Jan Dtugosz University of Czestochowa

Scientific Issues, Mathematics XII, Czestochowa 2007

STABILITY OF THE EQUATION
OF RING HOMOMORPHISMS

Roman Ger

Institute of Mathematics and Computer Science
Jan Dtugosz University of Czestochowa
al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
e-mail: r.ger@ajd.czest.pl

Abstract. Let R be a unitary ring and (A, || - ||) stand for a Banach algebra with
a unit. In connection with some stability results of R. Badora [1] and D.G. Bourgin
[2] concerning the system of two Cauchy functional equations

flzy) = f(@)f(y)

for mappings f : R — A, we deal with Hyers-Ulam stability problem for a single
equation

fle+y)+ flay) = f@) + fy) + f(@)f(y).- ()

The basic question whether or not equation (xx) is equivalent to the system (x) has
widely been examined by J. Dhombres [3] and the present author in [4] and [5].

1. Introduction

D. G. Bourgin has shown in [|2| that given a surjective map f from a ring
into a Banach algebra such that both additivity and multiplicativity of f are
assumed merely with some (g, d)-exactness, i.e.

[f(x+y) = flz) - fly)ll <e

and
1f(zy) = f(@) f(y)ll <0,

then f has to be a ring homomorphism, i.e. f has to satisfy the system of two
Cauchy functional equations

J() + f(y) .
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exactly. This stability result has been then generalized by R. Badora in [1] who
was applying different methods to get rid of, among others, the surjectivity
assumption upon the map in question.

The functional equation

fla+y)+ flzy) = f(x) + fly) + f(2)f(y), (%)

resulting from summing up side by side the two Cauchy equations occurring
in the system (x), has been studied by J. Dhombres in [3| with the chief con-
cern of finding possibly mild conditions quaranteeing that this single equation
establishes a ring homomorphism. Under various alternative and less restric-
tive assumptions this problem was later examined by the present author in [4]
and [5].

Bearing these two ideas in mind a natural question arises whether or not
the functional equation (%) is stable in the sense just described. In what
follows, we are answering that question in affirmative.

2. The result

It should be emphasized that the so called hyperstability result obtained by
D. G. Bourgin in [2] ((g,0)-exactness and the exact validity of the system are
equivalent) can hardly be expected when dealing with equation (k). Actually,
given a positive € a straightforward verification proves that an arbitrary map
f from a ring into a normed algebra, enjoying the property that

If(z)]] <mn where 4n+n* <e,

satisies equation (x%) with e-exactness. Observe also that taking arbitrary
elements a and r from the domain and the range of the solution f of equation
(%) , respectively, we can easily check that the map

x+— af(rze)

yields a solution to () as well, provided that a? = a and 72 = r. Therefore,
the maps for which such shifts are bounded are, in a sense, uninteresting in
the context spoken of. What about the others? The following result provides
an answer to that question.

Theorem. Let R be a ring with a unit 1 and let (A, | - ||) stand for a com-
mutative Banach algebra with a unit e. Given an € > 0 assume that a map

f:R — Ais such that f(0) =0, f(1) =e, f(2) =2, and

[f(x+y)+ fley) — f(2) = f(y) = f@)fy)ll <e forall z,yeR. (1)
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Then either there exist an a € A\ {0} and an v € R\ {0} such that the map

R>z+——af(rz) € A is bounded (b)

or
f establishes a ring homomorphism between R and A. (h)

Proof. By setting y = 1 in (1) we get

[f(z+1) = flz)—el <&, zeR,

whence
1f (@+2)=f(2)=2e|| < [|f((z+1)+1) = f(z+1)—ell+] f(z+1)— f(z)—el < 2,
holds true for all x € R. Now, putting y = 2 in (1), we infer that
e>|[f(z+2)+ f(2z) — f(z) — 2e — 2f ()|
= [I(f(22) = 2f(x)) — (2¢ + f(z) = f(z +2))|
= 1 f2x) =2f(@)|| = [ f(z+2) = flz) — 2| = ||f(2z) — 2f(2)]| — 2¢

and, therefore,

[f(22) = 2f(2)]| <3¢, zeR. (2)

A standard procedure applied already by D. H. Hyers in [6] gives now, by
virtue of the completness of the algebra (A,| - ||), the convergence of the
Hyers function sequence (g, ), € N given by the formula

1
gn(T) = Q—nf(Q”x), reR, neN,

along with the estimation
1 1
lgn(@) = f@) <3( 5+ 5+ -+ )e. zeR neN, (3

Consequently, by setting

g(z) = lim g,(z), z€R,

n—oo

and applying (1) with x replaced by 2"z we arrive at

1 1 1
|5 20500 4 00(e) — ) = 32 70) = 900 0)| < g
whence, passing to the limit as n — oo, we deduce that
. f@x+y
tim LZ2EY) 9(x)f(y) +9(x) —g(zy), z,yeR. (4)

n—00 on



32 Roman Ger

On the other hand, with x and y replaced by 2"z and 2"y, respectively,

inequality (1) implies that

1

on
which, after passing to the limit as n — o0, gives the estimation
10+ [g(x +y) — g(x) — 9(W)] + g(zy) — g(x) - g(y)| <0,
valid for all z,y € R. This states that g is multiplicative, i.e.
g(zy) = g(x)g(y), zyeR.
Now, equalities (4) and (5) imply that

f {27+ Y)

n—00 on

=9@)[f(y) —9ly) +el, zyeRrR,
whereas (3) leads obviously to
1f(z) —g(z)]| <3, zeR.

On setting h := f — g + e we get finally that

i ! 2"z +y)

n—o00 n

=g(x)h(y), = yeR.

—[gn(@ +y) = gn(x) — 90 (Y)] + g2n(2Y) — gn(z) - gn(y)H < oot

(7)

On account of the associativity of the addition in the ring R we derive

from (1) the following two inequalities

[f(@+y+2)+ f((z+y)2) - fle+y) - f(z) - fle+y)fR)]| <e

and

[=fl@+y+2)—flaly+2)+f@)+fly+2)+f(@)fly+2) <e

valid for all triples (z,y, z) from R3. Summing them side by side and applying

the triangle inequality we obtain the estimation

1F((z +y)2) = flz+y) = f(2) = fle+y)f(2)

—flay+2)+ @)+ fly+2)+f@)fly+2)] <e,

for any (x,y,2) € R®.
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Replacing here the variable z by 2"z and dividing both sides by 2" we
arrive at

lgn (4 5)2) — 5 £+ ) = 9a(2) — F(a +9)on(2)
o F(@ ) o @)+ g f(2 )+ o F@)f(2 )| < e
(z,y,2) e R®, neN.

Passing to the limit as n — oo and applying (7) we deduce that

9((z+y)z) —g(2) = f(z+y)g(2) —g(z2)h(zy) + 9(2)h(y) + f(x)g(z)h(y) = 0,

which in view of the multiplicativity of g (see (5)) and the commutativity of
A states that

gz +y) —e— flz+y) —g(@)h(zy) + h(y) + f(2)h(y)] g(z) =0,  (8)

for every triple (z,y,2) € R3.
Let ¢ := g(1) —e. If ¢ # 0, then for every x € R one has g(x) = g(1-z) =
g(1)g(z), i.e. cg(x) =0 whence, by means of (6),

lef (@)l = llef(x) = cg(@)l| < el - £ (z) = g(@)] < 3elle]

for all z € R, i.e. we have (b) with @ :=c and r := 1.
If c=0,1i.e. g(1) =e, then setting z=1in (8) we obtain an equation

h(y) — g(x)h(zy) + f(2)h(y) = f(r+y) —glr+y)+e=h(z+y), z,y€R.

Since f = h + g — e the latter equation may equivalently be written in the
form

Wz +y) = hz)h(y) = g(@)[h(y) — h(zy)], 2,y €R.
In particular, on account of the symmetry of the left hand side, one has
9(x)[h(y) = h(zy)] = g(y)[h(x) = h(yz)], =y €R,
whence, by setting here y = 1 we conclude that

g(x)le—h(z)]=0, zeR,

because of the equality h(1) = f(1) — g(1) + e = e. Consequently, for all
x,y € R we obtain

g(zy)le — h(z)] = g(y)g(x)[e — h(z)] = 0.
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If we had b := h(zg) — e # 0 for some zy € R\ {0} (note that h(0) = e), we
would get bg(zpy) = 0 whence, by means of (6),

165 (o) | = [Ib.f (zoy) — bg(zoy)| < bl - [ (zoy) — g(zoy)|| < 3 |[bll

for all y € R, i.e. we have (b) with a := b and r := z.
Thus, the final possibility is: h(z) = e which says nothing but the
equality f = g. Since g is multiplicative inequality (1) states that

If(z+y) = f(z) =yl <e forall z,yeR.

The celebrated D. H. Hyers theorem from [6] gives now the existence of an
additive map A : R — A such that

IIf(x) — A(z)|| < e for every x € R. 9)

Observe now that for any x € R one has

F(2r) = g(2r) = Tim L f (2"0) =2 L f (20 ha) = 29(0) = 27 (a),

whence f(2"z) = 2"f(x) for all z € R and n € N. This jointly with (9)
implies that

2" f(x) — A(x)|| = || f(2"x) — A(2"z)|| <e, z€R, neN,

which forces f to coincide with A. Consequently, f is both additive and
multiplicative, i.e. f establishes a ring homomorphism between R and A.
Thus the proof has been completed.

3. Concluding remarks

The assumptions f(0) = 0 and f(1) = e seem to be natural while dealing with
homomorphisms. Note that none of them results from inequality (1). The
same applies to f(2) = 2e; inequality (1) forces only the distance || f(2) — 2¢||
to be majorized by . The question whether the commutativity of the target
algebra is essential remains open.

The assertion of the Theorem would certainly be more readable if we
had simply the alternative: either f is bounded or f is a homomorphism
(classical superstability effect). Plainly, that is actually the case whenever
both the domain ring R and the Banach algebra A in question are fields.
If A is a field then f yields a homomorphism provided that no function of
the form x — f(rx), r € R\ {0}, is bounded. If R is a field then f yields
a homomorphism provided that no function af, a € A\ {0}, is bounded.
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If either R or A has no unit the situation becomes sophisticated even
while examining equation (xx) itself (see [4] and [5]). Thereby, the study of
its stability behaviour seems to be even more difficult.
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