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The Completeness Theorem for a Logic of Authentication
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Abstract

In a distributed computational system, security depends heavily on
the use of secure protocols such as authentication protocols. In the past
few years, a lot of attention has been paid to the use of special logics to
analyze cryptographic authentication protocols. Burrows, Abadi, Needham
and others have proposed a few logics for the analysis of these protocols
(called BAN-logics). These are specialized versions of modal logics of belief,
with special constructs for expressing some of the central concepts used in
authentication processes. These logics have revealed many subtleties and
serious flaws in published and widely applied protocols. Unfortunately,
they have also created some confusions, for example they are not complete.

In the present paper we introduce a new logic of authentication, which
is a modification of the BAN logic. It provides a convenient formal language
for specifying and reasoning about cryptographic protocols requirements.
We also provide an axiomatic inference system, a model of computation
and semantics. We present some important properties of our logic, first of
all the Completeness Theorem.

1. Introduction

Authentication is the act of determining the identity of agents (such
as persons, computers, or servers) in a computer system. Authentication
usually plays an important role in secure system, since a principal con-
trolling a resource must have some way of identyfying principal requesting
access to the resource. Authentication typically depends on secrets, such
as passwords or encryption keys, that one agent can reveal or somehow use
to prove its identity to others. Before these secrets can be used, however,
they must be distributed to the principals in some way. An authentication
protocol is a description of how these secrets are distributed to agents, and
how these secrets are used to determine agents identities.
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One of the first, important authentication protocols is the Needham -
Schroeder protocol with public key [NS78] given as follows:

1. Ao B  A,B,{Na,A}kp
2. B+A  B,A {Na,Nplka
3. A—»B A,B,{NB}kB

where A, B denote agents, KA is a public key of A (similarly KB), Ny4
is a special number generated by the agent A and used only once (called
nonce).

In the first step of the protocol A sends to B a message encrypted
under KB containing nonce N4 and his identifier. The agent B is the
only one who can decrypt this data. In the second step, B sends to A a
message encrypted under KA containing nonce N4 and nonce Ng. In the
third step, A sends to B a message encrypted under K A containing nonce
Np. When the protocol is done agents A and B should be convinced about
their identity.

Unfortunately, this and others protocols are not perfect. Here is one
of method of attack the protocol:

al. A—»C A,C,{Na,A}kc
bl. C(4) —» B A,B,{Ns, A}k
b2. B = C(A) B,A,{Na,Np}xa
a2. C - A C,A,{N4,NBlka
a3. A= C A,C,{NB}kc

b3. C(A) -+ B A,B,{NB}kn

When all this information has been sent the agent B is convinced about
his communication with A, while he really communicates with C.

There is no method which can say that the protocol is good. It is still
searched for such a method. One of the ways of investigation is construc-
ting logics which search cryptographic protocol requirements. The purpose
of these logics is to formalize our informal reasoning about authentication
protocols and to explain these protocols and their differences. Burrows,
Abadi, Needham and others have proposed logics specifically tailored to
the analysis of authentication protocols [BAN89], [GNY90], [AT91], [S91],



M. Kurkowski 39

[SvO94], [SM93]. These logics provide languages for describing the beliefs
of the parties involved in a protocol, and sets of inference rules that de-
scribe how the beliefs evolve as the result of communication. They include
special construct for expressing many of the central concepts used in au-
thentication. Unfortunately, they have also created some confusions, for
example, they are not complete.

In this paper we reformulate the logic in several ways. In the section
2 we provide a new language and an axiomatic inference system. In the
section 3 and 4 a model of computation and semantics are presented. In
the section 5 we point out some important properties of our logic, first of all
the Completeness Theorem. Our logic is complete, but all our modification
were done not only to achieve this completeness.

2. Syntax

Now we present our modification of the logic of authentication

2.1. Language

We begin with a definition of our language. Remind that we are ana-
lyzing idealized protocols in which principals send to each other messages;
we define a language of messages M and a language of formulas F.
We assume the existence of a set T' of primitive terms containing a number

of disjoint sets of constant symbols: T = T4 U Tp U Tk, where
Ta = {a1,a2,...,a,} is an alphabet, Tp = {P,Q, ..., R} is a set of symbols
representing principals, Tk = {K,L,...,H} is a set of symbols represen-

ting encryption keys.

We define messages and formulas in the logic by mutual induction.
The language M of messages is the smallest language over T satisfying the
following conditions:

1. if € F, then aa € M,
2. if X = (my,my,...,m,) and my,ma,...,m, €T, then X € M,

3. f Xe M,K € Txg,P € Tp then {XP}K € M, {XP}K — the message
X encrypted under the key K.

The language F' of formulas is the smallest language satisfying the
conditions:

1. f Xe M,PeTp, then P>X,P<qX € F,P X —P has received
the message X,P <1 X — P has sent the message X,
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2. if Pe Tp,K € T, then —% Pe F,—»X P — P has the key K;
3. ifa,f € F, then ~a,aAB,aVfB,a= B,a=p€F.

4. if Pe€ Tp,a € F, then P |= o € F,P |= a — P believes that « is
true.

2.2 Axiomatic inference system
Our axiom system includes only one inference rule: the Modus Ponens rule

a,a=f

p

The axioms are all substitutions of formulas from the set F' into classical
propositional tautologies (let Ay be a set of all these substitutions) and the
following axioms schemes:

Al. P |= oy for all o € Ay,

A2. P|=aAP|=(a=p) = P=4,
A3. Pl=a = P |=(P |=a),

Ad PpX = P|=(P b X),

A5. P4 X = P|=(P«X),

A6. »XP = Pl=X P,

A7. P|=aAP|=8 = Pl|=,aAB,
A8. Pp X = Q<X for some Q@ # P,
AY. Pp{X}k A=K P = PpX.

3. Model of Computation

A system consists of a finite collection of agents Pi,..., P, who co-
municate by sending messages to each other. We assume the existence of
a distinguished agent P, called environment which plays a role of other
principals trying to attack an authentication protocol.

At any given time an agent P; (for i = 1,...n,e) is in some local state
(8i), a global state is a tuple s = (s, 51, --,8n) of local states. In any given
state any principal can change its local state by performing an action. An
action is identified with a state-transition relation. A run is an infinite

sequence of global states r = (s%,s%,...). By a system R we mean a set
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of runs. Integer times are assigned to each global state in a run: the first
state of a run r, called the initial state, is assigned by the time 0, and the
k th state is assigned by the time k — 1. We denote the global state at time
k in a run r by an ordered pair (7, k).

We assume a principal P;’s local state includes a local history hE, -
the sequence of all actions the principal has performed up to the time &
and a set of encryption keys Ki’“ the principal holds in the time k. The
environment P,’s state includes a global history - the sequence of actions
any principal has performed, a key set K¥ and a message buffer m; for each
system principal P; containing all messages sent to P; but not yet delivered.

We assume that the set of actions a principal P, can perform includes
the following actions:

1. (Pn 7Q;M) — P, sends the message M to Q, the message M is
added to @)’s message buffer.

2. (7" Pyn; M) — P, obtains the message M, M is nondeterministically
chosen and deleted from P,, message buffer.

3. K7 P, - the key K is added to K,,.

4. Semantics

Now we give our semantics for the logic. We define the truth of o € F
in point (r,k) of the system R (denote (r,k) = a) by induction on the
structure of « :

(r,k) | Pmn > X iff (7 Pp;X) is an action occuring in hE

(k) EPn< X iff (P;Q;X) isan action of hk , for some Q € Tp,
(r,k) =¥ P, iff KeKE,

(r. k) ==a iff (r,k) F « does not hold,

(nk) EaAB  iff (rk) Eaand (k) 5,

(k) Eavp if (r,k) Ea or (r,k) E B,

(nk)Fa=p iff (rnk)FE-a o (rk) kg,

(rnk)EFa=p if (nk)Ea=p and (nk)EpB= q,
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We define the truth of (r,k) = P;j|= o (in the point (r,k) of system)
by induction on « :

(k) EPI=(PinX) iff (nk)EP > X,
(rk) E Rl=(Pia X) iff (nk)EPRX,
(r, k) = P|l=—X P, if (r,k) ==K P,
for another formulas:
(rk) E P= a iff o € Ap or for some formula 3
(k) E P2 B and (k) F Pl= (8 ).

A formula « is a tautology if (r, k) = a, for any (r, k).

A formula o is a semantic consequence of the set of formulas X (de-
noted: X k= a) iff for any point of the system (r, k) and for any formula 3
from the set X if (r, k) = 8, then (r,k) | a.

A point (r, k) is called a model for a set of formulas X iff for any formula
a from X, (r, k) = a.

5. Completeness

Now we present some important properties of our logic.

Let § = (R, A) be a logical system (R = {r,}, A is the set of axioms:
Ao U {Al,...,A9}. Let F, be the set of all formulas in a form:
Pa4X,PpX,»+X P forany P,X i K.

Lemma 1.
Ifag¢ X [X =Cn(R,AU X)), where X is a set of formulas, such that
X N F, is a finite set, then exists a set of formulas Y such that:

1. a ¢ Y(Y #F),
X CY,

Cn(R,Y) =Y,
Veger(BEY VB EY),
Vagy(a € Cn(R,Y U{A})).

Y N F, - is a finite set.

S o A N
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Proof. (sketch)

Let F = (¢1,92,93,-.,%n,...) be a sequence of all formulas of our langu-
age. :

Let (X,)nen be a sequence of sets such that:

Xo=X,

Xnt+1 =Cn(R, X, U{pn}) when:
1. a¢ Cn(R,AU X, U{pn}),
2. pn € Fy,
3. n € Cn(R, AU X,,).

Cn(R, Xn U {~¢n}) otherwise.

Lot X =ik,
neN
Lemma 2.

If X is a set of formulas such that:

1. X = Cn(R,AUX),

2. X NF, - is a finite set,
then X has a model.

Theorem (completeness)
If X is a set of formulas such that X N F, is a finite set, then:

ae€Cn(RAUX) iff XEa

Proof: (sketch)

”ﬁ”

We can show that the axioms are tautologies and derivations preserve
truth.

”*_”

We assume: a ¢ Cn(R, AU X). By Lemma, 1 there exists a set Y such
that ~a € Y. By Lemmas 1 and 2, Y has a model. Le.: (rk) E -a,
for some (r, k). Since X C Y, (r,k) is a model of X too. Thus « is not a
semantical consequence of X.

6. Conclusions

In this paper we have presented a new complete logic of authentication.
We have introduced reformulated language, axiom inference system, model
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of computation and semantics. We hope that this logic will be usefull in
the research of properties of cryptographic protocols. The most important
of these are: determining the identity of agents who communicate to each
other and possibility of decryptioning a ciphertext by intruder. To check
wheather the protocol has got a property we transform the protocol and
the property into the special logical formulas, properly @ and 3, and we
check is the formula @ = 3 is a tautology in our logic or not. Testing
the properties in the known cryptographic protocols will be a field for the
future work.
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