Prace Naukowe Wyzszej Szkoly Pedagogicznej w Czestochowie
Matematyka VIII, Czestochowa 2000 - 2001

Algorithms for Sharing a Password

Artur Soroczuk and Marian Srebrny

Abstract

In this paper we present a new algorithm for enhanced protection of a
password, personal identification number PIN or a sensitive cryptographic
secret key by splitting it into shares and storing each share on a distinct
computer. A password/key distributed among n computers can be recon-
structed by pooling any t shares, for a given threshold 0 < t < n, while
knowing less than t of the shares reveals no information about the pas-
sword/key whatsoever. Our algorithm uses a scheme of double recursion
over n and ¢ for generating the shares. It reveals the inductive structure
of one of the very few known schemes for sharing secrets; the one based
on intractability of the integer factorization. The complexity bounds are
presented.

Introduction.

The area of secret sharing was pioneered by Blakley [1] and Shamir [4].
A secret to share could be any object. For us in this paper this is a sensi-
tive cryptographic key or an access password. The reader is referred to [3]
for more information on the role of secret sharing and the results known
until 1999. We are particularly interested in the algorithms implementing
a scheme of sharing a secret password/key introduced in [2] based on in-
tractability of the integer factorization. In this paper we provide a new
version of the algorithm of [2]. Its recursive definition is given in the fol-
lowing sections. Section I is devoted to the initial cases of t = 1,2 and
3, with arbitrary n. Section II takes care of the case n = t. In Section III
the recursion step is provided. We use a scheme of double recursion over n
and t.

Following [2], in the present paper the password/key is represented by
a large prime number p. The shares will be defined as the products of p and

82 Algorithms for Sharing a Password

some specially arranged auxiliary pairwise distinct large primes, denoted
by ¢ with subscripts. We assume that each of those ¢'s is different than p.
The goal is to satisfy the following condition: the greatest common divisor
of any set (coalition) of the shares is equal to p if and only if the set has at
least ¢ elements.

For convenience we will be using arrays with integer entries for compu-
ting the shares. Each share will be the product of all the entries of certain
array. For simplicity, we use the integers as p and the ¢'s here, however all
this can be done using elements of any Gaussian ring. (See [3].)

We use standard terminology and notation throughout the paper. (%)
denotes Newton’s binomial coefficient. By analogy, we use [’t‘] to stand
for a matrix of n rows and k = (}_,) columns, and with integer entries.
a; is the i-th row of matrix a. a;[j] - the j-th entry of row a. Whenever
convenient, the same can be denoted by ali, j]. Let v[j] denote an array of
size | = (,",), whose entries are the large primes q1,¢a, . ..,q introduced
above.

Section I. Algorithm for n shares with threshold 3

1. Idea

In the case of ¢ = 1 each share is defined to be just equal to the password
p. In the case of ¢ = 2 each share is defined as the product of p and ¢;, for
some 1 < ¢ < n. Reconstruction of the original password is executed by
calculating the GCD(pg;, pg;). In those two cases generating the shares is
trivial.
Let us now introduce the scheme of generating n shares with threshold
3. That is, in such a way that knowing one or two of the shares does
not allow computational reconstruction of the original password (under the
assumption that all the prime parameters are chosen properly, see [2]). The
basic idea is that each auxiliary prime ¢; will occur as a factor in exactly
two shares. We will be inserting it twice to the shares under construction
in which we want it to occur. First, by copying it from the input array of
the auxiliary primes supplied for use in generating distribution to a given
number of shares. Second, by copying it from the shares that has been
generated for distribution to a smaller number of shares.

2. Algorithm.
Input: n,p,v
Return: ay,a9,...,a,
For i+ 1 to n do q;[0] =p.

A. Soroczuk, M. Srebrny 83

Procedure distribl(n)
For j+« 1 to n—1 do ai[j] =v[j];
For i+ 2 to n do
For m+ 1 to ¢—1 do {to array a; insert the entries of earlier
ai[m] = apt — 1] generated arrays with subscript ¢ — 1}
For s+ 1 to n—1_do { complete array a; with uncopied
aifs] =v [n(z -1) - gz_2+_1)_ + s+ 1] so far entries of array v}

The input data consist of the number n of shares to be obtained, the
password p to be shared, and an array of (;) entries each of which is a
large prime number. The algorithm returns arrays ai,as,...,an, each of
size n consisting of the factors of the particular shares. First, we plug in
p into each share. Then we copy to the first share the first n — 1 entries
of array v. Each of the following shares we get in such a way that share
¢ consists of the entries which have already been obtained by copying the
entries with subscript 2 — 1 and completing share ¢ with uncopied so far
entries of array wv.

3. Example: Generating 5 shares with threshold 3.

The input array consists of 10 entries v[i] = [g1, g, ..., q10]- The pas-
sword p is copied to each share. Then g, g2, q3,g4 are copied to the first
share. Thus we get a1[i| = [p, q1, g2, g3, 4. To the second share array, where
we already have p, we copy the entry of v with subscript 1. That is, ¢;. Then
we complete this share with the first uncopied so far entries of array v, that
is, gs, g6, g7. This time we get as[i] = [p, ¢1, g5, g6, g7]- The third share array
consists by now of the password p, the second entries of arrays a; and as,
i.e. g2,g5, and the two uncopied before entries of array v, i.e. gqg and gg.
Hence, a3[i] = [p, g2, ¢5, g8, @9]. Similarly, we get a4 from the third entries of
arrays ap,ag,a3 and qo of array v. Hence, aq4[i] = [p, g3, g6, g8, q10]. To the
last share array we copy all the fourth entries of the already formed shares.
Therefore, as gets the form as[i| = [p, ¢4, 97, 99, q10]-

4. Correctness

To show the correctness we have to prove: (1) for each two shares a; and
aj GCD(ai,a;) = pgm, for some m; and (2) for each three shares a;, a;, a,
GCD(a;,a;,ax) = p. Equality (1) follows by the fact that whenever i < j
then there exists an entry in array a;, that was copied to array a;. Each
prime ¢; was inserted into arrays a;, for 1 < i < n, exactly twice; first
when it was copied from array v, and then when copied from an earlier
generated share. Therefore, it is only p that occurs in each of any three
shares simultaneously.

84 Algorithms for Sharing a Password

5. Complexity

The algorithm consists of the assignments of entries of one array to
another and it requires n? assignments, since there are n shares, each of
size n.

Section II. Algorithm for n shares with treshold n

1. Idea

The algorithm takes the similar input data: the number n of shares to
be generated, password p and array v of auxiliary primes. It returns arrays
of size n. Each share a; is constructed from array v by deleting its entry

dn+1—i-

2. Algorithm
Input: n,v
Return: a;,as,...,a, (the rows of distribution among n shares with thre-
shold n)

Procedure distrib2(n)
For i+ 1 to n do a; + v\gnt1-i
{assign to a; all the entries of v except gn41-i}

3. Example
Generating 5 shares with threshold 5

a1[i] = [q1, 92, g3, q4]
az[i] = [q1, 42,93, gs]
a3[i] = [q1, g2, 4, g5]
a4(i] = [q1, 93, g4, g5
as[i] = [g2, 93, g4, gs]

4. Correctness

Each entry g; has been skipped exactly once in the process of genera-
ting the 5 shares. Thus no g; can belong to all the 5 shares simultaneously.
Hence GCD(ay,as,...,a,) =1, as required. Elements of any smaller sub-
set of the shares contain at least one common factor g;, since every two
shares differ at one factor, every three - at two factors, et cetera, every
n — 1 shares differ at n — 2 factors.

5. Complexity
The algorithm consists of the assignments of one array to the others.
It requires n? assignments, since we get n shares, each of size n.

A. Soroczuk, M. Srebrny 85

Section III. Algorithm for n shares with treshold ¢

1. Idea

This time the algorithm takes positive integers n > ¢ > 3 and an
array v of (tfl) entries which are the large primes ¢ with subscripts. These
primes are assumed to have been securely generated, as described in [2].
The algorithm returns a matrix of n rows and (}_,) columns. Let us denote
this matrix by [}]. The rows of this matrix will consist exactly of the factors
of the shares of the required distribution of password p among n shares with
threshold . Now, we want the algorithm to use recursive calls to the fewer
distributions of the same password p among n— 1 shares with threshold ¢t—1
and among n — 1 shares with threshold ¢. The initial and final conditions
of this recursion are determined by threshold ¢ = 3 and the threshold equal
to the number of shares, as taken care of in sections I and II above.

Let afi,j] = [}~]] be a matrix of n — 1 rows and (?~2) columns con-
sisting of the elements q1,qs,...,qr where k = (’:_‘21), let b, 7] = [”;’1]
be a matrix of n — 1 rows and (?77) columns consisteing of the elements
Qk+1,Qk+2; - - - »q Where I = (,",) and let c[¢, j] = [}] be a matrix of n rows
and k = ('::21) columns consisting of the elements g1, qo,...,q. Define a
new operation on matrices [7] = [77]] ® [*;] by setting c[i, j] = a3, j], for
l1<i<n-land1<j< (’;__g), and setting c [z',j + (Tt‘:??)] = b[i, j], for
1<i<n—-land1<j;< (’;:22), and c[n,m] = gs, for 1 < j < k = ("7,),

t—2
where g5 is the j- th auxiliary prime used in the distribution with matrix

the matrix als, j].

2. Algorithm (generating n shares with threshold t)
Input: n > t,t > 3,v

Return: a;,as,...,a,
If(t>3Vt<n) thendo [7]=["}]®[";}]
else
if (t =3) then distribl(n)
if (t =n) then distrib2(n)
3. Example

Generating the distribution among 6 shares with threshold 4. The distribu-
tion among 6 shares with threshold 4 uses auxiliary primes ¢, g2, ..., g20.

Let the distribution among 5 shares with threshold 3 use q11,¢12,...,qis
as its auxiliary primes. Finally, let the distribution among 4 shares with
threshold 4 use ¢17,q18,--.,¢20-

Weget [[] =lo [l =(le (Bl o)

86 Algorithms for Sharing a Password

The table below illustrates implementation of this scheme.

H: 7 ’18 lg
Hse 17 ;m 2
s R o RN o 7MW o 700
a1l | & v
i SATETGR TR

PR TR (e :-:-ZQ4:—Z—:-.9§-:-:-:-HE—:—:—:QTZ-:—:-9&-'_'-:-:-9&-_{‘[1-:—:

i I I I L T R U S ——
I R R R R R R R R R R R I e —

The execution of [3] is shown in red or [g] in yellow or i
[£] in blue or , [3] ® [§] in yellow-blue-green or
while [3] ® (3 ® [:]) in all the occuring colors.

4. Correctness

We need to prove equation [7] = [72/]®["7']. To this end, we show that the
right-hand side matrix is a matrix of the distribution [}]. Suppose [~}

and ["'t'l] are distribution matrices with auxiliary elements ¢, qs,...,q
and Qk4+1,Qk+2,---q Where k = n_1) and [= (,” 1) Due to the property
of Newton binomial coefficient that (}7;) + (}={) = (,*,) one can notice
that the same number of the auxiliary primes is used in both right and left
hand side matrices. Following the definition of operation ® we construct
a new matrix by inserting [_]] and [*7'] into its first n — 1 rows of the
distribution and the auxiliary primes of the distribution [’t‘:ll] into its n-th
row. This makes the new matrix of [}7]] ® [*7'] to consist of n rows. It
remains to show the treshold of this new distribution is #; i.e., the GCD of
any t rows of this new matrix is different that 1 and each ¢ of its rows are
relatively prime. The first follows by the definition of a treshold and by the
fact that the constructed matrix contains a matrix of distribution [*,] In
order to show the second we have to consider two cases. In the case when
the n-th row is not among our chosen ¢ rows, the GCD of the chosen rows
is 1 since the distributions [7”1] and [*7'] use different auxiliary prime
factors and the treshold of each of them is < ¢t. Now, consider the case
when the n-th row is among our chosen ¢ rows. Since each auxiliary prime
occuring in the n-th row is different than the primes of distribution [*7']

A. Soroczuk, M. Srebrny 87

(which has treshold t), it suffices to show that the GCD of any ¢t — 1 rows
of distribution [}~] and the n-th row is equal to 1. If in this case GCD >
1 then the treshold of the considered distribution would have been greater
that t—1, since in the n-th row there are all the prime factors of distribution
[:‘:11_] This would contradict the assumption that this treshold is equal to

t—1.

5. Complexity
The number of recursive calls in this algorithm is (}75). Notice that

om) 4m (1 e R 21 +0(m‘5))
m] Jrm 8m 128m?2 1024m3 32768m4 ;

In the other words, () = © (2™). Therefore, the worst case run time of
these recursive calls gzives the bound which is exponential in the number
of shares to be generated. However, in the case of (3) we get that the
execution time of this algorithm is linear in n. Similarly, in the case of
(,",). Roughly, the algorithm is feasible in all the cases with either very
small or very big threshold.

References

[1] G. R. Blakley, Safeguarding Cryptographic Keys, AFIPS Conference
Proceedings 48(1979), pp. 313-317

[2] W. Dobrzaiski, A. Soroczuk, M. Srebrny and M. A. Srebrny Jr, Di-
stributed Password, Technical Report, Institute of Computer Science,
Polish Academy of Sciences, Warsaw, Poland, December 1999.

[3] A. Menezes, P. van Oorschot, S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1999.

[4] A. Shamir, How to share a secret, Communications of the ACM 22
(1979), pp. 612-613.

Artur Soroczuk and Marian Srebrny

Institute of Mathematics Institute of Computer Science
and Computer Science Polish Academy of Sciences
Pedagogical University Warsaw, Poland
Czestochowa, Poland marians@ipipan.waw.pl

a.soroczuk@wsp.czest.pl

