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1. Introduction

Non-associative, or more particularly selfdistributive structures can arise
quite naturally in many different settings. Recall that a groupoid G(*)
(i. e., a non-empty set G equipped with one binary operation *) is said to
be left distributive if it satisfies the identity

z*(y v2)=(zx y)e¥z).

Similarly, G(*) is right distributive if it satisfies the identity (z * y) * z =
(z % 2) * (y * 2).

Natural examples of left distributive groupoids are weighted mean of
real numbers defined by z x y = az + (1 — ay), where 0 < a < 1 (this
groupoid is also right distributive), or conjugation in a group defined by
z %y = zyz~!. Both these examples are also idempotent, i. e., satisfy the
identity z x z = z.

It is natural to ask whether there are left distributive groupoids which
are (in a certain sense) “far from idempotence”. Rather surprisingly, there
is an intimate connection with Set Theory, namely with axioms concerning
large cardinals. More precisely, under the assumption of their existence,
the set of all non-projective elementary embeddings of a limit ordinal can
be equipped with a left distributive operation having the required property.

The structure of left distributive groupoids is very complicated. Na-
mely, already among left distributive groupoids generated by one element
we can find extremely complicated combinatorial structures, so called La-
ver tables L,, which are multiplication tables of left distributive groupoids
on the set {1,2,...,2"} with the first column prescribed by the rule

a*x1l=(a+1) mod 2".
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In this paper, we shall try to present a short survey of the topics and
interconnections mentioned above. The first explicit allusion to selfdistri-
butivity seems to appear in [13]. Looking at the pages 33 and 34 of the cited
article, we can read the following comment on selfdistributivity: “These are
other cases of the distributive principle. ... These formulae, which have hi-
therto escaped notice, are not without interest.” Another early work which
is worth mentioning is [15]. We can already see there (p. 249) a particular
example of a non-associative (left and right) distributive groupoid G:

G| 0 1 2
0 0 2 1
1 ‘i Sl
2 i -

Of course, G is idempotent and commutative and, in fact, it is the smallest
non-trivial Kirkman — Steiner triple system. It seems that the first article
fully devoted to selfdistributivity is [1]. This paper deals with (left and
right) distributive quasigroups. One-sided selfdistributive structures (na-
mely left distributive quasigroups) appeared a bit later in [16]. Two-sided
(generally non-idempotent) distributive groupoids were studied in [14] and,
finally, non-idempotent left distributive groupoids in [8].

Idempotent (either one-sided or two-sided) selfdistributive groupoids
are known to appear in many algebraic, geometrical, topological and com-
binatorial contexts and the theory of (two-sided) distributive groupoids is
easily transferred to the idempotent case (see e.g. [7]).

On the other hand, the theory of non-idempotent left distributive
groupoids (even of those possessing no idempotent elements) has its own
flavour and some of these groupoids are of special interest because of their
connections to more popular and fashionable objects like large cardinal
numbers and braid groups.

The réle of selfdistributivity in the Set Theory was more or less known
for a long time (first results in this direction are due to P. Dehornoy) and
the most important theorems were proved by R. Laver (see e.g. [10]). The
relations to the braid groups were studied mainly by P. Dehornoy (see e.g.
[2], [3] and [12]). An excellent detailed account of these connections is given
in [4]. A survey of purely algebraic aspects of the theory of left distributive
groupoids is presented in [6] and [9].

2. Large cardinals

Recall that a mapping 7 : S — T, S and T being sets with operations
and relations of the same type, is said to be an elementary embedding if
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(somewhat roughly speaking) for any formula F(zi,...) in the language
of §$ and all z1,... € S, F(ay,...) is true in S iff F(j(a1),...) is true
in T'. This obviously implies that j is an injective homomorphism for all
operations and relations definable in S. Further, for any ordinal o, define
inductively the set Ry by Ry = 0, Ro+1 = P(R,) (the set of all subsets of
R,) and R, = Ug<qRp for a limit. Further, denote by E, the set of all non-
projective elementary embeddings of R, (with the relation €) into itself (of
course, the identity mapping on R, is a projective elementary imbedding).
If E, is non-empty for some ordinal o then also E) is non-empty for the
limit ordinal A = card(c).

Suppose now that A is a limit ordinal, 7 € E) is a non-projective
elementary imbedding of R, into itself and a = crit(j) is the least ordinal
such that j(a) # a, so called critical ordinal of the elementary imbedding j.
Let us remark here that the assumption of the existence of a non-projective
elementary imbedding is a very strong “infinity” axiom, since in this case
a is the a-th measurable cardinal.

2.1 Lemma. Suppose that X is a limit ordinal and F) is non-empty. Define

g1 * J2 = Uycard1(d2 | By)

for all ji1, 72 € E). Then the operation * is correctly defined and E) () is a
left distributive groupoid.

In [11], the following important result(so called Laver-Steel theorem)
is proved: '

2.2 Theorem. In the situation of the preceding Lemma, if 31, j2,... € E)
are such that for every n there is £, with jn+1 = jn*Zn then sup(crit(j,)) =
A.

2.3 Corollary. In E), the following formula is true:

(V) (Vn > 1) (Yy1,92,. - yn) T # ((z *y1) *y2) *...) *yn .

This means that the groupoid E) is as far from idempotency as possi-
ble. The Laver-Steel theorem was the first example of a left distributive
groupoid with this “torsionfree” property, however this result used very
strong set axioms. Later, it was shown (see e.g. [4]) that free left distribu-
tive groupoids have this property (moreover, a monogenic, i.e. generated
by one element, left distributive groupoid is free iff it has this property).
This was shown by a careful and complicated geometrical analysis of the
extended braid group, already without any set axioms. Now, a relatively
simple direct construction is possible (see e.g. [9]):
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2.4 Lemma. Let G be a group and f € End(G), a € G be such that

af(a)a = f(a)af(a) and af?(z) = f%(z)a for all z € G. Define z * y =

zf(y)af(z)~! for all z,y € G. Then G(*) is a left distributive groupoid.

2.5 Theorem. Let G be a group defined by generators and relations as
G = (8i,% > 1| 5i8i4+18; = Si418iSi+1,3i8; = 8;8; for li.— 7] # 1),

a = sy and f(s;) = siy1 for all+ > 1. Then G(x), where * is an operatiori

defined in the preceding Lemma, satisfies the formula from 2.3.

3. Laver tables

Let us define a partial operation on the set {1,2,...,n} by the following
table:

e s PRk |
1 .

2 3

a a+1

n-1 n

n 1

This means that the first column is prescribed by the rule

(1) axl = (a+1) mod n.

3.1 Lemma. For every n > 1, there is a unique operation on the set
{1,2,...,n} satisfying (1) and a * (b* 1) = (a*b) * (a * 1) for all a,b. This
groupoid will be denoted by S,,. Moreover, for all a,b € S,, we have the
following properties: nxb = b, axb = 1 for ax(b—1) = n and axb > ax(b—1)
otherwise, (n —1)*b=n,(n—2)*b=n—1forbodd and (n—2)*xb=n
for b even.

3.2 Theorem. A left distributive groupoid G(*) with the underlying set
{1,2,...,n} satisfying (1) exists iff n = 2* for some k. In this case, G(*) =
S

These (uniquely defined) left distributive groupoids L, = Ss» are cal-
led Laver tables. A good account of this topic can be found e.g. in [4].
Although the groupoids L, are monogenic (every element is of the form
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((1%1) ..., i.e., the groupoid L, is generated by the element 1) their
combinatorial structure (of course, except the last three rows which are
completely described in 3.1) is extremely complicated.

All rows of L, are periodic and the period of the row corresponding
to a € Ly, which is (with respect to 3.1) equal to the number of different
values in the row and also to the number min{b|a x b = 2™ }, is a power
of 2. Thus, for all positive integers a < n, we can define the number o,(a)
in such a way that 2°+(%) is the period of the row corresponding to a in
the groupoid L,. It is interesting that these finite objects have intimate
connection to extremely large infinite cardinals.

All groupoids L, are factors of E) (under the assumption E) # 0).
This correspondence may be used in both directions, e.g. it is possible to
calculate critical ordinals of the iterations of an elementary imbedding j by
means of groupoids L,. In the other direction, we have e.g. the following
result (see [4]):

3.3 Theorem. If E) # () then, for every positive integer a,

nll)rgo onlo) =00
However, it is an open problem whether, without the assumption of the
existence of non-projective elementary imbedding, 0,(1) tends to infinity.
If so, this convergence must be extremely slow, which is indicated by the
following result which does not require any set theoretic assumptions (see

e.g. [5]):

3.4 Theorem. If the period of 1 in L, is 32 then n > fo(fs(fs(254))),
where fi are the Ackermann functions defined inductively by fo(n) = n+1,
fr+1(0) = fr(1) and fry1(n) = fk(fe+1(n—1)) for all non-negative integers
n, k.

The rate of growth of Ackermann functions is extremely high, since the
function f,(n) = fn(n) grows faster than arbitrary primitively recursive
function.
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