a block containing a formula S
in the CNF, and S in turn contains the one -literal clause [L]. Modify B by
changing S as follows: Remove from S all clauses containing L, and delete
all occurrences of L from the remaining clauses of S.
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Affirmative-Negative Rule (ANR) Suppose B is a block containing a
formula S in the CNF, some clauses in S contain the literal L, and no
clauses in S contain L. Modify B by removing from S all clauses containing
L.

Subsumption Rule (SR) Suppose B is a block containing a formula S
in the CNF, and S contains clauses C; and Cs where C; subsumes C,.
Modify B by removing clause Cq from S.

Splitting Rule (SpR) Suppose B is a block containing a formula S in
the CNF, some clauses in S contain the literal L while others contain L.
(There may also be clauses with neither.) Let Sy, be the formula in the
CNF that results when all clauses in S containing L are removed, and all
occurrences of L are deleted. Likewise, §£ be the formula in the CNF that
results when all clauses in S containing L are removed, and all occurrences
of L are deleted. Modify B by replacing the formula S in the CNF by the
two formulas Sy, and S;, in the CNF.

We define a Davis-Putnam derivation:

Def.4 Let B be a block. A Davis-Putnam derivation for B is a finite
sequence of blocks By, Bs, ..., By, where B; = B, and otherwise each block
in the sequence comes from its predecessor using one of the four rules. A
derivation succeeds if it ends with a block in which each formula in the
CNF contains the empty clause. A derivation fails if it ends with a blocks
in which some formula in the CNF itself is empty.

To prove a formula « in this system, begin with —a, convert this to a
formula S in the CNF, form the bloc [S], perhaps simplify this using the
two preliminary rules, then show there is a Davis-Putnam derivation that
succeeds.

Now we prove that an application one of primary rules will not affect
the satisfiability of a block.

Lemma 1 S is satisfiable if and only if S* is satisfiable, where S* is
obtained from S by a single application one of the primary rules.

Proof:

Case 1: One-Literal Rule
Let S be the formula in the CNF.

S =< [L},[L|Dy),...,[L|Dy),|[-L|E1),. .., [~ L|Ej], Fy,. .., Fx >
Let S* be the formula after application the One-Literal Rule to S.

S ac El,...,Ej,Fl,...,Fk ~ =
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»=" Suppose that S is satisfiable. Then exists a valuation v such
that v : § — {t}. Then in particular: v(L) = t,v([L]) = t,v([L|D,]) =
t,...,v([L|Dy,]) = t,v([=L|E1]) = t, but v(-L) = f, it must be that
v(Ey) = t,.. . similarly v([-L|E;]) = t hence v(E;) = t, v(F) = t,...,
v(Fg) = t.

Hence, each member of S* maps to ¢ under v, so §* is satisfiable.

,»w<=" Suppose that S* is satisfiable. Then exists a valuation v such that
v:8* — {t}. We define a new valuation w.

v(p) for every propositional letter p # L
w =
t for LL

Hence, w(F;) = v(F1) =t,...,w(Fy) = v(Fx) = t. Since
w(L) = t,w([L]) = t and hence w([L|D1]) = t,...,w([L|D,]) = t. Since
w(E,) = v(E;) = t and hence w([-L|E,]) =t,..., similarly w([~L|E}]) = ¢
because w(E;) = v(E;) = t.

Thus, w maps every member of S to ¢, so S is satisfiable.
Case 2: The Affirmative - Negative Rule

Let S be the formula in the CNF.

4 Lo 1 by, 1OSR0TpTR 1o SRy

Let S* be the formula after application the Affirmative-Negative Rule
to S.
5 = E,....,Ex >.

,»w=" Suppose that S is satisfiable. Then exists a valuation v such that
v : S8 — {t}. Then in particular: v(L) = t,v([L]) = t,
v([ LD ]y =1,.. ., {IEID4]) =1, v(B =40 . OBy ) ='¢

Hence, each member of S* maps to ¢ under v, so S* is satisfiable.

,»<" Suppose that S* is satisfiable. Then exists a valuation v such that
v: S* = {t}. We define a new valuation w.

v(p) for every propositional letter p # L
t for L

Hence, w(E,) = v(Ey) =t,...,w(E;) = v(Ex) = t. Since
w(L) = t,w([L]) =t and hence w([L|D4]) =t¢,...,w([L|Dy]) = t.
Thus, w maps every member of S to t, so S is satisfiable.

Case 3: Subsumption Rule
Let S be the formula in the CNF.

S =< [L|D),[L|D|E), Fy,..., Fy >
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Let S* be the formula after application the Subsumption Rule to S.
b [LID],FI, BRI o 38

»=>" Suppose that S is satisfiable. Then exists a valuation v such that
v : § = {t}. Then in particular: v([L|D]) = t,v([L|D|E]) = t,v(F) = t,
dony 2R =5l

Hence, each member of S* maps to ¢ under v, so S* is satisfiable.

<" Suppose that S* is satisfiable. Then exists a valuation v such that
v:S* = {t}. We define a new valuation w.

v(p) for every propositional letter p # L
w =
t for L

Since w(L) = t and w([L]) = t and hence w([L|D]) = t and w([L|D|E]) =
Lw(F)=v(FR)=t...,u(F)=v(f)=t.
Thus, w maps every member of S to ¢, so S is satisfiable.

Case 4: Splitting Rule
Let S be the formula in the CNF.

S == [L|D1], § w374 [Lan], ["'LLIEl], 328 ) ["'IL]EJ‘], Hyaat L, B
Let S* be the formula after application the Splitting Rule to S.
S'=<Ey,....,.Bi\F,....Fy >V<Dy,...,Dp, Fy,....Fr > .

»=>" Suppose that S is satisfiable. Then exists a valuation v such that
v : § — {t}. Then in particular: v([L|D1]) =¢,...,v([L|Dy]) = ¢,
u([-L|Ey]) =¢,...,0([~L|B;]) = t,v(F1) =1,...,v(F) =1.

Suppose that v(L) = ¢t then v(—~L) = f and hence v(E;) =1¢,...,
’U(Ej) = {.

Since v is the valuation we have:

’U(S*) ='U(< El,...,Ej,Fl,...,Fk >V<D1,...,Dn,F1,...,Fk >) =
=‘U(< Ela---anaFla'-'qu >¥v(<D17"'aDnth'--st >)a

but v(< Ey,...,E;,F,...,F; >) =t and hence v(S*) = t, so §* is sati-
sfiable.
,»<=" Suppose that S* is satisfiable (sufficed that one of the member

of §* is satisfiable). Then exists a valuation v such that v : §* — {t}. We
define a new valuation w.

v(p) for every propositional letter p # L
w =
t for L
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Since w(L) = t and w(E;) = v(E) = t,...,w(E;) = v(E;) = t then
w([L|D1]) = t,...,w([L|Dp]) = t and w([ﬂLlElD t,...,w([~L|Ej]) =
taw(Fl) T U(Fl) d—ti""w(Fk) = U(Fk) = t.
Thus, w maps every member of S to ¢, so S is satisfiable. D
Lemma 2

If [S] has a Davis-Putnam derivation that succeeds then [S] is not
satisfiable.

Proof:

Suppose that [S].is satisfiable. We show a contradiction with the hy-
pothesis that [S] has a Davis-Putnam derivation that succeeds.

Every proof attempt must terminate, because we began with a finite
number of distinct literals that occur in S and these rules can be applied
only a finite number of times. Applying any rule to member S of block [S]
gives 5*. By lemma 1, S* is satisfiable, since S is satisfiable. Hence, a final
block of any proof attempt is satisfiable. But a final block containing the
empty formula in the CNF is satisfiable and hence a derivation fails.

We show that exists the proof, which fails, so it is a contradiction with
the hypothesis. O

Theorem 1 (soundness and completeness for the procedure)
a 18 a tautology == a has a Davis-Putnam derivation that succeeds.

Proof:

,»<" Suppose that a has a Davis-Putnam derivation that succeeds.
We start with {-a}, convert this to a CNF S and form the block [S]. By
lemma 2, [S] is not satisfiable, hence {—a} is not satisfiable and hence « is
a tautology.

,,2=>" Suppose that « is a tautology and every Davis-Putnam derivation
for o fails. First, we convert {-a} to the formula S in the CNF and
form block [S]. Consider arbitrary Davis-Putnam derivation of [S]. It fails.
Hence, its final block is satisfiable. Thus, by lemma 1, [S] is satisfiable too.
Hence, a cannot be a tautology. Contradiction. a

For speed of derivation in the Davis-Putnam procedure important is
which rule is applied. Why ? The Splitting Rule multiplies the number of
cases to be considered, so its use should be postponed as far as possible. In
contradistinction to the Splitting Rule, the One-Literal Rule simply cuts
down on the number of clauses we need to consider without introducing any
other complications. So it should be applied earlier than any other rule.
The order in which we presented the rules is also a good order in which to
apply them
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Example:
I p=((~gng) =)
1. Negate the formula:

~(p = ((~gAgq) = 7))

2. Convert to a clause set, and form corresponding block:

[< [p); [~q); [g); [-r] >]

3. Apply the One-Literal Rule on the literal ¢ :

[< [p]v []a [_'T] >]

4. Apply the One-Literal Rule on the literal p :

[< 0, [=r] >]
5. Apply the One-Literal Rule on the literal —r :

[<0>]

The formula in the CNF in final block contains the empty clause, so
the derivation has succeeded.

II{(pvg)—(pV-q)—(-pVa)
1. Negate the formula:

~(((pVg) = (pV—q) = (-pVaq))

2. Convert to a clause set, and form corresponding block:

[< [-p,p,—d], [~q,p, ~q], [p], [~q] >]
3. Apply Preliminary Rule 1 :

[< LD’ P _'Q]: [pv _'QL [P]s [_'QJ >]
6. Apply Preliminary Rule 2 :

[< [P, ~ql; [P); [~q] >]

7. Apply the One-Literal Rule on the literal —gq :

(< [p] >]
4. Apply the One-Literal Rule on the literal p :
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[<>]

Some formula in the CNF in the final block is empty, so the derivation
has failed.

HI (p=q)V(p=g)
1. Negate the formula:

~((p=q)V(p=q))

2. Convert to a clause set, and form corresponding block:

[< [p, —p), [P, ~d], [P, 9], [9, ~q], [P, —p), [p, ~4], [P, 9], [9, ~q] >]

3. Apply the Preeliminary Rule 2 ( 4 times):

[< [—'pa —'qla [p! Q]a [p’ "'Q]} [_'pa q] >]
4. Use the Splitting Rule, splitting on the literal p :

[< [~al, [a] >, < [g], [~q] >]
5. Apply the One-Literal Rule to each clause set in the block:

[<U><0>]

Each formula in the CNF in final block contains the empty clause, so
the derivation has succeeded.
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