## Natural deduction system for some three-valued propositional logic

## Andrzej Zbrzezny

The logic considered in the present paper was introduced by K.Halkowska and A.Zając in [1]. In that work the motivations for the logic in question were given and some three-valued matrix  $\mathfrak{M}$  was introduced. We shall briefly describe the mentioned motivations. Let  $\mathfrak{S}=< S, \vee, \wedge, \neg >$  be a propositional language determined by an infinite denumerable set At of propositional variables and by the propositional connectives  $\vee, \wedge$  and  $\neg$ . Furthermore, let  $\mathcal{K}=\{-1,0,1\}$ , where 1 stands for true, 0 stands for false and -1 stands for undefined. The algebra of the matrix  $\mathfrak{M}$  arises from the following interpretation of disjunction, conjunction and negation:

| $\alpha \lor \beta$   | is defined | iff | $\alpha$ is defined or $\beta$ is defined  |
|-----------------------|------------|-----|--------------------------------------------|
| $\alpha \vee \beta$   | is true    | iff | $\alpha$ is true or $\beta$ is true        |
| $\alpha \wedge \beta$ | is defined | iff | $\alpha$ is defined and $\beta$ is defined |
| $\alpha \wedge \beta$ | is true    | iff | $\alpha$ is true and $\beta$ is true       |
| $\neg \alpha$         | is defined | iff | lpha is defined                            |
| $\neg \alpha$         | is true    | iff | $\alpha$ is false                          |

Therefore, the operators  $f_{\vee}$ ,  $f_{\wedge}$  and  $f_{\neg}$  on K are defined as follows:

| $f_{\wedge}$ | -1 | 0  | 1  |
|--------------|----|----|----|
| -1           | -1 | -1 | -1 |
| 0            | -1 | 0  | 0  |
| 1            | -1 | 0  | 1  |

| $f_{\vee}$ | -1 | 0 | 1 |
|------------|----|---|---|
| -1         | -1 | 0 | 1 |
| 0          | 0  | 0 | 1 |
| 1          | 1  | 1 | 1 |

|    | $f_{\neg}$ |
|----|------------|
| -1 | -1         |
| 0  | 1          |
| 1  | 0          |

As the set  $K^*$  of distinguished elements of the matrix  $\mathfrak{M}$  we take the set  $\{-1,1\}$ . The algebra  $\mathcal{K}=\langle K,f_{\vee},f_{\wedge},f_{\neg}\rangle$  is similar to to the free algebra of formulae  $\mathfrak{S}$ ; thus, the couple  $\mathfrak{M}=\langle \mathfrak{S},K^*\rangle$  is a logical matrix for the language  $\mathfrak{S}$ . Let us note that the set of all tautologies of the matrix  $\mathfrak{M}$  is a proper subset of the set of all tautologies of classical propositional logic.

The first axiomatization of the considered logic, namely Gentzen type one, was given in [3], and a Hilbert type axiom system was given in [4].

Here we present a natural deduction formalization for which we can prove the completness theorem.

Before presenting our sequent calculus NZ let us recall some notions and introduce some notations. Let  $\mathfrak{S} = \langle S, \vee, \wedge, \neg \rangle$  be a propositional language. The propositional formulae (formulae, for short) will be denoted by letters  $\alpha, \beta, \gamma, \delta$ . The arbitrary sets of formulae will be denoted by letters X, Y, Z. By a sequent we mean an ordered pair  $\langle X, \alpha \rangle$ , where  $X \subseteq S$  and  $\alpha \in S$ . We shall write  $X \vdash \alpha$  instead of  $\langle X, \alpha \rangle$  and  $X, \alpha_1, \ldots, \alpha_n \vdash \beta$ instead of  $X \cup \{\alpha_1, \ldots, \alpha_n\} \vdash \beta$ . The set of the property of the set of th

We say that a valuation v (i.e. mapping from At into K) satisfies formula a  $\alpha$  iff  $h^{v}(\alpha) \in K^{*}$ , and that v satisfies a sequent  $X \vdash \alpha$  iff vsatisfies  $\alpha$  or there exists  $\beta \in X$ , such that  $h^{\nu}(\beta) = 0$ . A sequent  $\Gamma$  is said to be tautological iff every valuation satisfies  $\Gamma$ .

Now we define the system NZ.

Axioms of the system NZ are sequents of the form  $\{\alpha\} \vdash \alpha$ , where  $\alpha \in S$ .

Rules of inference of the system NZ are the following:

$$(r1) \frac{X \vdash \alpha \quad X \vdash \beta}{X \vdash \alpha \lor \beta}$$

$$(r1) \frac{X \vdash \alpha \quad X \vdash \beta}{X \vdash \alpha \lor \beta} \qquad (r2) \frac{X \vdash \neg \alpha \quad X \vdash \neg \beta}{X \vdash \neg (\alpha \lor \beta)}$$

$$(r3) \frac{X \vdash \alpha \lor \beta \qquad X \vdash \neg \alpha}{X \vdash \beta} \qquad (r4) \frac{X \vdash \alpha \lor \beta \quad X \vdash \neg \beta}{X \vdash \alpha}$$

$$(r4) \ \frac{X \vdash \alpha \lor \beta \quad X \vdash \neg \beta}{X \vdash \alpha}$$

$$(r5) \frac{X \vdash \neg(\alpha \lor \beta)}{X \vdash \neg\alpha} \qquad (r6) \frac{X \vdash \neg(\alpha \lor \beta)}{X \vdash \neg\beta}$$

$$(r6) \ \frac{X \vdash \neg(\alpha \lor \beta)}{X \vdash \neg\beta}$$

$$(r7) \frac{X \vdash \neg \alpha}{X \vdash \neg (\alpha \land \beta)}$$

$$(r8) \frac{X \vdash \neg \beta}{X \vdash \neg (\alpha \land \beta)}$$

$$(r9) \ \frac{X \vdash \alpha \quad X \vdash \neg \alpha}{X \vdash \alpha \land \beta}$$

$$(r10) \ \frac{X \vdash \beta \quad X \vdash \neg \beta}{X \vdash \alpha \land \beta}$$

$$(r11) \quad \frac{X, \alpha \vdash \gamma \quad X, \beta \vdash \gamma \quad X \vdash \alpha \land \beta}{X \vdash \gamma}$$

$$(r12) \quad \frac{X, \neg \alpha \vdash \gamma \quad X, \beta \vdash \gamma \quad X \vdash \alpha \land \beta}{X \vdash \gamma}$$

$$(r13) \quad \frac{X, \alpha \vdash \gamma \mid X, \neg \beta \vdash \gamma \mid X \vdash \alpha \land \beta}{X \vdash \gamma}$$

$$(r14) \quad \frac{X, \neg \alpha \vdash \gamma \quad X, \neg \beta \vdash \gamma \quad X \vdash \neg (\alpha \land \beta)}{X \vdash \gamma}$$

$$(r15) \quad \frac{X \vdash \neg \neg \alpha}{X \vdash \alpha} \qquad (r16) \quad \frac{X \vdash \alpha}{X \vdash \neg \neg \alpha}$$

$$(r17) \quad \frac{X, \alpha \vdash \gamma X, \neg \alpha \vdash \gamma}{X \vdash \gamma} \quad (r18) \quad \frac{X \vdash \alpha}{X \cup Y \vdash \alpha}$$

The notion of proof is the usual one, i.e. a proof  $\mathcal{P}$  in NZ from sequents  $\Gamma_1, \Gamma_2, \ldots, \Gamma_n$  is a finite tree of sequents such that:

- (i) every topmost sequent of  $\mathcal{P}$  is either an axiom or is one of sequents  $\Gamma_1, \Gamma_2, \ldots, \Gamma_n$ , and
- (ii) every sequent in  $\mathcal{P}$  exept the lowest one is an upper sequent (premiss) of an inference rule whose lower sequent (conclusion) is also in  $\mathcal{P}$ .

A sequent  $\Gamma$  is said to be *provable in* NZ from  $\Gamma_1, \Gamma_2, \ldots, \Gamma_n$  if there exists a proof in NZ from  $\Gamma_1, \Gamma_2, \ldots, \Gamma_n$  whose the lowest sequent is  $\Gamma$ . Note that the list  $\Gamma_1, \Gamma_2, \ldots, \Gamma_n$  may be empty and in that case we say that  $\Gamma$  is *provable in* NZ.

First let us note the useful fact about the system NZ:

**THEOREM 1.** For any set  $X \subseteq S$  and any formulae  $\gamma, \delta \in S$ , if sequents  $X, \delta \vdash \gamma$  and  $X \vdash \delta$  are provable in NZ, then the sequent  $X \vdash \gamma$  is provable in NZ.

Since all axioms of NZ are tautological sequents and all rules of NZ are normal (i.e. every valuation which satisfies all premisses of a given rule does not fail to satisfy its conclusion) we can state:

**THEOREM 2.** If a sequent is provable in NZ, then it is tautological.

In order to prove the converse of the above theorem we shall adopt for the system NZ the well known Lindenbaum-Asser theorem:

**THEOREM 3.** If a given sequent  $X \vdash \gamma$  is not provable in NZ, then there exists a set  $Y \subseteq S$ , such that:

- (a)  $Y \supset X$ .
- (b)  $Y \vdash \gamma$  is not provable in NZ.
- (c) for every  $\alpha \notin Y$ , the sequent  $Y, \alpha \vdash \gamma$  is provable in NZ.
- (d) for every  $\alpha \in S, Y \vdash \alpha$  is provable in NZ iff  $\alpha \in Y$ .
- (e) for every  $\alpha \in S$ ,  $\alpha \in Y$  or  $\neg \alpha \in Y$ .

Now we can state and prove the completness theorem for the system NZ:

THEOREM 4. Every tautological sequent is provable in NZ.

**PROOF.** Let us assume that the sequent  $X \vdash \gamma$  is not provable in the system NZ. So, by the Lindenbaum-Asser theorem there exists a set Y, which satisfies conditions (a)...(e). Now we can define three sets of formulae:  $Y_{-1}, Y_0, Y_1$  in the following way:

$$Y_0 = S - Y$$
,  $Y_1 = \{ \alpha \in Y : \neg \alpha \in Y_0 \}$ ,  $Y_{-1} = Y - Y_1$ 

Let us observe that  $Y_{-1} \subseteq Y, Y_1 \subseteq Y, Y_{-1} \cup Y_1 = Y, Y_{-1} \cup Y_0 \cup Y_1 = S$  and the sets  $Y_{-1}, Y_0, Y_1$  are pairwise disjoint.

Moreover, using axioms and rules of the system NZ one can prove that for any formulae  $\alpha$  and  $\beta$  the following conditions hold:

- (i)  $\neg \alpha \in Y_0 \Leftrightarrow \alpha \in Y_1$
- (ii)  $\neg \alpha \in Y_1 \Leftrightarrow \alpha \in Y_0$
- (iii)  $\neg \alpha \in Y_{-1} \Leftrightarrow \alpha \in Y_{-1}$
- (iv)  $\alpha \vee \beta \in Y_{-1} \Leftrightarrow \alpha \in Y_{-1}$  and  $\beta \in Y_{-1}$
- (v)  $\alpha \vee \beta \in Y_1 \Leftrightarrow \alpha \in Y_1 \text{ or } \beta \in Y_1$
- (vi)  $\alpha \vee \beta \in Y_0 \Leftrightarrow (\alpha \in Y_0 \text{ and } \beta \notin Y_1) \text{ or } (\beta \in Y_0 \text{ and } \alpha \notin Y_1)$
- (vii)  $\alpha \wedge \beta \in Y_1 \Leftrightarrow \alpha \in Y_1 \text{ and } \beta \in Y_1$
- (viii)  $\alpha \land \beta \in Y_{-1} \Leftrightarrow \alpha \in Y_{-1} \text{ or } \beta \in Y_{-1}$ 
  - (ix)  $\alpha \wedge \beta \in Y_0 \Leftrightarrow (\alpha \in Y_0 \text{ and } \beta \notin Y_{-1}) \text{ or } (\beta \in Y_0 \text{ and } \alpha \notin Y_{-1})$

Now we define the valuation  $v: At \to \mathcal{K}$  in the following way:

for any 
$$p \in At$$
,  $v(p) = \begin{cases} 1, & \text{iff} \quad p \in Y_1 \\ 0, & \text{iff} \quad p \in Y_0 \\ -1, & \text{iff} \quad p \in Y_{-1} \end{cases}$ 

For any formula  $\delta$  one can prove the following conditions:

$$h^{\nu}(\delta) = 1 \Leftrightarrow \delta \in Y_1$$

$$h^{\nu}(\delta) = 0 \Leftrightarrow \delta \in Y_0$$

$$h^{\nu}(\delta) = -1 \Leftrightarrow \delta \in Y_{-1}$$

We omit the easy proof by the induction on the length of formula  $\delta$ . Eventually, let us note that the valuation h satisfies every formula from

X, as  $X \subseteq Y = Y_{-1}$ . Moreover  $h^{v}(\gamma) = 0$ , since  $\gamma \notin Y$ . This means that the valuation v does not satisfy the sequent X, so the sequent X is not a tautological sequent.

## References of Your Jusupes and take smucks on tall TOOMY

- [1] K.Hałkowska, A.Zając, On some three-valued propositional logic (in Polish), Acta Universitatis Wratislaviensis, No 1017, Logika 13 (1988), pp. 41-49
  - [2] Witold A. Pogorzelski, Piotr Wojtylak, Elements of the theory of completeness in propositional logic, Silesian University, Katowice, 1982
  - [3] A. Zbrzezny, The Gentzen type axiomatization of some three-valued propositional logic, Bulletin of the Section of Logic, No 17 (1988), pp. 70-74
  - [4] A. Zbrzezny, The Hilbert type axiomatization of some three-valued propositional logic, Zeitschrift für mathematische logik und Grundlagen der Mathematik, No 36 (1990), pp.415-421

Andrzej Zbrzezny Pedagogical University Institute of Mathematics Al.Armii Krajowej 13/15 Częstochowa 42-201