STABILITY OF THE EQUATION OF RING HOMOMORPHISMS

Roman Ger

Institute of Mathematics and Computer Science Jan Długosz University of Częstochowa al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland e-mail: r.ger@ajd.czest.pl

Abstract. Let \mathcal{R} be a unitary ring and $(\mathcal{A}, \|\cdot\|)$ stand for a Banach algebra with a unit. In connection with some stability results of R. Badora [1] and D.G. Bourgin [2] concerning the system of two Cauchy functional equations

$$\begin{cases} f(x+y) = f(x) + f(y) \\ f(xy) = f(x)f(y) \end{cases}$$
 (*)

for mappings $f: \mathcal{R} \longrightarrow \mathcal{A}$, we deal with Hyers-Ulam stability problem for a *single* equation

$$f(x+y) + f(xy) = f(x) + f(y) + f(x)f(y).$$
 (**)

The basic question whether or not equation (**) is equivalent to the system (*) has widely been examined by J. Dhombres [3] and the present author in [4] and [5].

1. Introduction

D. G. Bourgin has shown in [2] that given a surjective map f from a ring into a Banach algebra such that both additivity and multiplicativity of f are assumed merely with some (ε, δ) -exactness, i.e.

$$||f(x+y) - f(x) - f(y)|| \le \varepsilon$$

and

$$||f(xy) - f(x)f(y)|| \le \delta,$$

then f has to be a ring homomorphism, i.e. f has to satisfy the system of two Cauchy functional equations

$$\begin{cases} f(x+y) = f(x) + f(y) \\ f(xy) = f(x)f(y) \end{cases}$$
 (*)

Roman Ger

exactly. This stability result has been then generalized by R. Badora in [1] who was applying different methods to get rid of, among others, the surjectivity assumption upon the map in question.

The functional equation

$$f(x+y) + f(xy) = f(x) + f(y) + f(x)f(y), \qquad (**)$$

resulting from summing up side by side the two Cauchy equations occurring in the system (*), has been studied by J. Dhombres in [3] with the chief concern of finding possibly mild conditions quaranteeing that this *single* equation establishes a ring homomorphism. Under various alternative and less restrictive assumptions this problem was later examined by the present author in [4] and [5].

Bearing these two ideas in mind a natural question arises whether or not the functional equation (**) is stable in the sense just described. In what follows, we are answering that question in affirmative.

2. The result

It should be emphasized that the so called *hyperstability* result obtained by D. G. Bourgin in [2] $((\varepsilon, \delta)$ -exactness and the exact validity of the system are equivalent) can hardly be expected when dealing with equation (*). Actually, given a positive ε a straightforward verification proves that an *arbitrary* map f from a ring into a normed algebra, enjoying the property that

$$||f(x)|| \le \eta$$
 where $4\eta + \eta^2 \le \varepsilon$,

satisfies equation (**) with ε -exactness. Observe also that taking arbitrary elements a and r from the domain and the range of the solution f of equation (**), respectively, we can easily check that the map

$$x \longmapsto af(rx)$$

yields a solution to (**) as well, provided that $a^2 = a$ and $r^2 = r$. Therefore, the maps for which such shifts are bounded are, in a sense, uninteresting in the context spoken of. What about the others? The following result provides an answer to that question.

Theorem. Let \mathcal{R} be a ring with a unit 1 and let $(\mathcal{A}, \|\cdot\|)$ stand for a commutative Banach algebra with a unit e. Given an $\varepsilon \geq 0$ assume that a map $f: \mathcal{R} \longrightarrow \mathcal{A}$ is such that f(0) = 0, f(1) = e, f(2) = 2e, and

$$||f(x+y) + f(xy) - f(x) - f(y) - f(x)f(y)|| \le \varepsilon$$
 for all $x, y \in \mathbb{R}$. (1)

Then either there exist an $a \in A \setminus \{0\}$ and an $r \in R \setminus \{0\}$ such that the map

$$\mathcal{R} \ni x \longmapsto af(rx) \in \mathcal{A} \quad is \ bounded$$
 (b)

or

$$f$$
 establishes a ring homomorphism between \mathcal{R} and \mathcal{A} . (h)

Proof. By setting y = 1 in (1) we get

$$||f(x+1) - f(x) - e|| \le \varepsilon, \quad x \in \mathcal{R},$$

whence

$$||f(x+2)-f(x)-2e|| \le ||f((x+1)+1)-f(x+1)-e|| + ||f(x+1)-f(x)-e|| \le 2\varepsilon,$$

holds true for all $x \in \mathcal{R}$. Now, putting y = 2 in (1), we infer that

$$\varepsilon \ge \|f(x+2) + f(2x) - f(x) - 2e - 2f(x)\|$$

$$= \|(f(2x) - 2f(x)) - (2e + f(x) - f(x+2))\|$$

$$\ge \|f(2x) - 2f(x)\| - \|f(x+2) - f(x) - 2e\| \ge \|f(2x) - 2f(x)\| - 2\varepsilon\|$$

and, therefore,

$$||f(2x) - 2f(x)|| \le 3\varepsilon, \quad x \in \mathcal{R}.$$
 (2)

A standard procedure applied already by D. H. Hyers in [6] gives now, by virtue of the completness of the algebra $(A, \|\cdot\|)$, the convergence of the Hyers function sequence $(g_n)_n \in \mathbb{N}$ given by the formula

$$g_n(x) := \frac{1}{2^n} f(2^n x), \quad x \in \mathbb{R}, \ n \in \mathbb{N},$$

along with the estimation

$$||g_n(x) - f(x)|| \le 3\left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}\right)\varepsilon, \quad x \in \mathbb{R}, \ n \in \mathbb{N},$$
 (3)

Consequently, by setting

$$g(x) := \lim_{n \to \infty} g_n(x), \quad x \in \mathcal{R},$$

and applying (1) with x replaced by $2^n x$ we arrive at

$$\left\| \frac{1}{2^n} f(2^n x + y) + g_n(xy) - g_n(x) - \frac{1}{2^n} f(y) - g_n(x) f(y) \right\| \le \frac{1}{2^n} \varepsilon,$$

whence, passing to the limit as $n \longrightarrow \infty$, we deduce that

$$\lim_{n \to \infty} \frac{f(2^n x + y)}{2^n} = g(x)f(y) + g(x) - g(xy), \quad x, y \in \mathcal{R}.$$
 (4)

On the other hand, with x and y replaced by $2^n x$ and $2^n y$, respectively, inequality (1) implies that

$$\left\| \frac{1}{2^n} \left[g_n(x+y) - g_n(x) - g_n(y) \right] + g_{2n}(xy) - g_n(x) \cdot g_n(y) \right\| \le \frac{1}{2^{2n}} \varepsilon,$$

which, after passing to the limit as $n \longrightarrow \infty$, gives the estimation

$$||0 \cdot [q(x+y) - q(x) - q(y)] + q(xy) - q(x) \cdot q(y)|| \le 0$$

valid for all $x, y \in \mathcal{R}$. This states that g is multiplicative, i.e.

$$g(xy) = g(x)g(y), \quad x, y \in \mathcal{R}.$$
 (5)

Now, equalities (4) and (5) imply that

$$\lim_{n \to \infty} \frac{f(2^n x + y)}{2^n} = g(x)[f(y) - g(y) + e], \quad x, y \in \mathcal{R},$$

whereas (3) leads obviously to

$$||f(x) - g(x)|| \le 3\varepsilon, \quad x \in \mathcal{R}.$$
 (6)

On setting h := f - g + e we get finally that

$$\lim_{n \to \infty} \frac{f(2^n x + y)}{2^n} = g(x)h(y), \quad x, y \in \mathcal{R}.$$
 (7)

On account of the associativity of the addition in the ring \mathcal{R} we derive from (1) the following two inequalities

$$||f(x+y+z) + f((x+y)z) - f(x+y) - f(z) - f(x+y)f(z)|| \le \varepsilon$$

and

$$\|-f(x+y+z)-f(x(y+z))+f(x)+f(y+z)+f(x)f(y+z)\| < \varepsilon$$

valid for all triples (x, y, z) from \mathbb{R}^3 . Summing them side by side and applying the triangle inequality we obtain the estimation

$$||f((x+y)z) - f(x+y) - f(z) - f(x+y)f(z) - f(x(y+z)) + f(x) + f(y+z) + f(x)f(y+z)|| \le \varepsilon,$$

for any $(x, y, z) \in \mathbb{R}^3$.

Replacing here the variable z by $2^n z$ and dividing both sides by 2^n we arrive at

$$||g_n((x+y)z) - \frac{1}{2^n}f(x+y) - g_n(z) - f(x+y)g_n(z) - \frac{1}{2^n}f(2^nxz + xy) + \frac{1}{2^n}f(x) + \frac{1}{2^n}f(2^nz + y) + \frac{1}{2^n}f(x)f(2^nz + y)|| \le \frac{1}{2^n}\varepsilon,$$

$$(x, y, z) \in \mathcal{R}^3, \ n \in \mathbb{N}.$$

Passing to the limit as $n \longrightarrow \infty$ and applying (7) we deduce that

$$g((x+y)z) - g(z) - f(x+y)g(z) - g(xz)h(xy) + g(z)h(y) + f(x)g(z)h(y) = 0$$

which in view of the multiplicativity of g (see (5)) and the commutativity of \mathcal{A} states that

$$[g(x+y) - e - f(x+y) - g(x)h(xy) + h(y) + f(x)h(y)]g(z) = 0,$$
 (8)

for every triple $(x, y, z) \in \mathbb{R}^3$.

Let c := g(1) - e. If $c \neq 0$, then for every $x \in \mathcal{R}$ one has $g(x) = g(1 \cdot x) = g(1)g(x)$, i.e. $c \cdot g(x) \equiv 0$ whence, by means of (6),

$$||cf(x)|| = ||cf(x) - cg(x)|| \le ||c|| \cdot ||f(x) - g(x)|| \le 3\varepsilon ||c||$$

for all $x \in \mathcal{R}$, i.e. we have (b) with a := c and r := 1.

If c = 0, i.e. g(1) = e, then setting z = 1 in (8) we obtain an equation

$$h(y) - g(x)h(xy) + f(x)h(y) = f(x+y) - g(x+y) + e = h(x+y), \quad x, y \in \mathcal{R}.$$

Since f = h + g - e the latter equation may equivalently be written in the form

$$h(x+y) - h(x)h(y) = g(x)[h(y) - h(xy)], \quad x, y \in \mathcal{R}.$$

In particular, on account of the symmetry of the left hand side, one has

$$g(x)[h(y) - h(xy)] = g(y)[h(x) - h(yx)], \quad x, y \in \mathbb{R},$$

whence, by setting here y = 1 we conclude that

$$g(x)[e - h(x)] = 0, \quad x \in \mathcal{R},$$

because of the equality h(1) = f(1) - g(1) + e = e. Consequently, for all $x, y \in \mathcal{R}$ we obtain

$$g(xy)[e - h(x)] = g(y)g(x)[e - h(x)] = 0.$$

If we had $b := h(x_0) - e \neq 0$ for some $x_0 \in \mathcal{R} \setminus \{0\}$ (note that h(0) = e), we would get $bg(x_0y) \equiv 0$ whence, by means of (6),

$$||bf(x_0y)|| = ||bf(x_0y) - bg(x_0y)|| \le ||b|| \cdot ||f(x_0y) - g(x_0y)|| \le 3\varepsilon ||b||$$

for all $y \in \mathcal{R}$, i.e. we have (b) with a := b and $r := x_0$.

Thus, the final possibility is: $h(x) \equiv e$ which says nothing but the equality f = g. Since g is multiplicative inequality (1) states that

$$||f(x+y) - f(x) - f(y)|| \le \varepsilon$$
 for all $x, y \in \mathbb{R}$.

The celebrated D. H. Hyers theorem from [6] gives now the existence of an additive map $A: \mathcal{R} \longrightarrow \mathcal{A}$ such that

$$||f(x) - A(x)|| \le \varepsilon$$
 for every $x \in \mathcal{R}$. (9)

Observe now that for any $x \in \mathcal{R}$ one has

$$f(2x) = g(2x) = \lim_{n \to \infty} \frac{1}{2^n} f\left(2^{n+1}x\right) = 2 \lim_{n \to \infty} \frac{1}{2^{n+1}} f\left(2^{n+1}x\right) = 2g(x) = 2f(x),$$

whence $f(2^n x) = 2^n f(x)$ for all $x \in \mathcal{R}$ and $n \in \mathbb{N}$. This jointly with (9) implies that

$$2^{n} ||f(x) - A(x)|| = ||f(2^{n}x) - A(2^{n}x)|| \le \varepsilon, \quad x \in \mathbb{R}, \ n \in \mathbb{N},$$

which forces f to coincide with A. Consequently, f is both additive and multiplicative, i.e. f establishes a ring homomorphism between \mathcal{R} and \mathcal{A} . Thus the proof has been completed.

3. Concluding remarks

The assumptions f(0) = 0 and f(1) = e seem to be natural while dealing with homomorphisms. Note that none of them results from inequality (1). The same applies to f(2) = 2e; inequality (1) forces only the distance ||f(2) - 2e|| to be majorized by ε . The question whether the commutativity of the target algebra is essential remains open.

The assertion of the Theorem would certainly be more readable if we had simply the alternative: either f is bounded or f is a homomorphism (classical superstability effect). Plainly, that is actually the case whenever both the domain ring \mathcal{R} and the Banach algebra \mathcal{A} in question are fields. If \mathcal{A} is a field then f yields a homomorphism provided that no function of the form $x \longmapsto f(rx), r \in \mathcal{R} \setminus \{0\}$, is bounded. If \mathcal{R} is a field then f yields a homomorphism provided that no function $af, a \in \mathcal{A} \setminus \{0\}$, is bounded.

If either \mathcal{R} or \mathcal{A} has no unit the situation becomes sophisticated even while examining equation (**) itself (see [4] and [5]). Thereby, the study of its stability behaviour seems to be even more difficult.

References

- [1] R. Badora. On approximate ring homomorphisms. *J. Math. Anal. Appl.*, **276**, 589–597, 2002.
- [2] D.G. Bourgin. Approximately isometric and multiplicative transformations on continuous function rings. *Duke Math. J.*, **16**, 385–397, 1949.
- [3] J. Dhombres. Relations de dépendance entre les équations fonctionnelles de Cauchy. Aequationes Math., 35, 186–212, 1988.
- [4] R. Ger. On an equation of ring homomorphisms. *Publ. Math. Debrecen*, **52**, 397–417, 1998.
- [5] R. Ger. Ring homomorphisms equation revisited. *Rocznik Nauk.-Dydakt. Prace Mat.*, **17**, 101–115, 2000.
- [6] D. H. Hyers. On the stability of the linear functional equation. *Proc. Nat. Acad. Sci. U.S.A.*, **27**, 222-224, 1941.