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The concept of a rejected formula, or generally: the concept of a re-
jection system axiomatizing the set of the nontheorems of a logic was in-
troduced by J. Lukasiewicz in connection with his research on Aristotle’s
syllogistic (Cf. Lukasiewicz 1951). Later the notion was carried over to
the methodology of propositional calculi and gained a more general formal
shape - (see, e.g. Stupecki, Bryll and Wybraniec - Skardowska 1971.).

In this paper we want to introduce more important results about L -
dacidable logics with giving the right systems of rejected axioms.

Throughout the present paper, the symbol J will denote propositional
languages. Any such a language will be formally identified with the pair
(S, F), where S is the set of all propositional variables and of all formulas
(sentences) generated from the set At of propositional variables by the
connectives F'; we assume that the connective of implication, denoted by
the symbol C, always belongs to F.

Let us fix two sets of formulas: A and A~!; we call A (resp. A™1) the
set of recognized (resp. rejected) azioms. Similarly, let us fix two sets of
inference rules R and R~!; we call the elements of R the rules of recognition
(or acceptance), and we call the elements of R~ the rules of rejection. Such
a quadruple (A, A~1, R, R~1) determines uniquely a propositional calculus;
we shal use the symbol L to denote propositional calculi of such a kind.
Further, by 7 we mean the set of all formulas consisted of the members of
A and all formulas which are derivable from .A by means of the rules of R,
ie. T = AUCng(A); similarly, we put 7-! = A~'UCng-1(A)~L. Thus T
is the set of all recognized formulas of L, and 7! is the set of all rejected
formulas of L.

We say that the propositional calculus L is £ - decidable (or decidable
in the Lukasiewicz sense) if we have:

(w1) TNT1=0, (L - consistency),
(wp) TUT =5, (L - completeness),

Thus L is L - decidable iff every formula of L is either recognized or
rejected but not both.
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J. Stupecki observed (in Stupecki 1972) that any calculus is decidable
in the usual sense provided the calculus is L - decidable and the sets 7
and 7! are recursively enumerable. This is an immediate corollary to a
well-known result from recursion theory.

We shall write 4 a (resp. F ) to express the fact that the formula
a € S belongs to 7! (i.e. « is rejected) or, respectively, that o belongs to
T (i.e. « is recognized) in a given calculus L.

Lukasiewicz considered, in the case of classical propositional logic, the
- two rules of recognition which are defined by the following schemata:
Let o be any propositional formula. The inscription 4o and Fa denote
respectively that formula « is rejected and recognized in a given calculus.

FCaf
F o

(rl) R (detachement)
Fa and B € Sub({a})

(r2) : F 7 (substitution),
and the two rules of rejection which are defined by the following schemata:
FCap
-8

(ril) : —T4 — (reverse detachement)
44 and B € Sub({a})

(rz') : o => (reverse substitution);

Sub({a}) is the set of all substitution instances of the formula a.

Let us assume that 9 = (U,V,f), where 0 # V C U, is a logical
matrix which is adequate for L, i.e. E(9N) = T (the set E(9MN) of all
tautologies of 91 is identical with 7). Now if a system of rejected axioms
is chosen in such a manner that

A1 CS—-EM®N)
and the rules from R~! preserve nontautologies of 2%, then

T-1C S - E(M).

In that case to prove that the calculus L is L-decidable it is enough to show

('w;;) S — T Q T_l
holds.

We say that the constant (element) a of U is definable in L if there is
a formula o € S such that h(a) = a for every homomorphism (valuation)
h of the language J to the algebra (U, f). Any formula which defines a will
be denoted by the symbol ¢,.
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Theorem 1 (Bryll 1996). Let a propositional calculus L based on the set
of rules R = {ry,r2} and R~' = {r{',7;?} have an adequate logical
matrix (U, V,1).1

If, moreover, L satisfies the following three conditions:

(wa) CppeT,
(ws)  all elements of U are definable in L,

(wg) g forallaeclU-YV,
then L is L-decidable.

Proof. We shall show that under the assumptions (w4) — (ws) the
following condition ‘

Rl R
is satisfied.

To prove this, let &« € S — T. Since T = E(9N), we have a ¢ E(M).
Hence there is a homomorphism h, : § — U and an element a, € U—V such
that h(a) = a,. Let py,...,p, be all the propositional variables occuring
in a, i.e. o= a(p1,...,pm). Let o* = a(p1/@ay P2/ Cay - - - s Pm/Par), 1-€.
o™ results from « by substituting the variable p; by the formula ¢,,, where
ho(pi) =a; (1 =1,...,m;ay,...,a, € U). Then for every homomorphism
h : S — U we have h(a*(¢@ayy -y Pam) = @o. From (wy4) it follows that
F Co*(@ayy - - - Pam)Pass While from (wg) it follows that - ¢,,. From this,
marking use of r;!, we get 4 o*. Since o* € Sub(a) we conclude by r;?
that 4 a, i.e. @ € T~!; and our proof is finished.

With the help of Theorem 1 one can prove that the following proposi-
tional calculi are L-decidable:

(1) for every n > 2 the so called definitionally complete (or full) n-
valued calculus of Lukasiewicz with the primitive connectives of the
Lukasiewicz implication C, the Lukasiewicz negation N and the Shu-
pecki functor 7',

(2) the four-valued modal logic of Lukasiewicz (Lukasiewicz 1953);

(3) the n-valued calculus of Sobociniski with an implication and a negation
as the only primitives connectives (Sobocinski 1936).

It is worth noting that sometimes one can prove condition (w3) wi-
thout assuming that all constants of an adequate matrix for the calculus in
question are definable in this calculus. Namely, it is enough sometimes to
choose an appropriate finite set A~! of rejected axioms. In this manner it
has been proved on the sets of rules R and R~1!, are L-decidable:

'The set U can have arbitrarily many elements.
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(4) the pure implicational n-valued calculus of Lukasiewicz , augmented
by either one of the two sets of rejected axioms A7! and A;!, where

At = {C[Cpl"q[CpI""q},
A;' = {C[CCpq]"q[CCpp|"'q};
and [Cal]°8 =8, [Ca]*t'8 = Co[Ca]*B.
(5) the implication-negational n-valued calculus of Lukasiwicz, angmen-

ted by the set
A1 = {C[Cp"NCpp[Cp]"~' NCpp}

of rejected axioms (Bryll, Maduch 1968);

(6) the three-valued nonsense-logic of Pirég-Rzepecka (see Pirég-Rzepecka
1977), augmented by one rejected axiom 4 N KpNp;

(7) certain fragmentary n-valued calculi of Stupecki, augmented by the
following rejected axioms:

(a) H[Cpl°p,~[Cp)'p,...,[Cp]z " pif nis even or

() H[Cplp,A[CP"1p,...,[CP]" TP if pis odd;
(see Bryll, Halkowska 1986).

There are, however, certain propositional calculi based on the original
Lukasiewicz rules of rejection rl"l and ry ! for which no finite sets of
rejected axioms exist. To discuss this problem, let is take any set L, (L C S)
and define two (consequences) consequence operators, C;, and C} by the
following conditions:

(Cr) a € Cp(X) iff there is a squence of formulas ay, as, ..., o, such
that
(a’) an = @,

(b) for every k < n:ay € X or there is 1 < k such that Ca;ay € L
or there is j < k and a substitution (endomorphism) € of the language J
such that oy = ea;.

(CI) o« € Cp(X)iff there is a sequence of formulas ay, s, . . ., @, such
that
(a) ap = a,

(b) forevery k < n:ay € X or thereis ¢ < k such that Caga; € L
or there is j < k and a substitution (endomorphism) ¢ of the language J
such that a; = eay.
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The conquences operations C;, and Cj determine the corsesponding
closure spaces

Cr—Syst ={XCS:C(X)=X},
and
Cr;—Syst ={X CS:C;(X)=X}.

By a directed base for systemu L, L C S, we mean any family IR C o
which satisfies the following conditions (see Maduch 1973):

(a) R # 0,

(b)) NR =L,

() XeR= (X €CL—Syst & L CX),

d X, Ye R=>3, g(ZCXNY),

Under the above notation we have

Lemma 1.

(1) X € CL — Syst <= X' € C} — Syst;

(15) CL(X) =Ly (YN X =0ALCYAY € Cp, —Syst =Y = L)

Concerning the non — existence of finite systems of rejected axioms for
a logic we have the following result which is due to M. Maduch (see Maduch
1973):

Theorem 2.
If there is a directed base for a given propositional logic then no finite
set of rejected axioms can form a complete rejected base together with the

i R |
nules r %, ry .

Proof.

Let L be a logic in question, and let IR be a directed base for L. Let us
assume a contrario that Y is a finite and complete set of rejected axioms
for L. Hence we have

()Y CS-L,

() C;(Y)=S - L.

By (ii), the set Y; is nonempty since C}(0) = 0. Let Y1 = {f1, ..., Bm}-
From (i) it follows that §; ¢ L fori=1,...,m and 3; ¢ NR for NR = L.
Hence for every ¢« = 1,...,m there is Z; € IR such that 8; ¢ Z;. This
and our definition of a directed base (condition (d)) imply the existence of
such aset Z, € R that Z, C Z;N...N Z,,. Obviously Z, € Cr-Syst and

L C Z,. Moreover, Z,NY; = (. This, together with (b) and Lemma 1(ii),
gives Z, = L which is a contradiction. m

It has been proved that several calculi do not possess a finite set of
rejected axioms when we restrict ourselves to the standard rejection rules
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of Lukasiewicz.
For example, the following calculi are of this kind:

(1) the implication-negational N, -valued calculus of Lukasiewicz (see
Gniazdowski 1973);

(2) the intuitionistic propositional calculus (see Maduch 1973);

(3) the modal system S5 of Lewis (see Bryll, Stupecki 1973).

If we are confronted with the problem of L-decidability of a calculus
which have a directed base, we must look for new rules of rejection in order
to possibly solve the problem.

The concept of L-docidability nay also be applied to the so called in-
variant propositional calculi. (In invariant formalizations of calculi neither
the rule of subilitition r, non the rule of inverse sublitution r,— are allo-
wed.) But in this case one must select a recursive (possibly infinite) set of
rejected axioms. A fuller discussion of the problem is contained in Bryll
1996. It turned out that the following five invariant calculi have recussive
sets of the rejected axioms:

(1) the two valued implicational-negational sentential calculus and its
pure implicational fragment;

(2) the three-valued implicational calculus of Lukasiewicz (Bryll, Sochacki
1998);

(3) certain theree-valued invariant systems of ,,nonsense-logics” (Zbrze-
zny 1990);

(4) the n-valued definitionally complete calculus of Lukasiewicz (Bryll,
Sochacki 1995);

(5) the n-valued implicational - negational calculus of Lukasiewicz with
the n being a prime natural number (Bryll, Sochacki 1995).

We do not know whether theore are recursive sets of rejected axioms
for the invariant n-valued implicational-negational calculi of Lukasiewicz
for odd n’s, and for the pure implicatinal n-valued calculi of Lukasiewicz if
n > 3.
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Last but not least, the method of axiomatic rejection can be applied
to other logical systems, e.g. certain first-order calculi or syllogistic of
Aristotle etc.
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