Varieties of Ordered Semigroups

Martin Kuřil

1. Introduction

It is known that there is a bijection between all varieties of semigroups and all fully invariant congruences on the free semigroup on the set of variables $\{x_1, x_2, x_3, \ldots\}$. It was done (more generally, for varieties of algebras) by Birkhoff in 1930's. The reader can consult Birkhoff's book [1]. So, to any variety of semigroups we have its syntactical counterpart.

In this contribution we present syntactical counterparts to varieties of ordered semigroups. Our main theorem (2.6) asserts that there is a bijection between all varieties of ordered semigroups and all fully invariant stable quasiorders on the free semigroup on the set $\{x_1, x_2, x_3, \ldots\}$ (fully invariant stable quasiorders are, roughly speaking, fully invariant congruences which do not need to be symmetric). We use the notion of identities for ordered algebras introduced by Bloom in [2]. Bloom has proved that varieties of ordered algebras are exactly classes defined by identities ([2], Theorem 2.6.). The special case of this result (when the ordered algebras are ordered semigroups) is our corollary 2.7.

A structure (S, \cdot, \leq) is called an ordered semigroup if

- (i) (S, \cdot) is a semigroup
- (ii) (S, \leq) is a (partially) ordered set
- (iii) for any $a, b, c \in S$, $a \le b$ implies $ca \le cb$ and $ac \le bc$.

Let $S = (S, \cdot_S, \leq_S)$ and $T = (T, \cdot_T, \leq_T)$ be ordered semigroups. By a homomorphism $h: (S, \cdot_S, \leq_S) \to (T, \cdot_T, \leq_T)$ we mean a mapping $h: S \to T$ such that, for any $a, b \in S$, $h(a \cdot_S b) = h(a) \cdot_T h(b)$ and $a \leq_S b$ implies $h(a) \leq_T h(b)$. As usual, the ordered semigroup T is said to be a homomorphic image of S if there exists a surjective homomorphism $h: S \to T$. Further, T is said to be a substructure of S if $T \subseteq S$ and, for any $a, b \in T$, $a \cdot_T b = a \cdot_S b$, $a \leq_T b$ if and only if $a \leq_S b$.

Let $\{(S_i, \cdot_i, \leq_i) | i \in I\}$ be a set of ordered semigroups. By a product $\prod_{i \in I} (S_i, \cdot_i, \leq_i)$ we mean an ordered semigroup $(\prod_{i \in I} S_i, \cdot, \leq)$ where $(s_i)_{i \in I} \cdot (t_i)_{i \in I} = (s_i \cdot_i t_i)_{i \in I}$ and $(s_i)_{i \in I} \leq (t_i)_{i \in I}$ if and only if $s_i \leq_i t_i$ for all $i \in I$. Let \mathcal{V} be a class of ordered semigroups. Denote by

 $H(\mathcal{V})$ — the class of all homomorphic images of members of \mathcal{V}

S(V) — the class of all substructures of members of V

P(V) — the class of all products of members of V.

We say that \mathcal{V} is a variety provided $H(\mathcal{V}) \subseteq \mathcal{V}$, $S(\mathcal{V}) \subseteq \mathcal{V}$ and $P(\mathcal{V}) \subseteq \mathcal{V}$. Let us denote the variety of all ordered semigroups by **OS**.

2. Identities for ordered semigroups

Let Y be a non-empty set. The free semigroup on Y will be denoted by Y^+ .

An identity is any ordered pair $u \leq v$ of words $u, v \in Y^+$. Let (S, \cdot, \leq) be an ordered semigroup. We say that the identity $u \leq v$ is satisfied in (S, \cdot, \leq) if, for any homomorphism $\varphi : Y^+ \to (S, \cdot)$, $\varphi(u) \leq \varphi(v)$. An identity is satisfied in a class \mathcal{V} of ordered semigroups if it is satisfied in any member of \mathcal{V} .

Let $\mathcal{V} \subseteq \mathbf{OS}$ be a class of ordered semigroups. We put

 $\varrho(\mathcal{V},Y) = \{(u,v) \in Y^+ \times Y^+ | \text{ the identity } u \leq v \text{ is satisfied in } \mathcal{V}\}.$

Let $\Sigma \subseteq Y^+ \times Y^+$ be a set of identities. We put

 $[\Sigma] = \{(S, \cdot, \leq) \in \mathbf{OS} | (S, \cdot, \leq) \text{ satisfies all identities from } \Sigma\}.$

Let $S = (S, \cdot)$ be a semigroup. A binary relation ρ on S is said to be

- a quasiorder if it is a reflexive and transitive relation
- stable if, for any $a, b, c \in S$, $a\rho b$ implies $ca\rho cb$ and $ac\rho bc$
- fully invariant if, for any endomorphism $\varphi: S \to S$ and any $a, b \in S$, $a\rho b$ implies $\varphi(a)\rho\varphi(b)$.

The set of all fully invariant stable quasiorders on S will be denoted by FISQ(S).

2.1 Lemma. Let $\Sigma \subseteq Y^+ \times Y^+$. Then $[\Sigma]$ is a variety of ordered semigroups.

PROOF. It is easy to show the inclusions $H([\Sigma]) \subseteq [\Sigma], S([\Sigma]) \subseteq [\Sigma], P([\Sigma]) \subseteq [\Sigma].$

2.2 Lemma. Let $\mathcal{V} \subseteq \mathbf{OS}$. Then $\varrho(\mathcal{V}, Y) \in \mathrm{FISQ}(Y^+)$.

PROOF. It is easy.

Let ρ be a stable quasiorder on a semigroup $S=(S,\cdot)$. We construct an ordered semigroup $S/\rho=(S/\sim_{\rho},\cdot,\leq)$. We define a relation \sim_{ρ} on S in this way:

$$a \sim_{\rho} b \iff a\rho b, b\rho a \ (a, b \in S).$$

It is easy to show that the relation \sim_{ρ} is a congruence on (S, \cdot) . The congruence \sim_{ρ} determines the semigroup $(S/\sim_{\rho}, \cdot)$. We define a relation \leq on S/\sim_{ρ} in the following way:

$$(a \sim_{\rho}) \leq (b \sim_{\rho}) \iff a\rho b \ (a, b \in S).$$

We easily check that the relation \leq on S/\sim_{ρ} is correctly defined. Further, $(S/\sim_{\rho},\cdot,\leq)$ is an ordered semigroup. We will denote it by S/ρ .

Let \mathcal{V} be a class of ordered semigroups. By a free object in \mathcal{V} on a non-empty set Z we mean a pair (S,ι) , where $S\in\mathcal{V}$ and $\iota:Z\to S$ is a mapping with the following universal property: for any ordered semigroup $T\in\mathcal{V}$ and any mapping $\vartheta:Z\to T$ there exists a unique homomorphism $\psi:(S,\cdot,\leq)\to(T,\cdot,\leq)$ such that $\psi\circ\iota=\vartheta$. In the cases when the mapping ι is obvious we will omit it and we will simply say that S is a free object in \mathcal{V} on S. Notice that in any class of ordered semigroups there is, up to isomorphism, at most one free object on a given non-empty set.

2.3 Theorem. Let V be a variety of ordered semigroups. Then $Y^+/\varrho(V,Y)$ is a free object in $[\varrho(V,Y)]$ on Y and $Y^+/\varrho(V,Y) \in V$. In particular, $Y^+/\varrho(V,Y)$ is a free object in V on Y.

PROOF. In the case $\varrho(\mathcal{V},Y)=Y^+\times Y^+$ the assertion of the theorem clearly holds. So, let $\varrho(\mathcal{V},Y)\neq Y^+\times Y^+$. Let $\{(u_i,v_i)\in Y^+\times Y^+|\ i\in I\}$ be the set of all identities over Y which are not satisfied in \mathcal{V} . For any $i\in I$, let us choose $(S_i,\cdot,\leq)\in\mathcal{V}$ and a homomorphism $\varphi_i:Y^+\to(S_i,\cdot)$ so that $\varphi_i(u_i)\not\leq \varphi_i(v_i)$. Put $(S,\cdot,\leq)=\prod_{i\in I}(S_i,\cdot,\leq)$. Clearly, $(S,\cdot,\leq)\in\mathcal{V}$. Further, let us consider a homomorphism $\varphi=(\varphi_i)_{i\in I}:Y^+\to(S,\cdot)$. It holds for $u,v\in Y^+\colon \varphi(u)\leq \varphi(v)\Leftrightarrow u\varrho(\mathcal{V},Y)v$. Put $T=\varphi(Y^+)$. Then T is a subsemigroup in (S,\cdot) . We order the semigroup (T,\cdot) by the restriction of the ordering from (S,\cdot,\leq) . We have $(T,\cdot,\leq)\in\mathcal{V}$ and $(T,\cdot,\leq)\cong Y^+/\varrho(\mathcal{V},Y)$. Thus $Y^+/\varrho(\mathcal{V},Y)\in\mathcal{V}$. It remains to prove that $Y^+/\varrho(\mathcal{V},Y)$ is a free object in $[\varrho(\mathcal{V},Y)]$ on Y. Let $(P,\cdot,\leq)\in[\varrho(\mathcal{V},Y)],\vartheta:Y\to P$. Let us assume that $\psi:Y^+/\varrho(\mathcal{V},Y)\to(P,\cdot,\leq)$ is a homomorphism satisfying $\psi\circ\iota=\vartheta$. At the same time the mapping $\iota:Y\to Y^+/\sim_{\varrho(\mathcal{V},Y)}$ is given by the rule $\iota(y)=y\sim_{\varrho(\mathcal{V},Y)}(y\in Y)$. For any $u\in Y^+$, $\psi(u\sim_{\varrho(\mathcal{V},Y)})=\theta(u)$ where $\theta:Y^+\to(P,\cdot)$ is the homomorphism extending the mapping

 ϑ . It can be easily shown that the rule $\psi(u \sim_{\varrho(\mathcal{V},Y)}) = \theta(u)$ determines correctly a homomorphism $\psi: Y^+/\varrho(\mathcal{V},Y) \to (P,\cdot,\leq)$.

2.4 Lemma. Let $\rho \in FISQ(Y^+)$. Then $\rho = \varrho([\rho], Y)$.

PROOF. Clearly, $\rho \subseteq \varrho([\rho], Y)$. So, we will prove the inclusion $\varrho([\rho], Y) \subseteq \rho$. We will show that $Y^+/\rho \in [\rho]$. Let $u, v \in Y^+, u\rho v, \varphi : Y^+ \to Y^+/\sim_{\rho}$ be a homomorphism. We want to show that $\varphi(u) \leq \varphi(v)$. For any $y \in Y$ let us choose $\vartheta(y) \in Y^+$ so that $\varphi(y) = \vartheta(y) \sim_{\rho}$. Let $\theta : Y^+ \to Y^+$ be the endomorphism extending the mapping $\vartheta : Y \to Y^+$. Let $y_{i_1}, \ldots, y_{i_k} \in Y$. Then

$$\varphi(y_{i_1} \dots y_{i_k}) = \varphi(y_{i_1}) \dots \varphi(y_{i_k})
= (\vartheta(y_{i_1}) \sim_{\rho}) \dots (\vartheta(y_{i_k}) \sim_{\rho})
= (\vartheta(y_{i_1}) \dots \vartheta(y_{i_k})) \sim_{\rho}
= \theta(y_{i_1} \dots y_{i_k}) \sim_{\rho}.$$

We have shown that, for any $w \in Y^+$, $\varphi(w) = \theta(w) \sim_{\rho}$. So, we want to prove that $(\theta(u) \sim_{\rho}) \leq (\theta(v) \sim_{\rho})$, i.e. $\theta(u)\rho\theta(v)$. But it holds since $\rho \in \text{FISQ}(Y^+)$. Now, let $(u,v) \in \varrho([\rho],Y)$. We want to show that $u\rho v$. The identity $u \leq v$ is satisfied in the ordered semigroup Y^+/ρ . Let us consider the following homomorphism $\varphi: Y^+ \to Y^+/\sim_{\rho}$, $\varphi(w) = w \sim_{\rho} (w \in Y^+)$. Then $\varphi(u) \leq \varphi(v)$, $(u \sim_{\rho}) \leq (v \sim_{\rho})$, $u\rho v$.

2.5 Lemma. Let Y be an infinite set, V be a variety of ordered semigroups. Then $V = [\varrho(V, Y)]$.

PROOF. Clearly, $\mathcal{V} \subseteq [\varrho(\mathcal{V},Y)]$. So, we will prove the inclusion $[\varrho(\mathcal{V},Y)] \subseteq \mathcal{V}$. Let $(S,\cdot,\leq) \in [\varrho(\mathcal{V},Y)]$. Let us consider the set $Z=Y \cup S$. By 2.3, $Z^+/\varrho(\mathcal{V},Z)$ is a free object in $[\varrho(\mathcal{V},Z)]$ on Z and $Z^+/\varrho(\mathcal{V},Z) \in \mathcal{V}$. Let $\vartheta:Z \to S$ be a surjective mapping. Since Y and Z are infinite sets, $[\varrho(\mathcal{V},Y)] = [\varrho(\mathcal{V},Z)]$, and so $(S,\cdot,\leq) \in [\varrho(\mathcal{V},Z)]$. Let $\varphi:Z^+/\varrho(\mathcal{V},Z) \to (S,\cdot,\leq)$ be the homomorphism satisfying $\varphi \circ \iota = \vartheta$ ($\iota:Z \to Z^+/\sim_{\varrho(\mathcal{V},Z)}, \iota(z) = z \sim_{\varrho(\mathcal{V},Z)}$). Necessarily, φ is a surjection. Thus $(S,\cdot,\leq) \in \mathcal{V}$.

2.6 Theorem. Let Y be an infinite set. The rules

$$\rho \mapsto [\rho], \ \mathcal{V} \mapsto \rho(\mathcal{V}, Y)$$

determine mutually inverse order reversing bijections between all varieties of ordered semigroups and all fully invariant stable quasiorders on Y^+ . PROOF. The theorem follows immediately from 2.4 and 2.5.

2.7 Corollary. Let V be a class of ordered semigroups. Then V is a variety of ordered semigroups if and only if there exist a non-empty set Y and a set of identities $\Sigma \subseteq Y^+ \times Y^+$ such that $V = [\Sigma]$.

The theorem 2.6 is an analogy for ordered semigroups with the classical result by Birkhoff (see, e.g., Theorem 22 in [1]) concerning the relationship between varieties of algebras of a given type and fully invariant congruences on a free algebra of words of the same type. The corollary 2.7 follows also from a result by Bloom presented in his paper on varieties of ordered algebras ([2], Theorem 2.6.).

References

- [1] G.Birkhoff, Lattice Theory, Providence, Rhode Island, 1967
 - [2] S.L.Bloom, Varieties of ordered algebras, Journal of Computer and System Sciences 13, 200 212 (1976)

J.E.Purkyně University České mládeže 8 400 96 Ústí nad Labem Czech Republic e-mail: kurilm@pf.ujep.cz