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The Notion of Cube in the Theory of Squares*

Robert Sochack:

In this paper we define the notion of cube which is the primitive term of
cube geometry of E. Glibowski and J. Stupecki (see [5]). In this way we use
only the terms: “<”, “K” and “=” as primitive. The expressions: X <Y/,
K(X) and X =Y are read: the object X is a proper or improper part of
the object Y, the object X is a square and the object X is congruent with
the object Y respectively.

We will base on St. Lesniewski’s mereology. The author published
this system in 1916. It is presented in the revised version in [8]. The logi-
cal constants are: the equivalence symbol &, the negation symbol —, the
implication symbol =, the disjunction symbol V, the conjunction symbol
A, the universal quantifier V and the existential symbol 3. The variables
bound by a quantifier are placed directly after the sign of this quantifier.

Now we will give a short description of the system of mereology. The
relation “<” is the only primitive term of mereology. The expression X <Y
is read: the object X is a part (proper or improper) of the object Y. The
first three axioms of mereology are:

AL C-f oy
AIl (X<YAY<Z)=>X<Z
AIIl (X<YAY<X)=>X=Y.

Thus the relation “<” is a partial order because it is reflexive (Al),
transitive (AIl) and half asymmetric (AIIl). In order to give a shorter
formulation of the last axiom of mereology two relations will be defined
first. :

DI XoY ®3ZZ<X,Y.

*This work is directly connected with the paper [11].
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This is read: the object X is not disjoint from the object Y.
Let the expression f(X) mean: the object X has the property f. Then
the new relation “0” has the following form:

DII X6f & VZ[f(Z)=> Z<X]AVY[Y <X =3U (f({U)AUoY)|

Remember that the symbol 3, X is read: there exists one and only one
X. Now we can introduce the last axiom of mereology:

AIV 3Y [f(Y) = 3, X Xéf.

According to AIV, for each object, which has the property f there exi-
sts one and only one object X which is in the relation § with the property
f. This object will be denoted by the symbol 3" 4, f(A) and will be called
here the set of all those objects which have the property f or the mereolo-
gical sum. In accordance with DII the object X is therefore the set of all
the objects having the property f if and only if, every object having that
property is a part of X and if for every part of X there is an object not
disjoint from it, which has that property. It must be emphasised, however,
that the assumption that properties exist is not necessary for constructing
the foundations of mereology (see [9]). The expression X <Y will be also
read: the object X is coverable by the object Y or the object X covers
the object Y. Squares will be denoted by the small letters z,y, z,.... The
relation of square congruence will be denoted by the symbol “=”. Further
relations defined in this paper are denoted by the letter p with an index.
Let us assume now that the conjunction zg;y Azp;z is denoted zo;y, z where
0; is an arbitrary relation (analogically for the expression of larger quantity
of variables). In this paper the problem of axioms is omitted (the axioms
of the theory of squares are presented in [10]).

The most important notion in this paper is the notion of square cylin-
der, because we will define the notion of cube by this. Now we shall give
some auxiliary relations before we define the notion of cube.

Definition 1
zoy & dzz,y < z.

Two squares are complanar if and only if they are a part of a square.

Definition 2
zooy & Vu <z ~(u < y)A3(b,c,d) [-(cod)Ae,d <bAc<zAd<yAb<
Yala=2Va=1y)]

In conformity with Definition 2 the square z is ezternally tangent to a
square y by a “side”. It holds if and only if for each square u, if u is a part
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of the square z then u is not a part of the square y and such squares b, c,d
exist that the squares ¢ and d are disjoint and the square b is a part of the
mereological sum of z and y and the squares c,d are a part of the square b
and the square c is a part of z and the square d is a part of y (fig. 1).

Fig. 1

Definition 3
o3y < z <y Adz zoez,y

The expression zp3y is read: the square z is internally tangent to the
square y by a “side” (fig. 2).

Fig. 2
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Definition 4
TO4Yz & T2y AVugzy (z < u = ugez)

The notation zp4yz is read: the square x is externally tangent to the
squares y and z by the same “side” (fig. 3).

Fig. 3

Definition 5
zosY <= T S YNz #FyAdzVu =2z (uoaz = ugsy).

The above expression zgsy is read: the square y is symmetrical exten-
sion of the square z (fig. 4).

Fig. 4
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Definition 6
£y <> V2057 Yugsy (z o u).

The relation pg between the squares z and y takes place if and only if
they are concentric (fig. 5).

K e

Vet 4

Definition 7
Cuprry @ zoyAu< Y la=zVa=y)AIbc) [bc SuAb<zAc<
y A—(boc)].

The square u is in the relation g7 with the squares z and y if and only
if the squares z and y are externally tangent and square u is a part of the
mereological sum of z and y and such squares b and c exist, that they are
a part of u and b and c are a part of y. The square u will be called here a
connector of z and y (fig. 1 where u is b).

Definition 8
Togy < ~(zo1y) A 32 [z022 A Vu(ugrzz = uoy)].

In this relation pg there are such squares x and y that the square x is
tangent to the “plane” of the square y by the “side” or its part and z and
y are not complanar (fig. 6).
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Definition 9
To9y © Yu (zosu = yosu) A Vv (yosv = zosv)

The above definition describes the relation gg which concerns the squ-
ares z and y tangent themselves by “sides” or by “vertices”, where the
squares z and y have a couple of “parallel sides” (fig. 7).
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Definition 10
TO10Y & T FYATeY AT =y A Iz 2097, Y.

The expression Ty is read: the squares z and y are cocylindrical.
The relation between the squares z and y holds if and only if z and y
are congruent and they have common “axis of symmetry”. This axis of
symmetry includes centres of “sides” of these squares (fig. 8).

Bl S

Fig. 8
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Definition 11

zo11y © Yue1z Yvory ~(uov).

Bi-level squares were described above. The squares z and y are bi-level
if and only if every two squares u and v, complanar with the squares z and
y respectively, are disjoint.

Definition 12
uP122Y & TP10Y A 10,y AVv (vo10Z,Y = up1v).

This definition characterizes the relation p12 which concerns the square
u oscillating between the squares z and y. In conformity with the Definition
12, the square u oscillates between = and y if and only if , it is cocylindrical
with them and every square which is cocylindrical with the squares z and
y is also cocylindrical with the square u (fig. 9).
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Definition 13

ug13zy < upi12zy A 3(a,b) [a = b A —(ap1b) A ~(ag11d) A agou, z A bogu, y].

The square u being in the relation g3 with the squares z and y will be
called here as bisetriz oscillator of the squares z and y.

Definition 14
ug14zy < 3(c, b) (c, bor2zy A ugy3cb).

The expression ug14zy is read: the bisetrix square u oscillates between
the squares z and y. It takes place if and only if there exist such squares
that the square oscillates between them.

Definition 15
Zoszy e Z =) ,(a=zVapuzyVa=1y).

The above definition characterises the square cylinder Z determined by
two congruent and cocylindrical squares z and y. In conformity with the
Definition 15 the square cylinder Z is the mereological sum of the squares
z and y and all squares oscillating between the squares z and y (fig. 10).
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Fig. 10
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Definition 16
zO16Y © ToY ANz = y Az zpszy.

This definition describes the relation g1 concerning two twin squares
z and y, which are congruent and externally tangent themselves by a side
and a square externally tangent to the squares z and y by the same side
exists (fig. 11).

Fig. 11
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Definition 17
zo17y < ~(zo1y) A 3z (20162 A VU (ugrz2 = U0 Y)].

The expression zg;7y is read: the square y contains a side of the square
z. It takes place if and only if the squares z and y are not disjoint and
there is no plane containing them and there is such a square z that z and z
are twin squares and every connector of the squares z and z is not disjoint
with the square y (fig. 12).

Fig. 12

Definition 18
zo18Y < I(u,v) YoisuwAhz=u)Az <Y.

The square z in the relation g, with the cylinder Y will be called here
as one of the squares forming the cylinder Y (fig. 13).
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Fig. 13
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Definition 19
z019Z < I(u,v) (Zosuv Az = u) AVw (we1sZ = we17T).

The square z in the relation g9 with the cylinder Z will be called the
basic square of the cylinder Z. This relation holds if and only if the square
z is congruent with one of the cocylindrical squares of the cylinder Z and
the square z contains a side of each square forming this cylinder (fig. 14).

o

Fig. 14

Definition 20
T20Y © Yu (zpsu = yo17u) A Vv (yosv = z017v).

The squares z and y are in the relation gog if and only if each square
which is symmetrical extension of the square z or y contains a side of
the other one. The expression zgooy is read: the squares z and y have a
common side.

Definition 21
uvwe Z < u,v19Z N —(u o v) A woggu, v.

The expression uvwgggZ is read: three squares u,v,w are wall squares
of the cylinder Z. The wall squares u, v, w have such property, that two of
them are disjoint and basic squares of the cylinder Z, and the third has a
common side with the remaining squares (fig. 15).



78 The Notion of Cube in the Theory of Squares

Fig. 15

Definition 22
zp2uvw < 3Z (uvwe Z AVyo18Z (z o y)] A zo17w A 011U, v.

The square = being in the relation p9o will be called as the drawer
square of the wall squares u, v, w of a cube. In accordance to the Definition
22 the squares z and u and z and v are bi-level and the squares u and v
are basic squares of a cylinder Z and the square z has a common part with
every square forming the cylinder Z. Moreover the square w contains a
side of the square = (fig. 15).

Now we introduce the last definition of the notion of cube.

Definition 23
Xoozuvw < 3Z uwvwenn Z AX =Y ,(a =uVappuvw Va = ).

The expression X pguvw is read: the object X is the cube determined
by the squares u,v and w. It takes place if and only if there is a cylinder Z
for which the squares u, v, w are wall squares and X is the mereological sum
of the square u, or the square v or all drawer squares of the wall squares
u,v and w.

One can see, that we can reconstruct the only primitive term of the
geometry of cubes in the theory of squares. Recall, that E. Glibowski and J.
Stupecki have defined intuitive counterparts of point, line and plane using
only the notion of cube (see [5]). Replacing the notions of point, line and -
plane in Hilbert’s axioms of Euclid geometry by their intuitive counterparts
(i.e. the notion of sphere, the notion of infinite circular cylinder and the
notion of layer respectively — all with the same given radius) we can give
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axioms for the geometry of cubes (the intuitive counterparts of primitive
relations are easy to define).
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